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Supplemental Methods 12 

Computational packages and scripts. R [1], RStudio [2], and ggplot2 [3] were 13 

used to produce all the analyses and figures presented in this study unless otherwise 14 

indicated. All the scripts used in this work are available at GitHub 15 

(https://github.com/PLeeLab/methane_oxidation_genetic_trait). 16 

Metagenomics analysis pipeline. Our analysis was applied to publicly available 17 

metagenomic data from five potentially methanotrophic environments: 1) Lake 18 

Washington, USA [4]; 2) Serpentinite Springs of the Voltri Massif, Italy [5]; 3) Movile 19 

Cave in Mangalia, Romania [6]; 4) Santa Elena Ophiolite alkaline spring, Costa Rica 20 

[7]; and 5) Coastal basin of Golfo Dulce, Costa Rica [8]. For 1), the publicly available 21 

metagenome-assemble genomes (MAGs) 22 

(https://gold.jgi.doe.gov/studies?id=Gs0114290) were also examined. 23 

The metagenomics analysis pipeline consists of seven main stages and a 24 

preliminary Stage 0 for data and software preparation. In Stage 0, raw metagenomic 25 

reads in FASTQ format were downloaded from NCBI/SRA using fastq-dump from the 26 

SRA Toolkit [9]. When a sample was produced using paired-end sequencing, sample 27 

integrity was verified by confirming it contained the same number of forward and 28 

reverse reads. The average and standard deviation read count were then calculated. 29 

The algorithms and packages used in our pipeline are summarized below: 30 

Stage Function Software Ref Link 
0 Preliminary fastq-dump [9] https://ncbi.github.io/sra-tools/fastq-dump.html 
1 Quality control  illlumina-

utils 
[10] https://github.com/merenlab/illumina-utils 

2 Co-assembly MEGAHIT 
Anvi’o 

[11] 
[12] 

https://github.com/voutcn/megahit 
https://github.com/merenlab/anvio  

3 Binning MaxBin [13] https://downloads.jbei.org/data/microbial_communities/MaxBin/MaxBin.html 
4 Refine bins CheckM [14] http://ecogenomics.github.io/CheckM/ 
5 Functional 

annotation 
Prokka [15] https://github.com/tseemann/prokka 

6 Taxonomy 
classification of 
bins 

PhyloPhlAn [16] https://bitbucket.org/nsegata/phylophlan/wiki/Home 

7 Refine 
functional 
annotation of 

eggNOG-
mapper 

[17] https://github.com/jhcepas/eggnog-mapper 
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methanotrophic 
MAGs 

For Stage 1 (quality control), high-quality reads were selected using illlumina-utils 31 

[10] with the Minoche [18] method using the command iu-filter-quality-minoche with 32 

the parameter --ignore-deflines. As the only exception, we used the method iu-33 

merge-pairs for the metagenome from Serpentinite Springs of the Voltri Massif, Italy 34 

as the authors reported that the sequencing in this project yielded partially 35 

overlapped paired-end reads. In Stage 2 (co-assembly), pooled samples from the 36 

same environment were co-assembled following published methods [19–21]. Briefly, 37 

reads that passed quality control were co-assembled into contigs with MEGAHIT 38 

using the parameter --min-contig-len = 1000. Contigs produced by MEGAHIT [11] 39 

were subjected to refinement with anvi’o [12] three times using the parameter --40 

simplify-names and setting --min-len to 1000, 1500, and 2500. In Stage 3 (binning), 41 

refined contigs and high-quality reads were binned with MaxBin [13] to produce 42 

MAGs (MAGs and bins refer to the same item in this pipeline). In Stage 4 (refine 43 

bins), the quality of MAGs was assessed with CheckM [14] and retained if they 44 

exceeded the quality standards defined in the Minimum Information about a 45 

Metagenome-Assembled Genome (MIMAG) for bacteria [22] for a medium-quality 46 

draft (completeness > 70% and contamination < 10%). MAGs of potential 47 

methanotrophs were selected according to the presence of methane oxidation genes 48 

(pmoCAB or mmoXYZCDB) in their genomes. In Stage 5 (functional annotation), 49 

MAGs were annotated with Prokka [15] using the parameters –metagenome and --50 

kingdom=Bacteria. In Stage 6 (taxonomic classification), the amino acid sequences 51 

produced by Prokka were used as input for taxonomic characterization of MAGs 52 

using PhyloPhlAn [16] with parameters -i and -t. Only MAGs resulting in a taxonomic 53 

classification with high or medium confidence were selected for subsequent 54 

analyses. Finally, in Stage 7 (functional annotation refinement), all MAGs 55 

characterized as probable methanotrophic bacteria were subjected to a second, 56 

more comprehensive annotation procedures with eggNOG-mapper [17], in which 57 

KEGG Orthologs (KO), Gene Ontology (GO), and Clusters of Orthologous Groups 58 

(COGs) were assigned to genome features. The retrieved publicly available 59 
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assembled and binned MAGs of methanotrophic bacteria of Lake Washington, USA 60 

[4] were subjected to our metagenomics analysis pipeline from Stage 4 to Stage 7. 61 

Geographical location of methanotroph genomes. The geographical coordinates 62 

of the origin for each sample were determined either from manual inspection of 63 

published reports (Table S1) or IMG/JGI [23]. When available, the exact coordinates 64 

of the sampling location were used to place genomes in the map. For nine genomes, 65 

the origin location could not be found using either method. The coordinates were 66 

plotted using the maps [24] package in R. The position_jitter parameters were set to 67 

w = 3.1and h = 3.1 to avoid overlapping of dots. 68 

Genome-scale phylogenetic tree of genomes and MAGs. 59 methanotroph 69 

genomes and MAGs and one outgroup genome of the non-methanotrophic 70 

bacterium Bacteroides ovatus ATCC 8483 were used to reconstruct the phylogenetic 71 

tree with PhyloPhlAn [16] with parameter -u (de novo phylogenetic tree). 72 

Incorporating metadata and nucleotide content into genome-scale phylogeny. 73 

The resultant phylogenetic tree (raw tree 1_proteomes_tree.nwk available in GitHub 74 

repository) was imported to R using the ape package [25] and re-rooted to the 75 

outgroup genome of B. ovatus ATCC 8483. The outgroup genome was selected 76 

based on its close placement to known methanotrophs in the microbial tree of life 77 

[26]. Metadata of genomes and MAGs were also imported in order to assign features 78 

to each genome and to differentiate the seven methanotroph types. Methanotroph 79 

types were assigned using the treeio [27] R package. In the tree, number of coding 80 

sequences (CDSs) and distribution of GC and GC3 content were plotted using the R 81 

packages ggtree [28] and ggridges [29]. GC and GC3 compositions of CDSs were 82 

determined using the gc and gc3 functions of the seqinr [30] R package. The 83 

standalone version of EMBOSS [31] was used to corroborate the GC and GC3 84 

content of each CDS of our interest. All the data were compiled and manually 85 

curated and are available in the file 1_QC_CH4.txt in our GitHub repository. 86 

Analysis of relative synonymous codon usage (RSCU). The frequency of 87 

individual codon usage per CDS normalized to the amino acid usage of its 88 
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corresponding protein was calculated as RSCU [32] using the function uco with 89 

parameter index = rscu from the seqinr R package. The equation used to calculate 90 

the RSCU is: 91 

𝑅𝑆𝐶𝑈 =
𝑂'(

)∑ 𝑂'(
+,
( - ∗ 1
𝑛'

 (1) 

where Oij is the occurrence of the jth codon for the ith amino acid and ni the total 92 

number of synonymous codons coding for the ith amino acid. We considered a 93 

codon frequently used if RSCU ≥ 1.6, and rarely used if RSCU ≤ 0.6. Principal 94 

component analysis (PCA) was computed using the R function prcomp to identify 95 

CDSs that share similar preferences codon usage biases based on RSCU values for 96 

59 codons (the conventional set of 64 codons excluding the two non-redundant 97 

codons for methionine and tryptophan, which have a fixed RSCU = 1.0, and the 98 

three stop codons). 99 

Calculation of the codon adaptation index (CAI). The CAI [32] was used to 100 

analyze the codon usage of each CDS relative to a reference set of CDSs. Codon 101 

frequency was calculated for each CDS in each of the 67 isolate genomes and 102 

MAGs. Frequencies were calculated for a single reading frame of the CDS and only 103 

~1% of all CDSs had length not divisible by three. The codon relative adaptiveness 104 

(w) was calculated as the frequency of a codon divided by the frequency of the 105 

synonymous codon with the highest frequency [32]. w values were used to compute 106 

the CAI for each codon using the cai function from the seqinr R package, using 107 

either the full set of CDSs in the genome (CAIgenome) or only ribosomal protein genes 108 

(CAIribosome). The percentile rank of each CDS within the distribution of 109 

CAIgenome/CAIribosome was calculated. 110 

Analysis of the effective number of codons (ENC). ENC [33] is a measure of 111 

CDS codon usage bias based on codon preference per amino acid and has been 112 
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applied recently to study genomes assembled from environmental samples [34, 35]. 113 

ENC values were computed for each CDS using the chips program from EMBOSS 114 

[31] based on Wright’s equation [33]: 115 

𝐸𝑁𝐶 = 2 +
9
𝐹8
+
1
𝐹9
+
5
𝐹;
+
3
𝐹=

 (2) 

where 𝐹' is the codon homozygosity for the amino acids of degeneracy i. ENC as a 116 

function of GC3 content was analyzed in all methanotrophs. A linear model relating 117 

ENC and GC3 was fitted using the stat_smooth function from the ggplot2 R package. 118 

tRNA copy number. tRNA frequencies were analyzed only for isolate genomes 119 

where the total tRNA pool should be known. When available, the tRNA counts of the 120 

genomes were downloaded from the public databases of IMG/JGI and GtRNAdb [36, 121 

37], otherwise they were computed with the local version of tRNAscan-SE 2.0 [38]. 122 

tRNA adaptation index (tAI). tAI was developed to estimate translation efficiency 123 

[39, 40]. The tAI was calculated for all CDSs in each genome using the R package 124 

codonR [40] with the parameter sking set to 1 (Prokaryote super kingdom) and the 125 

default s parameter for codon selection penalties. The tAI computation required the 126 

genomic tRNA counts (Table S2) and CDS codon frequencies, which were 127 

calculated using CodonM. Within-genome tAI percentile ranks were calculated for 128 

each CDS. The manually curated dataset containing the tAI data for our CDSs of 129 

interest can be found in the file 1_QC_V_manuallycurated.txt in our GitHub 130 

repository. 131 

Interaction network of codons and tRNAs. The interaction network was 132 

reconstructed for isolates of type Ia methanotrophs based on RSCU values for six 133 

CDS sets, tRNA copy numbers and codon-anticodon pairing rules. Four CDS sets 134 

(pmoCAB, mmoXYZCDB, mxaFI and xoxF) represented the methane oxidation 135 

metabolic module, one set comprised ribosomal protein genes, and one set 136 

comprised all the CDSs in each genome. The median RSCU of each codon for each 137 
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CDS set was computed from the distribution of RSCU values of all type Ia 138 

methanotrophs. The median copy number of each tRNA anticodon was calculated 139 

from all the copy numbers of all tRNA anticodons in type Ia methanotrophs. The 140 

tRNA anticodon matrix is shown in Fig. S4e. Standard codon-anticodon recognition 141 

rules [40] were used and are detailed in 0_wobble_pairing_rules.txt available in our 142 

GitHub repository. 143 

The integrated dataset was transformed into a network of sources (tRNA anticodons) 144 

and targets (CDS codons). The raw network matrix can be found in the file 145 

RSCU_complete_network.txt in GitHub. The matrix was imported to Cytoscape [41] 146 

and edited as shown in the Cytoscape file 1_Fig3D_net_cytoscape.cys. The 147 

complete network containing all amino acids and codons is shown in Fig. S5a. A 148 

quantitative analysis was applied to the raw network matrix 149 

(RSCU_complete_network.txt). For each CDS, the number of accessible tRNA 150 

copies was calculated for a range of RSCU thresholds (e.g. for RSCU threshold = 0 151 

each CDS can access every possible tRNA). This allowed the number of tRNA 152 

copies that a CDS can access as function of codon bias usage (as determined by 153 

RSCU) to be calculated. For each CDS, access to the tRNA pool can be measured 154 

in absolute term and relative to the tRNA pool available when compared with the 155 

access granted to other CDSs. The significance of the difference between two states 156 

(RSCU = 0 and RSCU = 2) was assessed with a Chi-square test, with accessible 157 

tRNA copies at RSCU = 0.0 as the expected value and at RSCU = 2.0 as the 158 

observed value. The test was applied only to CDSs of the methane oxidation 159 

metabolic module. 160 

CDS amino acid composition. For each CDS, the codon exhibiting the highest 161 

median RSCU for each amino acid was selected. Methionine and tryptophan were 162 

excluded as they are each encoded by only one codon. The median and standard 163 

deviation were calculated from the distribution of RSCU values of each type of 164 

methanotrophs. The median and standard deviation of amino acid composition of 165 

each translated CDS of each operon was calculated using the distribution of the 166 

amino acid composition of each type of methanotrophs. A linear model (using the lm 167 
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function in R) was fitted to determine the relationship between codon preference and 168 

amino acid usage to serve as a proxy to identify selection for optimal codons at 169 

synonymous sites occupied by the most abundant amino acids. 170 

Prebiotic amino acids analysis. The amino acid content of each protein in the 171 

metabolic module of all methanotrophs was calculated from its translated CDS. 172 

Amino acids were categorized as ‘cheap’/prebiotic (alanine, aspartic acid, glutamic 173 

acid, glycine, isoleucine, leucine, proline, serine, threonine, and valine) or 174 

‘expensive’/modern amino acids [42–44]. A t-test was used to compute the statistical 175 

significance of the difference between modern and prebiotic amino acid composition 176 

of each protein in the metabolic module from type Ia methanotrophs. The sample for 177 

this test was the median amino acid composition (Fig. S5b). 178 

Transcriptome analysis. Transcribed CDSs were analyzed by modifying thymine 179 

(T) for uracil (U) in all CDSs. Three publicly available type Ia methanotroph 180 

transcriptomic datasets (Methylomicrobium buryatense 5G [45], Methylomicrobium 181 

alcaliphilum 20Z [46] and Methylobacter tundripaludum 31/32 [47]) were used. 182 

Normalized mRNA abundance was obtained from each dataset as reported. The 183 

purine (A+G) and pyrimidine (T+C) content of each transcribed CDS was calculated. 184 

The purine and pyrimidine content of each transcriptome was calculated based on 185 

the ribonucleotide composition of each transcribed CDS multiplied by the transcript 186 

abundance, summed across all transcribed CDSs. The effect on transcriptome 187 

composition of removing a set of transcripts was calculated by subtracting the total 188 

transcribed CDS composition (transcribed CDS composition × transcript abundance) 189 

from the dataset and re-calculating the total ribonucleotide composition. 190 

Elemental composition of transcribed CDSs. The carbon (C), hydrogen (H), 191 

oxygen (O) and nitrogen (N) composition of transcribed CDSs was calculated based 192 

on ribonucleotide molecular formulae (adenine C5H5N5, guanine C5H5N5O, cytosine 193 

C4H5N3O, uracil C4H4N2O2) and normalized to the number of codons in each CDS. 194 

To provide statistical support for the observations of elemental composition bias in 195 

pmoCAB transcripts, the mean per-codon elemental content of 1,000 randomly 196 

selected combinations of three transcribed CDSs was calculated. 197 



9 
 

Correlation between transcript abundance and elemental composition. It has 198 

been recently proposed that highly expressed genes tend to decrease per-codon 199 

nitrogen requirements of their RNA transcripts [48, 49]. The relationship between 200 

elemental composition and mRNA abundance was investigated by computing the 201 

Pearson correlation coefficient with 95% confidence levels. 202 
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