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Materials and Methods S1. Description of PAML models and interpretations  

The heterogeneity of ω among lineages of the k13 phylogenetic tree (branch models) was tested by 

comparing the free-ratio (FR) model, which assumes as many ω parameters as the number of branches 

in the tree, to the one-ratio (M0) model which supposes only one ω value for all branches.1,2 

M1a allows codon sites to fall into two site classes, either with ω < 1 (purifying selection) or ω = 1 

(neutral evolution), whereas model M2a extends model M1a with a further site class as ω > 1 (positive 

selection). Model M3 includes a discrete distribution of independent ω with k classes of sites (k = [3, 

4, 5] in this study), with ω values and corresponding proportions estimated from the dataset. Model 

M7 assumed a β-distribution of ten ω ratios limited to the interval [0, 1] with two shape parameters p 

and q, whereas model M8 adds an additional site class with ω possibly > 1 as M2a does. The 

heterogeneity of ω across codon sites was tested by comparison of models M0-M3, while comparison 

of paired models M1a-M2a and M7-M8 allowed to detect positive selection.1 

Model comparisons were made using likelihood ratio tests (LRTs).3 For each of the LRTs, twice 

the log-likelihood difference between alternative and null models (2Δℓ) was compared to critical 

values from a chi-squared distribution with degrees of freedom equal to the difference in the number 

of estimated parameters between both models.4 Candidate sites for positive selection were pinpointed 

using the Bayes empirical Bayes (BEB) inference which calculates the posterior probability that each 

codon site falls into a site class affected by positive selection (in models M2a and M8), as described 

by Yang and colleagues.5 For model M3, in which no BEB approach is implemented yet, the Naïve 

empirical Bayes (NEB) approach was used to identify those sites evolving under positive selection. 

Three codon substitution models were used and compared for all models: F1x4 and F3x4, which 

assume equal nucleotide frequencies and individual codon frequencies at all codon positions, 

respectively, and the parameter-rich model F61, which estimates codon frequencies separately for each 

codon.6,7 Since the three codon substitution models yielded similar results (p < 0.01 in each pairwise 

comparison, Spearman’s rank correlation), we only presented those obtained with the most widely 

used F3x4 codon model. The analyses were run multiple times with different ω starting values to 

check the consistency of the results. 
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For PAML model M3 with k site classes of ω ratios, the posterior mean of ω value at each codon 

site was calculated as the average of the ω ratios across the k ω site classes weighted by their posterior 

probabilities.8 

 

Materials and Methods S2. Setting up of KCTD and BTB-Kelch datasets 

Each Homo sapiens KCTD and BTB-Kelch protein sequence was successively submitted as query 

sequence for a blastp search9 (BLOSUM62 scoring matrix, max target sequences fixed at 1,000) 

against the NCBI non-redundant protein database to retrieve orthologous sequences from a large 

amount of species. The output lists were then filtered according to specific criteria so as to keep only 

protein sequences having an unambiguous description (i.e. a description that includes the name of the 

queried KCTD or BTB-Kelch protein), and that aligned with ≥ 80% sequence coverage and had ≥ 60% 

sequence identity with the query sequence. The multiple protein sequence alignment of each set of 

orthologous sequences was then generated using MAFFT version 710 (E-INS-I strategy with 

BLOSUM62 scoring matrix, gap opening penalty 2.0 and offset 0.1). A second filtering step was 

performed to remove incomplete or miss-annotated sequences, i.e. the sequences that did not contain 

all the annotated domains (using the domain annotation automatically generated by the Uniprot 

Knowledgebase) and/or that included a gapped position located in one of the annotated domains. The 

final multiple protein sequence alignments included: i) 124 sequences × 103 aligned positions for 

SHKBP1; ii) 139 sequences × 102 aligned positions for KCTD17; iii) 135 sequences × 285 aligned 

positions for KEAP1; iv) 162 sequences × 286 aligned positions for KLHL2; v) 158 sequences × 286 

aligned positions for KLHL3; and vi) 129 sequences × 289 aligned positions for KLHL12. The full list 

of orthologous sequences used for each mammalian KCTD and BTB-Kelch protein is provided in 

Table S6. 

 

Materials and Methods S3. Molecular dynamics simulations set up 

At startup, the K13 KREP crystallographic structure was retrieved from the PDB repository, PDB 

ID: 4ZGC.11 One monomer (chain B) and the BTB domain of the two monomers were excluded for 

molecular dynamics simulations. In order to evaluate the influence of ART-R mutations on the PfK13 
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KREP fold, three models were generated: (i) K13 KREP harboring the most common C580Y mutation 

in natural populations; (ii) K13 KREP harboring the R539T mutation which confers the highest level 

of ART-R; and (iii) K13 KREP harboring the A578S mutation which serves as control since the 

mutation do no confer ART-R. Single mutations were introduced using the swapaa function of UCSF 

Chimera by substituting the residue with the most probable rotameric conformation.12 All missing 

atoms were then added using Swiss PDB Viewer.13 Generated models were checked for quality using 

MolProbity14 which showed no outliers and > 98% of residues (including in silico introduced 

mutations) in favored regions. Molecular dynamics simulations were carried out using the GROMACS 

package, v. 5.0.7.15 with the improved side-chain torsion potentials force field Amber99ss-ILDN for 

amino acid interaction.16 Protein systems were immersed in a dodecahedron box of TIP3P water 

molecules17 preserving at least 13 Å of separation between the solute and the edges of the box. The 

Particle Mesh Ewald (PME)18 approach was employed with van der Waals and Coulomb non-bonded 

interactions truncated at 10 Å. Bond lengths were constrained using the LINCS algorithm19 that 

allowed a 2 fs time step in all simulations. The ionization state of residues was set to be consistent 

with neutral pH, and counter-ions Na+ were then added by randomly replacing water molecules to 

ensure the overall charge neutrality of the system. The whole systems consisted of ~35 000 atoms. To 

release conflicting contacts, solvated systems were subjected to energy minimization using the 

steepest descent algorithm over 5 000 steps until the maximum force < 1000.0 kJ/mol-1/nm-1. Before 

MD productions, each solvated system was subjected to two-step equilibration. In the first step, 

systems were equilibrated for 100 ps in the NVT ensemble at 300 K with the V-rescale temperature 

coupling.20 The equilibrated systems from the NVT ensemble were then treated to constant pressure 

(NPT) ensemble for 100 ps using the Parrinello-Rahman barostat21 under an isothermal-isobaric 

pressure of 1.0 bar. Position restrains were applied to all atoms during equilibration steps to avoid 

configuration changes. MD productions were run for 100 ns in the absence of any restraints. During 

MD productions, the V-rescale thermostat coupled with the Parrinello-Rahman barostat were used to 

maintain the temperature and pressure at 300 K and 1.0 bar, respectively. The trajectories were stored 

at every 10 ps. Each wild type and mutant system was subjected to three molecular dynamics 

replicates with the same parameters and algorithms but different velocities. MD trajectories were then 



5 
 

analyzed using inbuilt GROMACS tools. The first 5 ns of trajectories (which referred as equilibration 

time), were removed prior to analyses. 
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