Supplementary Information

Augmentation of myocardial I_f dysregulates calcium homeostasis

and causes adverse cardiac remodeling

Yampolsky et al.

Experiments were performed in isolated cardiomyocyte preparation (load with 10 μ M Fluo4-AM, puff with caffeine 10 mM). Quantification of the amplitude [peak] of caffeine-induced Ca²⁺ transients, which serves as a measure for sarcoplasmic reticulum Ca²⁺ content. **a**, representative Ca²⁺ transients. **b**, results of the experiment (transgenic HCN4^{tg/wt} cells = TG [n=20]; wild type cells = WT [n=12]; mean ± standard deviation; **P<0.01 TG vs. WT; two-tailed Mann-Whitney test). Source data are provided as a Source data file.

Properties of Ca²⁺ transients recorded from isolated cardiomyocytes of wild type and $HCN4^{tg/wt}$ hearts. a, cardiomyocytes isolated from wild type mice predominantly showed normal behaviour, lacking automaticity (defined as spontaneous beating rate >0.2 Hz) or prolonged decay of diastolic $[Ca^{2+}]_i$ (defined as D₉₀ > 2000ms). **b**, In contrast, considerable numbers of cardiomyocytes from $HCN4^{tg/wt}$ mice revealed spontaneous pacemaker activity, characterized by periodic firing of $[Ca^{2+}]_i$ transients, or $[Ca^{2+}]_i$ transients with abnormal prolongation of diastolic $[Ca^{2+}]_i$ decay (defined as D₉₀ > 2000ms). **c**, These changes recovered to the wild type situation when $HCN4^{tg/wt}$ cardiomyocytes were pre-treated with ivabradine (3 µM). Notably, only $[Ca^{2+}]_i$ transients with normal configuration were used for the evaluation according to Figures 5 and 6 of the main manuscript.

b

	1	2	3	4	5	6	7	8	9	10	11	12
A	Akt1	Apaf1	Api5	Atf5	Bad	Bag1	Bag3	Bak1	Bax	Bcl10	Bcl2	Bcl2l1
	1.00	1.02	1.27	-1.01	1.00	-1.00	-1.38	1.08	-1.16	1.20	-1.31	1.00
В	Bcl2l10	Bcl2l2	Bid	Naip1	Naip2	Birc2	Birc3	Xiap	Birc5	Bnip2	Bnip3	Bnip3l
	1.00	-1.04	-1.05	-1.04	1.14	-1.14	1.08	-1.13	-1.15	-1.06	-1.04	-1.09
С	Bok	Card10	Nod1	Card6	Casp1	Casp12	Casp14	Casp2	Casp3	Casp4	Casp6	Casp7
	1.22	-1.22	1.00	1.02	1.43	-1.09	-1.33	1.03	2.39	-1.19	1.36	1.51
D	Casp8	Casp9	Cflar	Cidea	Cideb	Cradd	Dad1	Dapk1	Dffa	Dffb	Tsc22d3	Fadd
	1.00	-1.11	-1.02	1.09	-1.44	1.21	-1.11	1.73	-1.00	-1.03	-1.09	1.25
Е	Fas	Fasl	Hells	II10	Lhx4	Ltbr	Mcl1	Nfkb1	Nme5	Nol3	Pak7	Pim2
	1.16	1.05	1.00	-1.10	1.34	-1.36	-1.21	1.14	-1.13	-1.35	-1.18	1.57
F	Polb	Prdx2	Pycard	Ripk1	Rnf7	Sphk2	Tnf	Tnfrsf10b	Tnfrsf11b	Tnfrsf1a	Cd40	Tnfsf10
	-1.21	1.09	1.22	-1.02	-1.12	1.20	-1.24	-1.15	-1.02	1.10	-1.01	-1.20
G	Tnfsf12	Cd40lg	Cd70	Traf1	Traf2	Traf3	Trp53	Trp53bp2	Trp53inp1	Trp63	Trp73	Zc3hc1
	1.27	-1.06	1.11	-1.42	-1.16	-1.37	1.51	-1.02	1.18	1.63	-1.14	-1.01

Supplementary Figure 3

Mouse apoptosis array. a, b. Heat map representation (a) and numerical data (b) of apoptosis related gene expression in $HCN4^{tg/wt}$ as fold-change of wild type values (wt = 1.0). 96-well positions are indicated with expression levels colour-coded in black (no change), red (increased level) and green (decreased level).

Key surface ECG parameters in anaesthetized mice (3 months of age). a-d. heart rate (a). PR interval (b), QRS complex (c) and QTc interval (d) measured in 3 months-old wild type (WT, grey columns, n= 23 animals) and $HCN4^{tg/wt}$ (TG, black columns, n = 6 animals) mice. Data are presented as mean ± s.e.m. * P<0.05, ** P<0.01, *** P<0.001; unpaired t-test. **e**, **f** Representative ECG complexes as overlay of 50 consecutive complexes from wild type (e) and transgenic (f) mice. Source data are provided as a Source data file.

Western blot images used to compose result panels in indicated figures.

	WT	HCN4 +/tg	P value
Ν	5	5	
RR Interval (ms)	107.3 ± 5.5	106.7 ± 11.2	0.92
Heart Rate (BPM)	569.4 ± 27.1	576.9 ± 52.8	0.79
PR Interval (ms)	37.2 ± 1.9	35.5 ± 1.3	0.14
P Duration (ms)	14.4 ± 1.3	13.7 ± 1.4	0.44
QRS interval (ms)	16.3 ± 0.9	16.1 ± 1.6	0.82
QTc (ms)	46.9 ± 3.1	50.8 ± 2.1	0.053
PVCs / 10 ⁴ beats	1.6 ± 1.1	18.4 ± 5.5	0.018
Mice with nonsustained VT	0	3	0,1667

Abbreviations and definitions: BPM beats per minute, PVCs premature ventricular captures, VT ventricular tachycardia. Nonsustained VT, \geq 3 consecutive ventricular beats.

Supplementary Table 1

Ambulatory telemetry of wild type (WT) and transgenic (*HCN4* $^{+/tg}$) mice (6 months of age). Data are presented as mean \pm s.e.m. Source data are provided as a Source data file.

Human target gene	Human target protein	Primer accession number
		(TaqMan assay)
GAPDH	GAPDH	Mm99999915_m1
HPRT1	HPRT1	Mm00446968_m1
ACTB	ß-actin	Mm00607939_m1
SCN5A	Na _v 1.5	Mm00451971_m1
SLC8A1	NCX	Mm01232254_m1
Ryr2	RyR2	Mm00465877_m1
CACNA1C	Ca _v 1.2	Mm00437917_m1
CACNA1D	Ca _v 1.3	Mm01209919_m1
CACNA1A	Ca _v 2.1	Mm_00432190_m1
CACNA1G	Ca _v 3.1	Mm00486572_m1
KCNJ2	K _{ir} 2.1	Mm00434616_m1
KCNA4	K _v 1.4	Mm00445241_s1
KCNA5	K _v 1.5	Mm00524346_s1
KCND2	K _v 4.2	Mm01161732_m1
KCND3	K _v 4.3	Mm01302126_m1
KCNQ1	K _v 7.1	Mm00434640_m1
KCNH2	hERG	Mm00465370_m1
KCNIP2	KChip2	Mm00518915_g1
mHCN1	mHCN1	Mm00468832_m1
mHCN2	mHCN2	Mm00468538_m1
mHCN4	mHCN4	Mm01176086_m1
hHCN4	hHCN4	Hs00175760_m1
Myh7b	Myosin heavy chain 7B	Mm01249941_m1
ATP2a2	Serca2a	Mm01201431_m1
PIn	Pln	Mm04206541_m1
Ррр3са	Caln	Mm01317678_m1
Atp1a1	Na⁺/K⁺-ATPase	Mm00523255_m1
Nppa	ANP	Mm01255747_g1
Casp3	Casp3	Mm01195085_m1
Tgm2	tTG	Mm00436987_m1
Capn1	Capn1	Mm00482964_m1
Mtor	mTOR	Mm00444968_m1
Gsk3b	GSK-3B	Mm00444911_m1

Supplementary Table 2

Primers used for quantitative real-time polymerase chain reaction (qRT-PCR).

Primary antibody	Secondary antibody
Anti-NCX1 antibody ab135735 (IgG, rabbit, abcam)	Anti-Rabbit IgG (whole molecule) Peroxidase(A6154)(Sigma-Aldrich)
Anti-Ca _v 1.2 (#ACC-003) (IgG, rabbit, Alomone Labs)	Anti-Rabbit IgG (whole molecule) Peroxidase(A6154)(Sigma-Aldrich)
Anti-Serca2 (F-1): sc-376235 (IgG, mouse, Santa Cruz Biotechnology)	Goat anti-mouse IgG-HRP: Sc-2005 (Santa Cruz Biotechnology)
Anti-Phospholamban antibody [2D12] (ab2865) (IgG, mouse, abcam)	Goat anti-mouse IgG-HRP: Sc-2005 (Santa Cruz Biotechnology)
A010-12 Anti-phospho-PLB (Ser-16) (IgG, rabbit, Badrilla)	Anti-Rabbit IgG (whole molecule) Peroxidase(A6154)(Sigma-Aldrich)
A010-13 anti-phospho-PLB (Thr-17) (IgG, rabbit, Badrilla)	Anti-Rabbit IgG (whole molecule) Peroxidase(A6154)(Sigma-Aldrich)
Anti-Calpain 1 antibody (ab28258) (IgG, rabbit, abcam)	Anti-Rabbit IgG (whole molecule) Peroxidase(A6154)(Sigma-Aldrich)
Anti-HCN4 (#APC-052) (IgG, rabbit, Alomone Labs)	Anti-Rabbit IgG (H+L), F(ab) fragment- Peroxidase antibody (Sigma-Aldrich)
GAPDH (HRP) G8140-11 Mab (IgG, mouse, Us Biologicals)	Goat anti-mouse IgG-HRP: Sc-2005 (Santa Cruz Biotechnology)

Supplementary Table 3

Antibodies used for immunocytochemical assays.