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Supplementary Methods 

Genomic dataset 

We combined the SNPs datasets of ref.1 and ref.2 to obtain a dataset of 33,454 

SNPs distributed across all chromosomes of maize. Genotyping quality was set 

with a threshold of 0.15 for the GC50 score and by removing monomorphic SNPs 

and clusters with call rates below 0.85. See ref.1 and 2 for more details. 

Defining putative adaptive SNPs (paSNPs). The dataset including the locally 

adapted SNPs identified by ref.2 was subdivided based on the power of individual 

SNPs to discriminate among climatically defined groups of populations. Based on 

the values of the first environmental principal component, associated with 

temperature2, we categorized populations for each species into four groups 

based on the quartile distribution of temperature values across sampled 

populations: Group 1-cold (6 parviglumis and 7 mexicana populations); Group 2-

normal cold (6 parviglumis and 6 mexicana populations); Group 3-normal warm 

(6 parviglumis and 6 mexicana populations); and Group 4-warm (6 parviglumis 

and 6 mexicana populations).  

We tested the power of locally adapted SNPs to discriminate among the 

above-mentioned groups of populations by performing a Discriminant Analyses 

on Principal Components (DAPC)3 for each teosintes species separately using 

ten principal components (summarizing 25% of the genetic variability across 

populations) and retaining the first four discriminant functions. These first four 

discriminant functions explained ~ 67% of the among-population environmental 
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variance for parviglumis and ~ 77% for mexicana. We plotted the contribution of 

individual SNPs to the discriminant functions using the loadingplot function of the 

adegenet package3 in R4 with the default parameters. We selected the locally 

adapted SNPs with the highest discrimination power (paSNPs) using the default 

parameters (i.e., the third quartile of the distribution of loadings (fig. S1). 

Predictive models using Gradient Forest 

Gradient Forest uses a machine-learning algorithm to divide biological data into 

bins (allele frequencies) occurring at numerous split values along a given 

environmental gradient5. Moving throughout an environmental gradient, the 

algorithm estimates the amount of variation in the data (in this case allele 

frequencies) explained by the different split values (split importance). In principle, 

the estimation of split importance along a gradient does not depend on the initial 

allele frequency in any given population, but on the amount of change observed 

among populations located along different regions of the gradient. Gradient 

Forest cumulatively sums the split importance along a gradient, which then 

reflects the overall association of an environmental gradient with allele frequency 

changes, using this information to construct allele turnover functions6 along the 

environmental gradient. Given the correspondence between environmental and 

geographic space7, these functions can be directly projected into geographic 

space, allowing the visualization of differences in genetic composition throughout 

the species’ distribution ranges, even in places were no populations have been 

sampled. 
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To estimate the genomic offset under different future scenarios of climate 

change, Euclidian distances between present and future models are used to 

identify regions with a more pronounced disruptive effect of climate change, 

where larger distances are indicative of higher populations vulnerability6. More 

specifically, the Euclidean distances are estimated as follows,  

!"($%&'&()* − ,-)-%&*)/
0	

*
 

where n represents the number of bioclimatic variables used in the analyses, and 

i represents the contribution of a grid (coordinate) to the allelic turnover function 

for a given environment.  

For each subspecies and each set of SNPs (putative adaptive, candidate 

and reference), we estimated the allelic turnover models using the gradientforest5 

package in R4. These allelic turnover models were used to predict the genomic 

offset across the teosintes distribution. Values of genomic offset were 

standardized relative to the maximum observed Euclidian distance6 estimated 

across known teosintes occurrences8, setting areas with a standardized value > 

1 to NA. The genomic offset values across the distribution of teosintes were 

transformed into a raster grid and the estimated values of genomic offset were 

extracted for all known teosintes occurrences8 and sampled populations using 

the raster package9 in R4. 

 In addition to the Gradient Forest analyses using the three sets of SNPs, 

we estimated allele turnover functions using the complete set of 33,454 SNPs 
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identified in teosintes1,2. Due to computational limitation, we only estimated allele 

turnover and not genomic offset for the complete set of SNPs and classified them 

based on their overall contribution to the model (i.e., gradient forest’s R2). Based 

on the individual contribution of each SNP to the model (R2), we assessed 

whether the candidate and putative adaptive SNPs are a representative sample 

of SNP-climate association across the genome. For SNPs with significant 

contribution to the turnover model we used the quartile distribution to categorize 

SNPs as having low, moderate, high, and very high climate-frequency 

associations. We compared the contribution of different SNPs categories to the 

contribution estimated by the Gradient Forest analyses on the candidate and 

putative adaptive SNPs, showing that these two sets of SNPs are representative 

of strong genome-wide climate-frequency associations (figs. S3, S4). 

Validation of allele turnover models. Gradient Forest analyses can be sensitive to 

the presence of habitat heterogeneity masking the presence of climate-frequency 

associations. In order to test the predictive ability of the resulting allele turnover 

models, we used simple Mantel correlations to test for significant associations 

between predicted allele turnover and pairwise genetic differentiation between 

populations (FST). We also tested for the correlation between allele turnover and 

environmental distances among populations.  

  We used the bedassle10 package in R4 to estimate the pairwise genetic 

differentiation (FST) between populations for putative adaptive, candidate and 

reference SNPs, separately. To estimate environmental differentiation, we 
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extracted environmental information of the 19 bioclimatic layers11 used in the 

species distribution models for each pixel predicted by the species distribution 

models. We then performed a Principal Component Analyses (PCA) on these 

data to reduce environmental variation down to six principal components and 

obtain values for each sampled population of teosintes. We used the data for the 

six principal components to calculate Euclidian distances between populations 

(environmental differentiation) using the stats package in R4. Finally, for each 

Gradient Forest model (e.g., paSNPs, canSNPs, refSNPs) we modified the 

original script of ref.6 to perform a PCA and reduce the contribution of the 19 

bioclimatic variables to the allelic turnover function into six principal components. 

These principal components were used to estimate Euclidian distances between 

populations, which reflect the predicted allelic dissimilarity between populations 

(predicted genetic differentiation). 

   For each SNPs set, we evaluate the correlation between: (1) predicted 

genetic dissimilarity and genetic differentiation; and (2) predicted genetic 

dissimilarities and environmental differentiation. For both teosintes species we 

found strong associations (all p-values < 0.05) between predicted genetic 

dissimilarity and environmental differentiation between populations (fig. S10). In 

addition, we found strong significant associations between genetic differentiation 

and predicted genetic dissimilarities for putative adaptive and candidate SNPs, 

after controlling for environmental distances. We observed a low, yet significant 
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association between genetic differentiation and predicted genetic dissimilarities 

for reference SNPs (fig. S10). 

The lower power of Gradient Forest to predict pairwise genetic 

differentiation using reference SNPs is expected because these SNPs have an 

overall low contribution to the model (fig. S3). Accordingly, we found that allele 

turnover functions have a stronger predictive power in mexicana than in 

parviglumis, the latter having a higher environmental variation and a stronger 

genetic structure than the former1,2. This indicates that habitat heterogeneity and 

genetic structure can have significant impacts on the results of Gradient Forest. 

However, in the case of teosintes the allele turnover functions for candidate and 

putative adaptive SNPs were robust to the effects of habitat heterogeneity.  

Allele frequency differences among SNP sets. The allelic turnover models show 

that putative adaptive and candidate SNPs have significantly higher contribution 

to model construction than reference SNPs (fig. S3). Although this is expected 

and reflects the stronger frequency-environment associations (i.e., local 

adaptation) putative adaptive and candidate SNPs, these differences can be 

biased by significant discrepancies in allele frequencies for reference SNPs 

compared to locally adapted SNPs. In the present case, putative adaptive and 

candidate SNPs were defined using methods that rely on identifying outlier FST 

values among SNPs2. If higher predictability of allelic turnover is affected by the 

stronger differences in allele frequencies and not local adaptation, then using 
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reference SNPs with marked differences in allelic frequencies among populations 

should generate models with significantly higher allelic turnover12. 

To assess the impacts of allele frequencies on allele turnover models 

using reference SNPs, we performed additional Gradient Forest analyses using a 

set of reference SNPs for which the among-population frequencies more closely 

matched those observed for candidate and putative adaptive SNPs. For this, we 

estimated the standard deviation of allele frequencies among populations for the 

candidate and putative adaptive SNPs. Then, we selected a new set of reference 

SNPs (hereafter n_SNPs) showing a standard deviation higher than the median 

standard deviation observed for candidate SNPs (very few SNPs had standard 

deviation within the range observed for putative adaptive SNPs) and showing no 

significant associations with environmental variables.  

We performed a GF analysis using the putative adaptive, candidate, 

reference SNPs, and n_refSNPs to assess the contribution of each SNP to the 

turnover function. For both teosintes species we found that the n_refSNPs had a 

lower predictability than putative adaptive SNPs. However, we found that the 

model contribution of n_refSNPs was similar to that estimated for reference 

SNPs only in mexicana, whereas for parviglumis there was a greater variance in 

the predictive power of n_refSNPs with some overlap with candidate SNPs (fig. 

S3). Although this might indicate a possible bias in the signal recovered for 

candidate SNPs due to genetic structure in parviglumis, it is important to recall 

that candidate SNPs were selected by employing outlier tests (e.g., bayescenv, 
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bayenv) that controlled for possible gene surfing2. The estimated allele turnover 

for putative adaptive SNPs appears to be robust to differences in among-

population allele frequencies in both species. 

Identification of candidate SNPs. Another important source of bias for the 

modeling of allele turnover is the proper identification of genes responsible for 

local adaptation12. In this context, modeling and interpreting the results for only a 

handful of SNPs (e.g., putative adaptive SNPs) may be an over-simplification of 

the genomic processes affecting local adaptation to climate13. Thus, we 

assessed the impact of including varying number of SNPs for the construction of 

allele turnover models and the estimation of genomic offset under future climate 

change scenarios. For this, we performed Gradient Forest analyses to estimate 

the genomic offset based on different sets of outlier SNPs identified by ref.2: (1) 

candidate SNPs + putative adaptive SNPs (USNPs); (2) outlier SNPs detected by 

bayescenv (scenvSNPs); (3) outlier SNPs detected by bayenv (baySNPs); and 

(4) outlier SNPs detected by bayenv and bayescenv (bay∩scenvSNPs). For 

details on the procedures for outlier detection see ref.2. 

Overall, these analyses show that many outlier SNPs can be informative 

about allele turnover and thus have elevated contribution to the genomic offset of 

populations (fig. S3). For instance, as expected the scenvSNPs and baySNPs 

showed a lower genomic offset than that observed for putative adaptive SNPs, 

yet the estimated values are greater than those estimated for reference SNPs. 

These results highlight two important points. First, the method to identify outlier 
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SNPs is crucially important for the estimation of genomic offset12, particularly in 

situation where populations have pronounced patterns of genetic and 

environmental differentiation, such as parviglumis. Second, the estimated 

genomic offset for populations using a handful of locally adapted SNPs appears 

to be robust to the number of SNPs included in the model (fig. S3, S4). 

Increasing the number of SNPs did not produce significantly distinct patterns of 

estimated genomic offset than those observed using the reduced set of 

candidate and putative adaptive SNPs. Although there is variation in the range of 

estimated genomic offset among different sets of SNPs (fig. S3), expected due to 

varying levels of SNP-climate associations (i.e., allele effects), we found that the 

per-population genomic offset was highly correlated among all outlier SNP sets 

(fig. S3i). This suggest that unseen candidate SNPs or new candidate SNPs 

entering a population (either by migration, mutation or pre-adaptation) will most 

probably have small impact on the observed patterns of local adaptation and 

genomic offset estimated across populations (information on individual SNPs can 

be found at github.com/spiritu-santi/teosintes). 

Initial allele frequencies and climate change. To gauge the influence of initial 

allele frequencies on the resulting levels of genomic offset, we tested the 

correlation between the genomic offset estimated for each population and the 

frequency of putative adaptive alleles at putative adaptive SNPs within 

populations. Since we are interested in the response of populations to increasing 

temperature, we used the frequencies of the warm-adapted alleles at putative 
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adaptive SNPs, identified as the alleles with higher frequencies in populations 

growing at the warm-end of the species’ climatic niche (climatic groups 3 and 4, 

see above). For simplicity, we estimated an adaptive score for each population 

by summing up adaptive allele frequencies over all putative adaptive SNPs (see 

below) and tested the relationship with genomic offset only under the two most 

extreme models: CCSM 4.5 2050 and CCSM 8.5 2070 (fig. S5). 

We also tested the correlation between genomic offset and the estimated 

change in climatic conditions expected for each population, which were 

measured as the sum of the absolute differences between the present and future 

values for the 19 bioclimatic variables11 used for the species distribution 

modeling and Gradient Forest analyses. We employed simple linear regressions 

using the stats package in R4 (fig. S5).  

 

Ecological niche modeling 

Species distribution models. We used 254 (mexicana) and 329 (parviglumis) 

occurrence data points (available at: www.biodiversidad.gob.mx/genes/ 

proyectoMaices.html) and performed the modeling with Maxent v.3.3.314 using 

previously described settings and validation procedures2,15,16. We used all 19 

available variables in the WorldClim database11 following the same procedures 

as of refs.2,15,16. In addition, ref.16 compared species distribution models for the 

two teosinte subspecies obtained using the 19 bioclimatic variables with models 

constructed after removing correlated variables, finding strong correlations 
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between the predictions (> 0.9). For validation we used 10 bootstrap replicates 

for each model using a 30% random sample of occurrence records as test data. 

We used the Area Under the Curve (AUC) of the Receiver Pperating 

Characteristic (ROC) to assess model performance, resulting in species models 

with AUC values of 0.982 and 0.972 for mexicana and parviglumis, respectively, 

indicating good model performance.  

To generate binary presence/absence maps for the present and future, we 

applied a minimum presence logistic threshold (i.e., the minimum model value 

observed among species occurrences) to the models. The change in the 

predicted geographic distribution of the species was simply estimated as the 

number of grid-cells predicted in the future relative to the present (models 

available at https://github.com/spiritu-santi/teosintes). We also estimated overlap 

between present and future models using the corresponding binary maps.  

Given that the sum of two binary maps (presence = 1, absence = 0) does 

not distinguish between present-only and future-only regions (both with values of 

1 in the overlap map), we arbitrarily set a presence value of two for the present 

models and a value of four for the future models. These values were treated as 

categorical variables. We summed the values of the two models and defined 

three sets of regions: (1) regions uniquely predicted for the present (present-only 

grid-cells, value of two); (2) regions uniquely predicted for the future (future-only 

grid-cells, value of four); (3) regions of overlap between the two time models 

(overlap grid-cells, value of six). 
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Allele distribution models. We predicted the geographic distribution for 

warm-adapted alleles segregating at putative adaptive SNPs using Maxent 

v.3.3.314. Since we were interested in modeling the distribution of the warm-

adapted alleles, we used as input the populations’ geographic coordinates 

where these alleles were present. Populations that were fixed with the non-

adaptive allele did not contribute to the models. We used the same climatic 

variables; setting and validation procedures used for the species distribution 

modeling (see above). Overall, the resulting models for the warm-adapted 

alleles showed a good performance, with the lowest AUC values being 

0.972 and 0.976 for mexicana and parviglumis, respectively.  

  For each warm-adapted allele distribution model (8 for mexicana and 9 

for parviglumis) we created binary presence/absence maps as depicted 

above for the species distribution models. Then, for each grid-cell we 

estimated the sum across allele models constructed for the present-day and 

under each of the eight future climate change scenarios. We transformed 

the resulting raster grids into binary maps by setting areas with five or more 

alleles present to 1 and areas with fewer than five alleles to 0.  

 We extracted values for the bioclimatic variables for every grid-cell with 

a binary value of 1 and generated a data frame combining the climatic 

conditions for areas predicted in present and future. We used these data to 

perform a Principal Component Analysis (PCA) with the prcomp function in 
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R4, retaining the first four principal components that explained more than 

85% of the total variance in climatic variables.  

 Because we were interested in obtaining the future distribution of warm-

adapted alleles, we estimated the present-day climatic range over the first 

principal component, for two groups of populations for each subspecies (see 

above): the normal-warm and warm populations. Thus, we obtained the 

current environmental range defining the warm-end niche of the two teosinte 

subspecies. Subsequently, we selected areas within the present and future 

predicted distributions that had climatic values within the present-day 

environmental range. Basically, this allowed us to define the geographic 

regions that presently lay within the environmental range of warm-adapted 

populations and those that will show the same range in future scenarios. 

Based on the genomic offset of populations, we cross validated the final 

adaptive allele distribution models using the Gradient Forests models described 

above, basically inspecting the genomic offset of populations estimated with 

Gradient Forests for the three sets of regions (i.e., present-only, future-only, 

overlap). These analyses show that in general areas laying outside the predicted 

distribution for warm-adapted alleles have a higher mean and variance for 

genomic offset than areas predicted by either future or present allele models, 

particularly in mexicana (fig. S6). 

Maxent’s suitability and allele frequencies. For each putative adaptive and 

candidate SNPs, we tested for the correlation between the mean allele 
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frequencies in each population and the mean suitability estimated by Maxent 

(e.g., logistic output) across models for individual SNPs. Overall, we found that 

suitability values are not correlated with mean allele frequencies (fig. S11), which 

is consistent with previous analyses showing the inability of Maxent to predict 

species abundance17. Although some individual putative adaptive SNPs showed 

significant associations with suitability, particularly in parviglumis, these were 

non-significant after correcting for multiple comparisons using the Bonferroni test. 

All analyses were performed using the raster9 and stats packages in R4. 

 

Migration analyses 

We first identified areas with climatic conditions outside the present 

environmental range estimated for populations (see above) and treated these 

areas as hard barriers to migration by setting their value to NA. This assumes 

that teosintes populations are not capable of establishing in regions outside 

particular climatic conditions, namely regions with higher temperatures than 

currently inhabited.  

We defined routes of potential migration by identifying regions predicted in 

the overlapped present and future distribution models for putative warm-adapted 

alleles, corresponding to the transition surfaces used in circuit theory18. These 

surfaces are built by assigning different resistance values to migration (i.e., 

environmental costs) to distinct environmental elements19. In the present case, 

different resistance values were assigned across the landscape based on the 
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predicted distribution warm-adapted alleles. Then, we defined areas of potential 

settlement corresponding to sites where populations could eventually establish in 

the future, by identifying areas predicted only in the future allele models. These 

areas correspond to the geographic locations into which potential migration 

would be favored by the maintenance of current patterns of gene-environment 

associations.  

We used the Gdistance package20 in R4 to build transition layers around 

each focal population, defining a transition function of 1/mean(x) for each pixel 

(i.e., grid-cell) between the eight neighboring grid-cells (i.e., rooks move). Then 

we used the geographic coordinates of potential settlement sites and 

implemented a cost-distance function to determine the resistance values 

(environmental distances) from the focal population to all sites, as a proxy of 

migration limitation. To estimate the overall migration limitation of every 

population, we estimated the overall distribution of environmental distances 

across all potential settlement sites. We then identified settlement sites with 

estimated resistance values below the 10, 20, 30, 40 and 50 percentiles of the 

distribution of environmental distances. These percentiles can be interpreted as 

the overall resistance to the successful migration into 10, 20, 30, 40, and 50% of 

the future areas of potential settlement. We identified populations with the least 

probabilities of migrating (migration unlikely) as those with undefined 

environmental costs at the 10-precentile thresholds, namely those populations for 

which the transition matrices become infinity due to the presence of hard barriers 
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to migration. All other populations with positive environmental costs were treated 

as having high chances of migrating (migration likely) into suitable areas in the 

future (results of migration analyses under all climate change models are 

available at github.com/spiritu-santi/teosintes). 

Migration potential. Ultimately, the likelihood of successful migration of a 

particular population would be proportional, not only to the estimated migration 

costs, but also to the initial frequencies of adaptive alleles present in the 

population. Thus, for each population we evaluated the combined frequencies of 

warm-adapted alleles across putative adaptive SNPs. This score ranges between 

0 and 1, with higher values indicating a higher frequency of adaptive alleles. We 

tested for differences in adaptive score between populations with likely and 

unlikely migration using an Analysis of Variance (ANOVA) as implemented in the 

stats package in R4, but only under the two most extreme climate change 

models: CCSM_2050_RCP4.5 and CCSM_2070_RCP8.5. In general, 

populations predicted to have increased migration potential have significantly 

higher frequencies of adaptive alleles (measured by the adaptive score) than 

population predicted with low chances of migrating (fig. S8). Accordingly, the 

estimated genomic offset was higher for populations without migration potential 

than for those with migration potential, a pattern that is more pronounced in 

mexicana than in parviglumis (fig. S8). 

Besides the possibility of tracking climate change by migrating into new 

locations, populations can evolve to respond to future climate conditions by 
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receiving adaptive variants via gene flow from other populations. For Zea mays in 

particular, pollen is wind-dispersed21, yet studies have shown that the viability of 

pollen decreases significantly over short scales22-24. To assess the potential 

contribution of adaptive introgression to the response of teosintes populations to 

climate change, we used the geographic distances and allele frequencies as 

proxies for the potential for gene flow among populations25. These analyses do 

not consider the presence of known teosintes populations that remain unsampled 

and with no genetic data8,26, which may otherwise serve as sources of adaptive 

alleles or bridges to gene flow between sampled populations. 

  Basically, for each population we estimated the minimum distances to 

populations that could serve as sources of adaptive alleles through gene flow. In 

any given population, incoming gene flow can only increase the frequency of an 

adaptive allele if the initial frequency of that allele in the source population is 

greater than in the target population. Thus, we calculated the minimum distance 

to a population with an adaptive score greater than 0.5 and higher than the 

adaptive score of the focal population. All else being equal, as geographic 

distance between two populations increases, the probabilities for gene flow 

between these populations would decrease. In addition, for each population we 

identified the set of neighboring populations (arbitrarily set to four populations, 

corresponding to ~15% of populations) and then evaluated whether these had a 

higher adaptive score than the focal population. We used ANOVA tests as 

implemented in the ‘stats’ package in R4 to determine whether geographic 
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distances differed between populations identified as having migration potential 

and those without migration potential. 

We estimated the probability of population migration and gene flow under 

the two more extreme climate change models (i.e., CCSM-RCP4.5-2005, CCSM-

RCP8.5-2070); the results of all tests are summarized in table S7. Populations 

that are predicted to have increased chances of migrating also appear to be 

closer to populations that could serve as sources of adaptive alleles via gene 

flow, than populations with low chances of migrating (fig. S12).  

 

Identifying putative adaptive SNPs in maize landraces 

The MaizeSNP50 BeadChip used by ref.1 and ref.2 to genotype teosintes, was 

originally designed to detect genetic diversity among maize landraces. We 

explored whether the warm adapted-alleles at putative adaptive SNPs identified 

for teosintes have been documented in particular landraces of maize27. For this, 

we downloaded the genotype data for maize27, consisting of 36,931 SNPs across 

46 landraces in Mexico. 

 Briefly, we obtained the adaptive score for each landrace (see above) by 

adding the frequency of the warm-adapted alleles recorded in each accession, 

i.e., 1.0 for the adapted homozygous genotype, 0.5 for a heterozygous genotype, 

and 0.0 for the non-adapted homozygous genotype. The ‘adaptive’ score relates 

to the frequency of alleles, where a lower score indicates that adaptive alleles 

tend to be less represented in a particular landrace. A higher adaptive score 
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would suggest that warm-adapted alleles are near fixation in particular landraces, 

probably resulting from past adaptation to warm and dry environments or the 

probable introgression of alleles from teosintes28. On the contrary, lower adaptive 

scores indicate that landraces have the potential to adapt to changing 

environmental conditions, with the maximum adaptive potential at intermediate 

allele frequencies. In principle, the adaptive score is not related to the genetic 

diversity within a population, because both homozygous states have the same 

genetic diversity but contrasting adaptive potential scores (i.e., genetic diversity 

would be greatest at intermediate adaptive potential scores), whereas the 

heterozygous state has the highest genetic diversity, but intermediate adaptive 

potential scores.  

We acknowledge two limitations of our approach to identifying adaptive 

alleles in maize landraces. First, although gene-climate associations can be 

analyzed using single individuals per population29, the direct application in maize 

of ecological models using allele frequency data, such as Gradient Forest, is 

prevented because the available SNPs dataset for maize is limited to one or a 

few accessions per landrace. Accordingly, we might expect a non-negligible 

number of unseen adaptive alleles across landraces purely due to sampling 

artifacts. Second, extrapolating from wild relatives to maize is not straightforward 

because the latter are highly dependent on humans for reproduction and usually 

grow under conditions that act as possible buffers against local- and regional-

level climatic trends30. Nevertheless, ecological analyses indicate similar trends 
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of shrinking habitat in both teosintes and maize landraces in response to rising 

temperature and increasing aridity31. 

For each landrace of maize, we approximated the geographic range by 

estimating a spatial convex hull distribution model32 around the reported 

occurrences8 as implemented in the dismo package33 in R4. Unlike species 

distribution modeling, the convex hull estimates species geographic ranges using 

spatial data alone and can be easily implemented for multiple species32. We 

chose to use convex hulls to estimate the geographic range of maize landraces, 

because these are easy to apply and are independent from environmental data. 

Basically, a convex hull model predicts that a species (landrace) is present inside 

the convex hull of a set of geographic occurrences and absent outside this area, 

yet the model assumes that a species is present throughout the entire hull32. 

 

SI References 

1. Pyhäjärvi T, Hufford MB, Mezmouk S, Ross-Ibarra J. 2013. Complex patterns 

of local adaptation in teosinte. Genome Biol Evol 5: 1594-1609. 

2. Aguirre-Liguori JA, et al. 2017. Connecting genomic patterns of local 

adaptation and niche suitability in teosintes. Mol Ecol 26: 4226-4240. 

3. Jombart T. 2008. adegenet: a R package for the multivariate analysis of 

genetic markers. Bioinformatics 24: 1403-1405. 

4. R Core Team. 2018. R: A language and environment for statistical 

computing. R Foundation for Statistical Computing, Vienna, Austria. 



 
 

22 
 

5. Ellis N, Smith SJ, Pitcher CR. 2012. Calculating importance gradients on 

physical predictors. Ecology 93: 156-168. 

6. Fitzpatrick MC, Keller SR. 2015. Ecological genomics meets community-level 

modelling of biodiversity: mapping the genomic landscape of current and 

future environmental adaptation. Ecol Lett 18: 1-16. 

7. Peterson AT, et al. 2011. Ecological niches and geographic distributions. 

Princeton University Press, New Jersey. 

8. CONABIO. 2011. Base de datos del proyecto global “Recopilación, 

generación, actualización y análisis de información acerca de la diversidad 

genética de maíces y sus parientes silvestres en México”. Comisión Nacional 

para el Conocimiento y Uso de la Biodiversidad. México, DF. 

9. Hijmans RJ. 2017. raster: Geographic Data Analysis and Modeling. R 

package version 2.6-7. https://CRAN.R-project.org/package=raster 

10. Bradburd GS, Ralph PL, Coop GM. 2013. Disentangling the effects of 

geographic and ecological isolation on genetic differentiation. Evolution 67: 

3258-3273.  

11. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A 2005. Very high-

resolution interpolated climate surfaces for global land areas. Int J 

Climatology, 25: 1965–1978.  

12. Fitzpatrick MC, Keller SR, Lotterhos KE. 2018. Comment on “Genomic 

signals of selection predict climate-driven population declines in a migratory 

bird”. Science 361: eaat7279. 



 
 

23 
 

13. Kawecki TJ, Ebert D. 2004. Conceptual issues in local adaptation. Ecol Lett 

7: 1225-1241.  

14. Phillips SJ, Anderson RP, Schapire RE. 2006. Maximum entropy modeling of 

species geographic distributions. Ecol Model 190: 231-259. 

15. Hufford MB, Martínez-Meyer E, Gaut BS, Eguiarte LE, Tenaillon MI. 2012. 

Inferences from the historical distribution of wild and domesticated maize 

provide ecological and evolutionary insight. PLoS ONE 11: e47659. 

16. Aguirre-Liguori JA, Gaut BS, Jaramillo-Correa JP, Tenaillon MI, Montes-

Hernández S, García-Oliva F, Hearne SJ, Eguiarte LE. 2019. Divergence 

with gene flow is driven by local adaptation to temperature and soil 

phosphorus concentration in teosinte subspecies (Zea mays parviglumis and 

Zea mays mexicana). Mol Ecol, doi: 10.1111/mec.15098 

17. Yañes-Arenas C, Martinez-Meyer E, Mandujano S, Rojas-Soto O. 2012. 

Modelling geographic patterns of population density of the white‐tailed deer in 

central Mexico by implementing ecological niche theory. Oikos 121: 2081-

2089. 

18. McRae BH, Dickson BG, Keitt T. 2008. Using circuit theory to model 

connectivity in ecology, evolution, and conservation. Ecology 89: 2712-2724. 

19. Manel S, Schwartz MK, Luikart G, Taberlet P. 2003. Landscape genetics: 

combining landscape ecology and population genetics. Trends Ecol Evol 18: 

189-197. 



 
 

24 
 

20. van Etten J. 2017. R Package gdistance: Distances and routes on 

geographical grids. J Stat Softw 76: 1-21. 

21. Aguirre-Liguori JA, Aguirre-planter E, Eguiarte LE. 2016. Genetics and 

ecology of wild and cultivated maize: domestication and introgression. In: 

Ethnobotany of Mexico. New York: Springer, pp 403-416 

22. Luna VS, et al. 2001. Maize pollen longevity and distance isolation 

requirements for effective pollen control. Crop Sci 41: 1551–1557. 

23. Aylor DE, Baltazar BM, Schoper JB. 2005. Some physical properties of 

teosinte (Zea mays subsp. parviglumis) pollen. J Exp Bot 56; 2401-2407. 

24. Hufford MB, Gepts P, Ross-Ibarra. 2011. Influence of cryptic population 

structure on observed mating patterns in the wild progenitor of maize (Zea 

mays ssp. parviglumis). Mol Ecol 20: 46-55. 

25. Slatkin M. 1985. Gene flow in natural populations. Ann Rev Ecol Syst 16: 

393-430. 

26. Sánchez González JJ, et al. 2018. Ecogeography of teosinte. PLoS ONE 13: 

e0192676. 

27. Arteaga MC, et al. 2016. Genomic variation in recently collected maize 

landraces from Mexico. Genomics Data 7: 38-45. 

28. Hufford MB, et al. 2013. The genomic signature of crop-wild introgression in 

maize. PLoS Genet 9: e1003477. 

29. Yoder JB, et al. 2014. Genomic signature of adaptation to climate in 

Medicago truncatula. Genetics 196: 1263-1275. 



 
 

25 
 

30. Sánchez GJJ. 2011. Diversidad del maíz y teocintle. Informe preparado para 

el proyecto global “Recopilación, generación, actualización y análisis de 

información acerca de la diversidad genética de maíces y sus parientes 

silvestres en México“ de la Comisión Nacional para el Conocimiento y Uso 

de la Biodiversidad. Comisión Nacional para el Conocimiento y Uso de la 

Biodiversidad. México, DF. 

31. Ureta C, Martínez-Meyer E, Perales HR, Álvarez-Buylla ER. 2012. Projecting 

the effects of climate change on the distribution of maize races and their wild 

relatives in Mexico. Glob Change Biol 18: 1073-108. 

32. Meyer L, Diniz-Filho JAF, Lohmann L. 2018. A comparison of the hull 

methods for estimating species ranges and richness maps. Plant Ecol Div, 

DOI: 10.1080/17550874.2018.1425505 

33. Hijmans RJ, Phillips S, Leathwick J, Elith J. 2017. dismo: Species distribution 

modeling. R package version 1.1-4. https://CRAN.R-

project.org/package=dismo 

 



0.
01

0.
02

0.
03

0.
04

0.
05

Lo
ad

in
gs

 fo
r t

he
 fi

rs
t d

isc
rim

in
an

t f
un

ct
io

n

P
ZE

_1
01

12
12

54

P
ZE

_1
03

05
97

06 P
ZE

_1
04

02
62

11
P

ZE
_1

04
04

48
27

P
ZE

_1
05

09
01

66
P

ZE
_1

06
00

81
39

P
ZE

_1
09

02
94

56

P
ZE

_1
04

05
58

11
a

P
ZE

_1
10

06
69

00

P
U

T_
16

3a
_1

48
92

88
73

_3
66

P
ZE

_1
00

00
11

95

P
ZE

_1
02

14
39

11

P
ZE

_1
08

03
52

80

P
ZE

_1
09

09
65

78
S

Y
N

27
20

0

S
Y

N
32

36
5a

S
Y

N
37

47
0

candidate SNPs for parviglumis

0.
01

0.
02

0.
03

0.
04

Supplementary Figure 1. Diffrent candidate SNPs have varying power to discriminate among
climatically defined groups of sampled populations of two species of teosintes in Mexico (Zea 
mays spp. parviglumis and Z. mays spp. mexicana). Bars represent the loadings for the first 
discriminant function of the Discriminant Analysis of Principal Components (DAPC) estimated for 
candidate SNPs. Red bars represent the loadings for the putative adaptive SNPs selected for 
each species.
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Supplementary Figure 2. Geographic distribution of two species of teosintes in Mexico: (Zea 
mays spp. parviglumis and Z. mays spp. mexicana) as predicted by ecological niche modeling. 
Overlap between the present-day and future distirbution of teosintes under the eight models of 
climate change. Ecological niche models were constructed using all known ocurrence records for 
the two teosinte species in Mexico. Distribution areas predicted only in the present-day are 
shown in light blue, areas predicted only in future models are shown in yellow, and areas 
predicted to overlap by present and future models ares shown in black (models available in
ASCII format at https://github.com/spiritu-santi/teosintes).
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Supplementary Figure 3. a-h, Genomic offset estimated with Gradient Forest analyses under 
the eight models of climate change for sampled populations of two species of teosintes in Mexico 
(Zea mays spp. parviglumis and Z. mays spp. mexicana). i, Correlation between per-population
genomic offset estimated with paSNPs (red) and canSNPs (orange) versus the rest of the SNPs 
sets across the eight models of climate change. paSNPs: putative adaptive; canSNPs: 
candidate; refSNPs: reference; n_refSNPS: reference controled for allele frequencies; USNPs: 
putative adaptive plus candidate;baySNPs: outlier detected with bayenv; scenvSNPs: outlier 
detected with bayescenv; bay∩scenvzSNPs: outlier detected with bayenv and bayescenv. Total 
number of SNPs in each category with significant contribution to the model are given in 
parenthesis.
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Supplementary Figure 3. continued
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Supplementary Figure 3. continued
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Supplementary Figure 3. continued
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Supplementary Figure 4. Contribution of different SNPs to the allele turnover function (R2) 
constructed with a genome-wide Gradient Forest analyses for sampled populations of two
species of teosintes in Mexico: (Zea mays spp. parviglumis and Z. mays spp. mexicana). Allele 
turnover functions were constructed using the complete set of 33,454 SNPs identified in teosintes. 
Boxplots showing the distribution of R2 among SNPs with varying levels of climate-frequency
associations. Gray boxes represent the distribution of R2 for SNPS subsets according to their
overall contribution to the allele turnover function. For the definition of SNP categories we used 
the quartile distribution of R2 (1Q, median, 3Q) estimated for all SNPs. Total number of SNPs in 
each category are given in parenthesis. The number of refSNPs is less than the 500 sampled
because only the SNPs with significant contributions are plotted.
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Supplementary Figure 5. Linear regressions between the estimated genomic offset under the 
two most extreme models of climate change (CCSM_2050_RCP4.5 and CCSM_2070_RCP8.5) 
versus the adaptive scores and the degree of climate change expected for sampled populations 
of two species of teosintes in Mexico: (Zea mays spp. parviglumis and Z. mays spp. mexicana). 
Open and black circles represent the genomic offset of populations under CCSM_2050_RCP4.5 
and CCSM_2070_RCP8.5, respectively. Regression coefficients and statistical significance are 
given for each linear model.
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Supplementary Figure 6. Genomic offset estimated under the eight models of climate change for 
areas within the present-day and future allele distribution models for putative adaptive SNPs for
two species of teosintes in Mexico: (Zea mays spp. parviglumis and Z. mays spp. mexicana). NP: 
areas outside the present-day and future distribution of paSNPs; P: areas only within the 
present-day distribution of paSNPs; F: areas only within the future distribution of paSNPs; P+F: 
areas within the overlapped present-day and future distribution of paSNPs. Missing values for F 
and P+F signify that predicted areas overlap with the present-day models.

NP P F P+F

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ge
no

m
ic 

of
fs

et

NP P F P+F

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ge
no

m
ic 

of
fs

et

NP P F P+F

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ge
no

m
ic 

of
fs

et

NP P F P+F

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ge
no

m
ic 

of
fs

et

Zea mays spp. parviglumis Zea mays spp. mexicana

CC
SM

_2
05

0_
RC

P4
.5

CC
SM

_2
05

0_
RC

P8
.5

NP P F P+F

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ge
no

m
ic 

of
fs

et

NP P F P+F

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ge
no

m
ic 

of
fs

et

NP P F P+F

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ge
no

m
ic 

of
fs

et

NP P F P+F

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ge
no

m
ic 

of
fs

et

M
IR

O
C_

20
50

_R
CP

4.
5

M
IR

O
C_

20
50

_R
CP

8.
5



Supplementary Figure 6. Continued
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Supplementary Figure 7. Linear regressions between the estimated genomic offset under the 
eight models of climate change versus populations’ genetic diversity (Hs) of sampled populations 
of two species of teosintes in Mexico: (Zea mays spp. parviglumis and Z. mays spp. mexicana). 
Regression coefficients and statistical significance are given for each linear model.
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Supplementary Figure 7. continued
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Supplementary Figure 8. Adaptive score and genomic offset as a function of migration 
probabilities estimated using circuit theory and allele distribution models under the two most 
extreme models of climate change (CCSM_2050_RCP4.5 and CCSM_2070_RCP8.5) for sampled 
populations of two species of teosintes in Mexico: (Zea mays spp. parviglumis and Z. mays spp. 
mexicana).Genomic offset was estimated using the paSNPs. Except otherwise stated, F-statistics 
are statistically significant with p-val < 0.01 (d.f. = 21). 
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Supplementary Figure 9. Linear regressions between the estimated adaptive score versus 
mean annual temperature, geographic range size, and mean genomic offset for 46 maize 
landraces in Mexico. a, Association between adaptive scores using paSNPs and mean 
temperature across known occurrence of landraces (same as in Figure 2d). b, Association 
between adaptive scores using the paSNPs and geographic range size for landraces (same as
in Figure 2c). c-d, Association between adaptive scores using paSNPs and mean genomic offset 
estimated from known occurrence of landraces under two most extreme models: 
CCSM_2050_RCP4.5 (same as in Figure 2e) and CCSM_2070_RCP8.5. Frequency histograms 
show the distribution of regression coefficients and adjusted R2 estimated for 1,000 sub-samples 
of refSNPs and the red vertical lines represent the estimates using paSNPs.
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Supplementary Figure 9. Continued
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Supplementary Figure 10. Correlations between pairwise genetic differentiation (FST) and 
estimated allele turnover as predicted by Gradient Forest among sampled populations of two
species of teosintes in Mexico: (Zea mays spp. parviglumis and Z. mays spp. mexicana). Allele 
turnover and FST were estimated separately for each set of SNPs. a-b, correlations for reference 
SNPs. c-d, correaltions for candidate SNPs. e-f, correlations for putative adaptive SNPs. 
Correlation statistics (r) are given for partial Mantel tests performed controlling for environmental 
distances among populations. All correlations were sistically significant with p-value < 0.001.

0.00 0.01 0.02 0.03 0.04 0.05

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

F ST

0.000 0.005 0.010 0.015 0.020 0.025 0.030

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

0.
0

0.
2

0.
4

0.
6

0.
8

0.00 0.02 0.04 0.06 0.08

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.00 0.02 0.04 0.06 0.08 0.10

0.
0

0.
2

0.
4

0.
6

0.
8

0.00 0.05 0.10 0.15 0.20 0.25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Zea mays spp. parviglumis Zea mays spp. mexicana

r: 0.49 r: 0.34

r: 0.62 r: 0.69

r: 0.57 r: 0.72

F ST
Estimated allele turnover Estimated allele turnover

Estimated allele turnover Estimated allele turnover

Estimated allele turnover Estimated allele turnover

a b

c d

e f

F ST F ST

F ST F ST



Supplementary Figure 11. Linear regressions between climatic suitability values for candidate 
and putative adaptive SNPs as predicted by ecological niche modeling and allele frequencies for 
sampled population of two species of teosintes in Mexico: (Zea mays spp. parviglumis and 
Z. mays spp. mexicana). Ecological niche models were constructed for each SNPs separately 
(models available in ASCII format at https://github.com/spiritu-santi/teosintes) and mean suitability
was estimated for candidate SNPs and putative adaptive SNPs separately. All regressions were
statistically non-significant with p-value > 0.05.
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Supplementary Figure 12. Minimum geogaphic distances to population with the highest 
adaptive score as a function of migration probabilities estimated using circuit theory and allele 
distribution models under the two most extreme models of climate change (CCSM_2050_RCP4.5 
and CCSM_2070_RCP8.5) for sampled populations of two species of teosintes in Mexico (Zea 
mays spp. parviglumis and Z. mays spp. mexicana).Geographic distances were measured in 
kilometers and correspond to the the minimum distances to the population with the highest 
adaptive score (best population) and to the neighboring population with a higher adaptive than 
the focal population (best neighbor). Except otherwise stated, F-statistics are statistically 
significant with p-val < 0.01 (d.f. = 21). 
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Supplementary Table 1. Reduction in the geographical distribution predicted for the two species of teosintes in Mexico 
under eight different models of climate change: Zea mays spp. mexicana (mexicana) and Zea mays spp. parviglumis 
(parviglumis). Proportion of known occurrences (ref. 14) and sampled populations within the future predicted distribution 
for each species. Teosintes occurrences obtained from www.biodiversidad.gob.mx/genes/proyectoMaices.html 

Year Climate model

Projected future 
extent of species 
relative to the 
present-day 
distribution

Proportion of 
predicted 
occurrences within 
the future 
distribution

Proportion of sampled 
populations predicted within 
the future distribution

mexicana 23 populations
2050 CCSM_4.5 83% 81% 84%

CCSM_8.5 70% 67% 52%
MIROC_4.5 67% 75% 72%
MIROC_8.5 60% 61% 60%
Mean for 2050 70% 70.9% 67%

2070 CCSM_4.5 72% 72% 68%
CCSM_8.5 57% 47% 44%
MIROC_4.5 60% 53% 44%
MIROC_8.5 57% 46% 40%
Mean for 2070 61% 54.6% 49%

parviglumis 24 populations
2050 CCSM_4.5 106% 89% 88%

CCSM_8.5 102% 81% 79%
MIROC_4.5 91% 88% 79%
MIROC_8.5 84% 84% 83%
Mean for 2050 96% 85.3% 82%

2070 CCSM_4.5 109% 85% 83%
CCSM_8.5 88% 55% 50%
MIROC_4.5 92% 83% 75%
MIROC_8.5 75% 62% 67%
Mean for 2070 91% 71.3% 69%
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Supplementary	Table	2.	Gene	annota(on	for	specific	puta(ve	adap(ve	SNPs	(paSNPs)	iden(fied	in	the	two	species	of	teosintes	in	Mexico:	Zea	mays	spp.	mexicana	(mexicana)	and	Zea	mays	spp.	parviglumis	
(parviglumis).	Gene	posi(ons	were	obtained	by	blas(ng	the	chip	sequences	to	the	Hapmap2	maize	genome	reference	(Chia	et	al.,	2012).	Based	on	the	chip	primers,	SNPs	were	iden(fied	as	being	within	or	near	
coding	regions	known	for	maize.	All	sequences	that	were	found	in	a	coding	regions	were	annotated	against	the	Phytozome		database.	Finally,	the	literature	was	searched	for	evidences	of	local	adapta(on	
associated	to	the	puta(ve	iden(fied	genes	(For	more	details	of	the	methods	see	ref.	20).	According	to	the	annota(ons,	some	genes	are	associated	to	drought	or	heat	resistance	in	maize	or	other	plants,	while	
other	genes	are	associated	to	other	stressed	related	traits.	Even	if	not	all	SNPs	are	found	to	be	associated	to	climate	change	related	traits,	we	are	s(ll	finding	a	strong	discrimina(ve	power	and	trea(ng	these	
SNPs	as	puta(ve	adap(ve.	We	believe	it	is	possible	that	not	finding	the	precise	annota(ons	can	be	explained	by	the	fact	that	there	is	a	large	phylogene(c	distance	between	some	species.	For	instance,	an	
homologous	gene	of	GRMZM2G144985	has	been	found	to	be	related	to	phosphorus-impoverished	soils	response	in	Hakea	prostrata	(Proteaceae).	For	a	func(onal	valida(on	of	these	SNPs	it	will	be	necessary	to	
perform	experimental	tests	that	are	outside	the	scope	of	the	present	study.	

Gene Name Chip Name Chromosome Position Gene
Associated 
response Species Reference

mexicana GRMZM2G141596 SYN32365 9 140,846,908
CONSTANS 
interacting protein 4 flowering time

Zea mays 
(Poaceae)

Fjellheim et al. (2014). Frontiers in 
plant science, 5, 431.

mexicana GRMZM2G144985 PUT.163a.148928873.366 9 142,293,132 long-chain base1

phosphorus-
impoverished soils 
response

Hakea prostrata 
(Proteaceae)

Kuppusamy et al. (2014). Plant 
physiology, 166, 1891-1911.

mexicana GRMZM2G145085 PZE.109096578 9 142,298,030

transcription 
activators;DNA 
binding;RNA 
polymerase II 
transcription 
factors;catalytics;tran
scription initiation 
factors

ABA and drought 
responses

Arabidopsis 
thaliana 
(Brassicaceae)

Jin et al. (2011). New 
Phytologist, 190, 57-74.

mexicana GRMZM2G166780 SYN27200 9 139,374,933

RNA recognition 
motif in THO 
complex subunit 4 
(THOC4) and similar 
proteins abiotic stress

Oryza sativa 
(Poaceae)

Sharma et al (2016). Frontiers in 
plant science, 7.

parviglumis GRMZM2G063306 PZE.103059706 3 112,045,081
zinc induced 
facilitator-like 1

drought tolerance 
by regulating 
stomatal closure

Arabidopsis 
thaliana 
(Brassicaceae)

Remy et al. (2013). The Plant 
Cell, 25, 901-926.

parviglumis GRMZM2G081928 PZE.106008139 6 23,525,249
Peroxidase 
superfamily protein Arsenic stress

Oryza sativa 
(Poaceae)

Yu et al. (2012). New 
Phytologist, 195, 97-112.

parviglumis GRMZM2G165090 PZE.101131254 1 168,430,002
phytochrome 
interacting factor 3

improves drought 
and salt stress 
tolerance in rice

Oryza sativa 
(Poaceae)

Gao et al. (2015). Plant molecular 
biology, 87, 413-428.
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Supplementary Table 3. Summary of the genomic offset estimated for species of teosintes in Mexico using different sets of SNPs and eight different models of climate 
change: Zea mays spp. mexicana (mexicana) and Zea mays spp. parviglumis (parviglumis). For each climatic model we estimated the range and the median of the 
estimated genomic offset for teosintes occurrences (ref. 14) and sampled populations, separately. Teosintes occurrences obtained from www.biodiversidad.gob.mx/
genes/proyectoMaices.html 

SNP dataset Projected year Climate model

Range (median) of 
genomic offset for 
occurrences 

Range (median) of 
genomic offset for 
sampled populations SNP dataset

mexicana refSNPs 2050 CCSM_4.5 0.04- 0.07 (0.05) 0.04-0.08 (0.05)
CCSM_8.5 0.05- 0.09 (0.06) 0.05-0.10 (0.06)
MIROC_4.5 0.04- 0.08 (0.05) 0.04-0.08 (0.05)
MIROC_8.5 0.05-0.10 (0.06) 0.05-0.11 (0.06)

2070 CCSM_4.5 0.05-0.08 (0.06) 0.05-0.09 (0.06)
CCSM_8.5 0.08-0.13 (0.09) 0.08-0.13 (0.09)
MIROC_4.5 0.05-0.12 (0.06) 0.04-0.12 (0.06)
MIROC_8.5 0.07- 0.15 (0.08) 0.07-0.16 (0.09)

canSNPs 2050 CCSM_4.5 0.04-0.24 (0.06) 0.03-0.23 (0.08)
CCSM_8.5 0.06- 0.26 (0.13) 0.06-0.24 (0.12)
MIROC_4.5 0.04- 0.29 (0.07) 0.04-0.25 (0.08)
MIROC_8.5 0.06- 0.27 (0.11) 0.05-0.27 (0.11)

2070 CCSM_4.5 0.05-0.24 (0.10) 0.04-0.24 (0.10)
CCSM_8.5 0.11- 0.28 (0.21) 0.11-0.30 (0.21)
MIROC_4.5 0.06- 0.29 (0.11) 0.05-0.29 (0.11)
MIROC_8.5 0.08- 0.32 (0.18) 0.09-0.32 (0.18)

paSNPs 2050 CCSM_4.5 0.034- 0.88 (0.19) 0.01-0.90 (0.23)
CCSM_8.5 0.11- 0.97 (0.39) 0.10-0.92 (0.37)
MIROC_4.5 0.035- 0.88 (0.18) 0.02-0.90 (0.24)
MIROC_8.5 0.087- 0.93 (0.36) 0.07-0.93 (0.36)

2070 CCSM_4.5 0.077- 0.92 (0.33) 0.07-0.92 (0.32)
CCSM_8.5 0.29- 0.99 (0.57) 0.25-1.00 (0.66)
MIROC_4.5 0.11- 0.92 (0.36) 0.07-0.92 (0.36)
MIROC_8.5 0.19- 0.95 (0.50) 0.18-0.97 (0.63)
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SNP dataset Projected year Climate model

Range (median) of 
genomic offset for 
occurrences 

Range (median) of 
genomic offset for 
sampled populations

parviglumis refSNPs 2050 CCSM_4.5 0.097- 0.28 (0.16) 0.09-0.58 (0.14)
CCSM_8.5 0.13- 0.32 (0.23) 0.11-0.58 (0.19)
MIROC_4.5 0.10- 0.19 (0.14) 0.07-0.50 (0.13)
MIROC_8.5 0.11-0.28 (0.18) 0.10-0.62 (0.16)

2070 CCSM_4.5 0.12- 0.31 (0.21) 0.11-0.66 (0.18)
CCSM_8.5 0.18- 0.43 (0.29) 0.16-0.59 (0.26)
MIROC_4.5 0.11- 0.26 (0.18) 0.10-0.50 (0.17)
MIROC_8.5 0.15- 0.44 (0.25) 0.14-0.58 (0.21)

canSNPs 2050 CCSM_4.5 0.14- 0.27 (0.20) 0.11-0.44 (0.19)
CCSM_8.5 0.18-0.36 (0.27) 0.15-0.57 (0.27)
MIROC_4.5 0.12- 0.26 (0.17) 0.11-0.44 (0.18)
MIROC_8.5 0.16- 0.33 (0.20) 0.13-0.49 (0.22)

2070 CCSM_4.5 0.17-0.34 (0.23) 0.13-0.54 (0.24)
CCSM_8.5 0.28- 0.49 (0.38) 0.24 -0.64 (0.38)
MIROC_4.5 0.15- 0.36 (0.21) 0.14-0.45 (0.23)
MIROC_8.5 0.24- 0.45 (0.29) 0.18-0.50 (0.33)

paSNPs 2050 CCSM_4.5 0.21-0.40 (0.28) 0.16-0.72 (0.30)
CCSM_8.5 0.33- 0.65 (0.46) 0.2-0.92 (0.44)
MIROC_4.5 0.21-0.39 (0.27) 0.13-0.75 (0.29)
MIROC_8.5 0.21- 0.47 (0.32) 0.20-0.69 (0.35)

2070 CCSM_4.5 0.24- 0.50 (0.34) 0.21-0.85 (0.36)
CCSM_8.5 0.49- 0.75 (0.63) 0.31- 1.0 (0.6)
MIROC_4.5 0.23-0.51 (0.32) 0.19-0.75 (0.35)
MIROC_8.5 0.38- 0.63 (0.47) 0.32- 0.77 (0.52)
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Supplementary Table 4. Raw values of genomic offset for sampled populations of the two species of teosintes in Mexico using different 
sets of SNPs and eight different models of climate change: Zea mays spp. mexicana (mexicana) and Zea mays spp. parviglumis 
(parviglumis). 

paSNPs paSNPs paSNPs paSNPs
Population subespecies CCSM_4.5_2050 CCSM_8.5_2050 MIROC_4.5_2050 MIROC_8.5_2050
Teloloapan_Teloloapan parviglumis 0.29 0.45 0.28 0.30
Alcholoa_Teloloapan parviglumis 0.28 0.44 0.28 0.28
Teconoapan_Teconoapa parviglumis 0.32 0.55 0.34 0.39
Chilpancingo_Chilpancingo parviglumis 0.32 0.54 0.31 0.41
Mochitlan_Mochitlan parviglumis 0.34 0.67 0.30 0.47
PasoMorelos_Huitzuco parviglumis 0.43 0.65 0.44 0.43
Guachinango_Guauchinango parviglumis 0.36 0.47 0.31 0.42
Telpitita_VillaPurificacion parviglumis 0.43 0.69 0.43 0.62
SMH565_Ejutla parviglumis 0.46 0.68 0.37 0.47
SMH577_VilladePurificacion parviglumis 0.41 0.68 0.42 0.54
SMH578_Toliman parviglumis 0.42 0.75 0.29 0.40
SMHMGCH581_Zitacuaro parviglumis 0.35 0.43 0.37 0.43
SanCristobalHonduras_SanJeronimoCoatlanparviglumis 0.37 0.46 0.36 0.43
Ahuacatitlan parviglumis 0.30 0.47 0.29 0.31
AmatlandeCasas parviglumis 0.53 0.87 0.52 0.62
CruceroLagunitas parviglumis 0.34 0.56 0.33 0.39
EjutlaA parviglumis 0.46 0.68 0.37 0.47
EjutlaB parviglumis 0.41 0.67 0.32 0.37
ElRodeo parviglumis 0.37 0.46 0.36 0.43
ElSauz parviglumis 0.45 0.77 0.39 0.46
LaCadena parviglumis 0.49 0.63 0.51 0.63
LaMesa parviglumis 0.43 0.69 0.43 0.52
LosGuajes parviglumis 0.38 0.44 0.38 0.41
SanLorenzo parviglumis 0.34 0.61 0.33 0.42
VillaSeca_Otzolotepec mexicana 0.08 0.39 0.17 0.41
Churintzio_Churintzio mexicana 0.13 0.22 0.13 0.18
SMH571_Acambaro mexicana 0.11 0.12 0.11 0.11
SMH572_Acambaro mexicana 0.05 0.15 0.04 0.09
SMH573_Acambaro mexicana 0.06 0.13 0.07 0.12
SMH575_SantaAnaMaya mexicana 0.09 0.19 0.09 0.15
SMH576_Yuriria mexicana 0.19 0.30 0.19 0.25
SMHMGCH579_Puruandiro mexicana 0.12 0.23 0.11 0.18
SMHMGCH580_Huandacareo mexicana 0.09 0.17 0.08 0.14
SMHMGCH582_JesusMaria mexicana 0.38 0.40 0.37 0.38
Cocotitlan_Cocotitlan mexicana 0.72 0.76 0.72 0.75
SanNicolas_SnNicolasBuenosAires mexicana 0.71 0.78 0.72 0.77
Tenancingo_Tenancingo mexicana 0.45 0.65 0.46 0.60
Calpan_Calpan mexicana 0.12 0.49 0.16 0.40
Texcoco_Texcoco mexicana 0.72 0.77 0.79 0.82
ElPorvenir mexicana 0.56 0.57 0.52 0.57
Ixtlan mexicana 0.30 0.40 0.26 0.37
Opopeo mexicana 0.89 0.98 0.89 0.94
Puruandiro mexicana 0.16 0.26 0.15 0.22
SanPedro mexicana 0.12 0.49 0.16 0.40
SantaClara mexicana 0.89 0.98 0.89 0.94
TenangodelAire mexicana 0.04 0.17 0.05 0.11
Xochimilco mexicana 0.69 0.72 0.74 0.75
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canSNPs canSNPs canSNPs canSNPs
Population subespecies CCSM_4.5_2050 CCSM_8.5_2050 MIROC_4.5_2050 MIROC_8.5_2050
Teloloapan_Teloloapan parviglumis 0.22 0.29 0.22 0.23
Alcholoa_Teloloapan parviglumis 0.24 0.29 0.22 0.23
Teconoapan_Teconoapa parviglumis 0.22 0.32 0.23 0.26
Chilpancingo_Chilpancingo parviglumis 0.21 0.34 0.19 0.28
Mochitlan_Mochitlan parviglumis 0.32 0.48 0.26 0.38
PasoMorelos_Huitzuco parviglumis 0.31 0.41 0.33 0.31
Guachinango_Guauchinango parviglumis 0.26 0.35 0.26 0.30
Telpitita_VillaPurificacion parviglumis 0.35 0.48 0.34 0.44
SMH565_Ejutla parviglumis 0.29 0.38 0.17 0.25
SMH577_VilladePurificacion parviglumis 0.34 0.48 0.34 0.41
SMH578_Toliman parviglumis 0.28 0.48 0.21 0.23
SMHMGCH581_Zitacuaro parviglumis 0.21 0.24 0.18 0.22
SanCristobalHonduras_SanJeronimoCoatlanparviglumis 0.19 0.26 0.17 0.21
Ahuacatitlan parviglumis 0.23 0.30 0.22 0.25
AmatlandeCasas parviglumis 0.27 0.41 0.26 0.29
CruceroLagunitas parviglumis 0.24 0.33 0.23 0.26
EjutlaA parviglumis 0.29 0.38 0.17 0.25
EjutlaB parviglumis 0.36 0.46 0.25 0.31
ElRodeo parviglumis 0.19 0.26 0.17 0.21
ElSauz parviglumis 0.21 0.41 0.16 0.22
LaCadena parviglumis 0.28 0.35 0.28 0.37
LaMesa parviglumis 0.22 0.36 0.20 0.27
LosGuajes parviglumis 0.26 0.31 0.27 0.28
SanLorenzo parviglumis 0.31 0.41 0.27 0.32
VillaSeca_Otzolotepec mexicana 0.06 0.15 0.08 0.13
Churintzio_Churintzio mexicana 0.06 0.08 0.07 0.07
SMH571_Acambaro mexicana 0.05 0.06 0.04 0.06
SMH572_Acambaro mexicana 0.05 0.07 0.04 0.06
SMH573_Acambaro mexicana 0.04 0.06 0.04 0.06
SMH575_SantaAnaMaya mexicana 0.05 0.08 0.05 0.07
SMH576_Yuriria mexicana 0.06 0.09 0.06 0.08
SMHMGCH579_Puruandiro mexicana 0.06 0.09 0.05 0.07
SMHMGCH580_Huandacareo mexicana 0.05 0.07 0.04 0.07
SMHMGCH582_JesusMaria mexicana 0.09 0.11 0.10 0.10
Cocotitlan_Cocotitlan mexicana 0.19 0.21 0.20 0.21
SanNicolas_SnNicolasBuenosAires mexicana 0.19 0.21 0.20 0.21
Tenancingo_Tenancingo mexicana 0.13 0.19 0.14 0.18
Calpan_Calpan mexicana 0.05 0.15 0.07 0.12
Texcoco_Texcoco mexicana 0.20 0.21 0.21 0.22
ElPorvenir mexicana 0.17 0.20 0.15 0.17
Ixtlan mexicana 0.09 0.12 0.08 0.11
Opopeo mexicana 0.24 0.26 0.29 0.27
Puruandiro mexicana 0.06 0.09 0.06 0.08
SanPedro mexicana 0.05 0.15 0.07 0.12
SantaClara mexicana 0.23 0.26 0.29 0.27
TenangodelAire mexicana 0.05 0.07 0.04 0.06
Xochimilco mexicana 0.18 0.19 0.19 0.20
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refSNPs refSNPs refSNPs refSNPs
Population subespecies CCSM_4.5_2050 CCSM_8.5_2050 MIROC_4.5_2050 MIROC_8.5_2050
Teloloapan_Teloloapan parviglumis 0.23 0.23 0.23 0.21
Alcholoa_Teloloapan parviglumis 0.16 0.18 0.16 0.15
Teconoapan_Teconoapa parviglumis 0.20 0.26 0.18 0.24
Chilpancingo_Chilpancingo parviglumis 0.13 0.32 0.18 0.36
Mochitlan_Mochitlan parviglumis 0.37 0.35 0.25 0.38
PasoMorelos_Huitzuco parviglumis 0.21 0.26 0.23 0.16
Guachinango_Guauchinango parviglumis 0.20 0.33 0.21 0.28
Telpitita_VillaPurificacion parviglumis 0.34 0.42 0.25 0.32
SMH565_Ejutla parviglumis 0.24 0.39 0.18 0.25
SMH577_VilladePurificacion parviglumis 0.34 0.43 0.25 0.31
SMH578_Toliman parviglumis 0.24 0.41 0.17 0.20
SMHMGCH581_Zitacuaro parviglumis 0.20 0.23 0.18 0.22
SanCristobalHonduras_SanJeronimoCoatlanparviglumis 0.16 0.18 0.15 0.18
Ahuacatitlan parviglumis 0.24 0.23 0.23 0.23
AmatlandeCasas parviglumis 0.19 0.30 0.17 0.22
CruceroLagunitas parviglumis 0.24 0.27 0.17 0.24
EjutlaA parviglumis 0.24 0.39 0.18 0.25
EjutlaB parviglumis 0.24 0.38 0.17 0.21
ElRodeo parviglumis 0.16 0.18 0.15 0.18
ElSauz parviglumis 0.23 0.42 0.19 0.25
LaCadena parviglumis 0.14 0.19 0.14 0.37
LaMesa parviglumis 0.20 0.34 0.19 0.27
LosGuajes parviglumis 0.14 0.17 0.13 0.15
SanLorenzo parviglumis 0.21 0.33 0.18 0.23
VillaSeca_Otzolotepec mexicana 0.05 0.06 0.05 0.06
Churintzio_Churintzio mexicana 0.03 0.05 0.04 0.04
SMH571_Acambaro mexicana 0.03 0.04 0.03 0.03
SMH572_Acambaro mexicana 0.03 0.04 0.03 0.04
SMH573_Acambaro mexicana 0.03 0.04 0.03 0.04
SMH575_SantaAnaMaya mexicana 0.03 0.04 0.03 0.04
SMH576_Yuriria mexicana 0.04 0.05 0.04 0.04
SMHMGCH579_Puruandiro mexicana 0.03 0.04 0.03 0.04
SMHMGCH580_Huandacareo mexicana 0.03 0.04 0.03 0.04
SMHMGCH582_JesusMaria mexicana 0.03 0.04 0.04 0.04
Cocotitlan_Cocotitlan mexicana 0.05 0.06 0.05 0.06
SanNicolas_SnNicolasBuenosAires mexicana 0.05 0.06 0.06 0.06
Tenancingo_Tenancingo mexicana 0.06 0.07 0.07 0.07
Calpan_Calpan mexicana 0.06 0.08 0.07 0.08
Texcoco_Texcoco mexicana 0.05 0.06 0.05 0.06
ElPorvenir mexicana 0.07 0.08 0.04 0.05
Ixtlan mexicana 0.04 0.06 0.04 0.05
Opopeo mexicana 0.05 0.05 0.06 0.06
Puruandiro mexicana 0.03 0.05 0.03 0.04
SanPedro mexicana 0.06 0.08 0.07 0.08
SantaClara mexicana 0.04 0.05 0.06 0.06
TenangodelAire mexicana 0.06 0.07 0.07 0.07
Xochimilco mexicana 0.04 0.05 0.04 0.05
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paSNPs paSNPs paSNPs paSNPs
Population subespecies CCSM_4.5_2070 CCSM_8.5_2070 MIROC_4.5_2070 MIROC_8.5_2070
Teloloapan_Teloloapan parviglumis 0.32 0.78 0.31 0.54
Alcholoa_Teloloapan parviglumis 0.38 0.83 0.38 0.59
Teconoapan_Teconoapa parviglumis 0.42 0.74 0.40 0.50
Chilpancingo_Chilpancingo parviglumis 0.41 0.87 0.39 0.60
Mochitlan_Mochitlan parviglumis 0.59 0.87 0.42 0.73
PasoMorelos_Huitzuco parviglumis 0.48 0.87 0.42 0.71
Guachinango_Guauchinango parviglumis 0.44 0.65 0.41 0.57
Telpitita_VillaPurificacion parviglumis 0.51 0.96 0.68 0.83
SMH565_Ejutla parviglumis 0.53 0.84 0.46 0.67
SMH577_VilladePurificacion parviglumis 0.46 0.94 0.64 0.82
SMH578_Toliman parviglumis 0.67 0.95 0.43 0.60
SMHMGCH581_Zitacuaro parviglumis 0.43 0.68 0.43 0.61
SanCristobalHonduras_SanJeronimoCoatlanparviglumis 0.43 0.65 0.45 0.55
Ahuacatitlan parviglumis 0.32 0.83 0.31 0.61
AmatlandeCasas parviglumis 0.58 1.00 0.56 0.84
CruceroLagunitas parviglumis 0.43 0.85 0.40 0.50
EjutlaA parviglumis 0.53 0.84 0.46 0.67
EjutlaB parviglumis 0.46 0.87 0.48 0.63
ElRodeo parviglumis 0.43 0.65 0.45 0.55
ElSauz parviglumis 0.49 0.99 0.44 0.66
LaCadena parviglumis 0.55 0.80 0.60 0.77
LaMesa parviglumis 0.47 0.92 0.47 0.73
LosGuajes parviglumis 0.41 0.67 0.40 0.62
SanLorenzo parviglumis 0.43 0.82 0.41 0.68
VillaSeca_Otzolotepec mexicana 0.30 0.78 0.36 0.73
Churintzio_Churintzio mexicana 0.19 0.45 0.21 0.28
SMH571_Acambaro mexicana 0.10 0.30 0.12 0.19
SMH572_Acambaro mexicana 0.30 0.33 0.30 0.35
SMH573_Acambaro mexicana 0.13 0.37 0.31 0.36
SMH575_SantaAnaMaya mexicana 0.19 0.36 0.31 0.39
SMH576_Yuriria mexicana 0.30 0.56 0.30 0.38
SMHMGCH579_Puruandiro mexicana 0.23 0.48 0.17 0.31
SMHMGCH580_Huandacareo mexicana 0.18 0.43 0.18 0.38
SMHMGCH582_JesusMaria mexicana 0.40 0.51 0.40 0.41
Cocotitlan_Cocotitlan mexicana 0.74 0.94 0.76 0.95
SanNicolas_SnNicolasBuenosAires mexicana 0.77 0.99 0.78 0.96
Tenancingo_Tenancingo mexicana 0.60 0.80 0.63 0.78
Calpan_Calpan mexicana 0.44 0.79 0.42 0.77
Texcoco_Texcoco mexicana 0.74 0.89 0.82 0.83
ElPorvenir mexicana 0.65 0.68 0.63 0.65
Ixtlan mexicana 0.33 0.58 0.37 0.43
Opopeo mexicana 0.92 1.00 0.93 0.95
Puruandiro mexicana 0.27 0.52 0.26 0.35
SanPedro mexicana 0.44 0.79 0.42 0.77
SantaClara mexicana 0.93 1.00 0.92 0.95
TenangodelAire mexicana 0.08 0.71 0.18 0.61
Xochimilco mexicana 0.68 0.95 0.76 0.93
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canSNPs canSNPs canSNPs canSNPs
Population subespecies CCSM_4.5_2070 CCSM_8.5_2070 MIROC_4.5_2070 MIROC_8.5_2070
Teloloapan_Teloloapan parviglumis 0.26 0.48 0.24 0.35
Alcholoa_Teloloapan parviglumis 0.30 0.53 0.29 0.38
Teconoapan_Teconoapa parviglumis 0.29 0.46 0.27 0.33
Chilpancingo_Chilpancingo parviglumis 0.28 0.57 0.26 0.40
Mochitlan_Mochitlan parviglumis 0.44 0.61 0.35 0.50
PasoMorelos_Huitzuco parviglumis 0.36 0.56 0.30 0.45
Guachinango_Guauchinango parviglumis 0.32 0.46 0.30 0.42
Telpitita_VillaPurificacion parviglumis 0.40 0.64 0.48 0.59
SMH565_Ejutla parviglumis 0.35 0.50 0.28 0.37
SMH577_VilladePurificacion parviglumis 0.38 0.65 0.47 0.60
SMH578_Toliman parviglumis 0.45 0.58 0.24 0.36
SMHMGCH581_Zitacuaro parviglumis 0.24 0.39 0.23 0.33
SanCristobalHonduras_SanJeronimoCoatlanparviglumis 0.23 0.38 0.21 0.33
Ahuacatitlan parviglumis 0.25 0.51 0.25 0.37
AmatlandeCasas parviglumis 0.30 0.53 0.29 0.46
CruceroLagunitas parviglumis 0.29 0.49 0.27 0.33
EjutlaA parviglumis 0.35 0.50 0.28 0.37
EjutlaB parviglumis 0.40 0.61 0.37 0.45
ElRodeo parviglumis 0.23 0.38 0.21 0.33
ElSauz parviglumis 0.27 0.54 0.22 0.32
LaCadena parviglumis 0.33 0.46 0.34 0.45
LaMesa parviglumis 0.28 0.51 0.25 0.40
LosGuajes parviglumis 0.29 0.49 0.28 0.45
SanLorenzo parviglumis 0.35 0.57 0.32 0.48
VillaSeca_Otzolotepec mexicana 0.09 0.24 0.10 0.21
Churintzio_Churintzio mexicana 0.07 0.15 0.09 0.11
SMH571_Acambaro mexicana 0.06 0.11 0.06 0.08
SMH572_Acambaro mexicana 0.08 0.13 0.09 0.11
SMH573_Acambaro mexicana 0.06 0.13 0.09 0.11
SMH575_SantaAnaMaya mexicana 0.07 0.14 0.09 0.12
SMH576_Yuriria mexicana 0.09 0.17 0.09 0.12
SMHMGCH579_Puruandiro mexicana 0.08 0.16 0.07 0.11
SMHMGCH580_Huandacareo mexicana 0.07 0.15 0.07 0.11
SMHMGCH582_JesusMaria mexicana 0.10 0.15 0.12 0.13
Cocotitlan_Cocotitlan mexicana 0.21 0.26 0.21 0.26
SanNicolas_SnNicolasBuenosAires mexicana 0.21 0.27 0.21 0.27
Tenancingo_Tenancingo mexicana 0.17 0.23 0.19 0.22
Calpan_Calpan mexicana 0.14 0.23 0.13 0.22
Texcoco_Texcoco mexicana 0.20 0.26 0.22 0.25
ElPorvenir mexicana 0.20 0.24 0.18 0.22
Ixtlan mexicana 0.10 0.18 0.11 0.14
Opopeo mexicana 0.24 0.28 0.29 0.32
Puruandiro mexicana 0.08 0.16 0.08 0.11
SanPedro mexicana 0.14 0.23 0.13 0.22
SantaClara mexicana 0.24 0.29 0.29 0.33
TenangodelAire mexicana 0.06 0.21 0.08 0.19
Xochimilco mexicana 0.18 0.26 0.20 0.25
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refSNPs refSNPs refSNPs refSNPs
Population subespecies CCSM_4.5_2070 CCSM_8.5_2070 MIROC_4.5_2070 MIROC_8.5_2070
Teloloapan_Teloloapan parviglumis 0.26 0.32 0.22 0.28
Alcholoa_Teloloapan parviglumis 0.20 0.29 0.19 0.25
Teconoapan_Teconoapa parviglumis 0.31 0.36 0.21 0.22
Chilpancingo_Chilpancingo parviglumis 0.20 0.32 0.30 0.29
Mochitlan_Mochitlan parviglumis 0.42 0.46 0.31 0.30
PasoMorelos_Huitzuco parviglumis 0.25 0.33 0.16 0.25
Guachinango_Guauchinango parviglumis 0.28 0.45 0.29 0.44
Telpitita_VillaPurificacion parviglumis 0.38 0.55 0.32 0.55
SMH565_Ejutla parviglumis 0.33 0.48 0.24 0.39
SMH577_VilladePurificacion parviglumis 0.37 0.57 0.33 0.58
SMH578_Toliman parviglumis 0.35 0.55 0.21 0.41
SMHMGCH581_Zitacuaro parviglumis 0.25 0.32 0.22 0.26
SanCristobalHonduras_SanJeronimoCoatlanparviglumis 0.17 0.24 0.16 0.22
Ahuacatitlan parviglumis 0.24 0.32 0.22 0.29
AmatlandeCasas parviglumis 0.23 0.38 0.24 0.37
CruceroLagunitas parviglumis 0.32 0.39 0.22 0.22
EjutlaA parviglumis 0.33 0.48 0.24 0.39
EjutlaB parviglumis 0.30 0.49 0.26 0.38
ElRodeo parviglumis 0.17 0.24 0.16 0.22
ElSauz parviglumis 0.31 0.49 0.26 0.38
LaCadena parviglumis 0.17 0.26 0.35 0.39
LaMesa parviglumis 0.27 0.45 0.24 0.39
LosGuajes parviglumis 0.17 0.26 0.15 0.20
SanLorenzo parviglumis 0.29 0.45 0.25 0.40
VillaSeca_Otzolotepec mexicana 0.06 0.09 0.06 0.09
Churintzio_Churintzio mexicana 0.04 0.08 0.05 0.06
SMH571_Acambaro mexicana 0.03 0.06 0.04 0.05
SMH572_Acambaro mexicana 0.04 0.07 0.04 0.05
SMH573_Acambaro mexicana 0.04 0.07 0.04 0.06
SMH575_SantaAnaMaya mexicana 0.04 0.07 0.04 0.06
SMH576_Yuriria mexicana 0.05 0.08 0.05 0.06
SMHMGCH579_Puruandiro mexicana 0.04 0.08 0.04 0.06
SMHMGCH580_Huandacareo mexicana 0.04 0.07 0.04 0.05
SMHMGCH582_JesusMaria mexicana 0.04 0.07 0.05 0.06
Cocotitlan_Cocotitlan mexicana 0.06 0.08 0.06 0.08
SanNicolas_SnNicolasBuenosAires mexicana 0.06 0.08 0.06 0.08
Tenancingo_Tenancingo mexicana 0.07 0.09 0.08 0.09
Calpan_Calpan mexicana 0.07 0.10 0.08 0.10
Texcoco_Texcoco mexicana 0.06 0.08 0.06 0.08
ElPorvenir mexicana 0.08 0.10 0.05 0.07
Ixtlan mexicana 0.05 0.08 0.05 0.07
Opopeo mexicana 0.05 0.07 0.06 0.08
Puruandiro mexicana 0.04 0.08 0.04 0.06
SanPedro mexicana 0.07 0.10 0.08 0.10
SantaClara mexicana 0.05 0.07 0.06 0.08
TenangodelAire mexicana 0.07 0.10 0.07 0.09
Xochimilco mexicana 0.05 0.07 0.05 0.07
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Supplementary Table 5. Climatic variables associated with the allele frequencies of different sets of SNPs identified 
in the two species of teosintes in Mexico: Zea mays spp. mexicana (mexicana) and Zea mays spp. parviglumis 
(parviglumis). Variables with the highest weighted importance for model construction and proportion of SNPs with 
significant predictive power (range and median of R2 values). refSNPs: references SNPs, canSNPs: candidate SNPs; 
paSNPs: putative adaptive SNPs. Blioclimatic layer were obtained from www.worldclim.org

SNP dataset Bioclimatic variables*

Proportion of SNPs with 
significant predictive 
power

Range (median) of 
R2

mexicana refSNPs 4, 5, 8, 10, 16 28% 0.002-0.6 (0.17)

canSNPs 9, 10, 13, 12, 16 100% 0.10-0.88 (0.36)

paSNPs 1, 4, 5, 9, 10 100% 0.07-0.92 (0.87)

mexicana refSNPs 2, 3, 17, 18, 19 63% 0.001-0.87 (0.26)

canSNPs 4, 12, 16, 18, 19 96% 0.01-0.61 (0.32)

paSNPs 6, 11, 12, 16, 18 100% 0.12-0.6 (0.46)

Variable names after ref. 53.

BIO1	 Annual Mean Temperature; BIO2	 Mean Diurnal Range (Mean of monthly (max temp - min temp)); BIO3	
Isothermality (BIO2/BIO7) (* 100); BIO4	 Temperature Seasonality (standard deviation *100); BIO5	 Max 
Temperature of Warmest Month; BIO6	 Min Temperature of Coldest Month; BIO7	 Temperature Annual Range 
(BIO5-BIO6); BIO8	 Mean Temperature of Wettest Quarter; BIO9	 Mean Temperature of Driest Quarter; BIO10	
Mean Temperature of Warmest Quarter; BIO11	Mean Temperature of Coldest Quarter; BIO12	 Annual Precipitation; 
BIO13	Precipitation of Wettest Month; BIO14	 Precipitation of Driest Month; BIO15	 Precipitation Seasonality 
(Coefficient of Variation); BIO16	 Precipitation of Wettest Quarter; BIO17	 Precipitation of Driest Quarter; BIO18	
Precipitation of Warmest Quarter; BIO19	Precipitation of Coldest Quarter
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Supplementary Table 6. Reduction in the geographical distribution predicted for putative adaptive SNPs (paSNPs) in 
the two species of teosintes in Mexico under eight different models of climate change: Zea mays spp. mexicana 
(mexicana) and Zea mays spp. parviglumis (parviglumis). Proportion of known occurrences (ref. 14) and sampled 
populations within the predicted future distribution for paSNPs. Teosintes occurrences obtained from 
www.biodiversidad.gob.mx/genes/proyectoMaices.html

Subspecies Year Climate model

Projected future 
extent of species 
relative to the 
present-day 
distribution

Proportion of predicted 
occurrences within the 
future distribution

Proportion of 
sampled populations 
predicted within the 
future distribution

mexicana 2050 CCSM_4.5 108% 14% 22%

CCSM_8.5 44% 2% 0%

MIROC_4.5 35% 2% 0%

MIROC_8.5 33% 6% 0%

Mean for 2050
54.9% 6% 5%

2070 CCSM_4.5 91% 14% 17%

CCSM_8.5 15% 1% 0%

MIROC_4.5 46% 6% 9%

MIROC_8.5 3% 0% 0%

Mean for 2070 38.8% 5% 6%

parviglumis 2050 CCSM_4.5 73% 26% 25%

CCSM_8.5 59% 14% 17%

MIROC_4.5 73% 31% 17%

MIROC_8.5 52% 14% 8%

Mean for 2050 64.4% 21% 17%

2070 CCSM_4.5 66% 24% 21%

CCSM_8.5 36% 5% 0%

MIROC_4.5 66% 26% 25%

MIROC_8.5 47% 10% 8%

Mean for 2070
53.8% 16% 14%
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Supplementary Table 7. Migration potential for sampled populations of two species of teosintes in Mexico: Zea mays spp. mexicana (mexicana) and Zea mays 
spp. parviglumis (parviglumis) under the two most extreme models of climate change: CCSM_2050_RCP4.5 and CCSM_2070_RCP8.5. Minimum geographic 
distances to the populations with highest frequency of putative adaptive SNPs.  Teosintes occurrences obtained from www.biodiversidad.gob.mx/genes/
proyectoMaices.html

Species Population
Adaptive 

score
Migration potential 

CCSM_2050_RCP4.5
Migration potential 

CCSM_2070_RCP8.5
Minimum distance to 
best population (km)

Adaptive score for 
best population

Minimum distance to 
best neighbor (km)

Adaptive score for 
best neighbor

mexicana Calpan_Calpan 0.21 no migration no migration 266 0.79 43 0.22

mexicana Churintzio_Churintzio 0.82 migration no migration 32 0.87 32 0.87

mexicana Cocotitlan_Cocotitlan 0.22 no migration no migration 223 0.79 —
Highest adaptive 

score locally

mexicana ElPorvenir 0.42 no migration no migration 38 0.79 38 0.79

mexicana Ixtlan 0.87 no migration no migration —
Highest adaptive 
score in species —

Highest adaptive 
score locally

mexicana Opopeo 0.37 no migration no migration 72 0.72 72 0.72

mexicana Puruandiro 0.7 migration migration 6 0.7 13 0.75

mexicana SanNicolas_SnNicolasBuenosAires 0.2 no migration no migration 293 0.79 72 0.22

mexicana SanPedro 0.18 no migration no migration 265 0.79 42 0.22

mexicana SantaClara 0.31 no migration no migration 74 0.72 74 0.72

mexicana SMH571_Acambaro 0.74 migration no migration 5 0.79 5 0.79

mexicana SMH572_Acambaro 0.79 migration no migration 129 0.82 —
Highest adaptive 

score locally

mexicana SMH573_Acambaro 0.75 migration no migration 12 0.79 12 0.79

mexicana SMH575_SantaAnaMaya 0.74 migration migration 15 0.75 27 0.79

mexicana SMH576_Yuriria 0.75 migration migration 47 0.75 —
Highest adaptive 

score locally

mexicana SMHMGCH579_Puruandiro 0.7 migration migration 6 0.7 7 0.75

mexicana SMHMGCH580_Huandacareo 0.72 migration migration 18 0.74 25 0.75

mexicana SMHMGCH582_JesusMaria 0.6 migration no migration 64 0.82 67 0.87

mexicana Tenancingo_Tenancingo 0.15 migration no migration 227 0.79 10 0.22

mexicana TenangodelAire 0.12 no migration no migration 161 0.79 77 0.22
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mexicana Texcoco_Texcoco 0.2 no migration no migration 209 0.79 31 0.22

mexicana VillaSeca_Otzolotepec 0.18 no migration no migration 142 0.79 82 0.22

mexicana Xochimilco 0.13 migration no migration 200 0.79 24 0.22

parviglumis Ahuacatitlan 0.71 migration migration 3 0.72 64 0.78

parviglumis Alcholoa_Teloloapan 0.63 migration migration 10 0.72 75 0.78

parviglumis AmatlandeCasas 0.3 no migration no migration 105 0.61 105 0.61

parviglumis Chilpancingo_Chilpancingo 0.65 migration migration 50 0.97 50 0.97

parviglumis CruceroLagunitas 0.96 migration migration 1 0.97 1 0.97

parviglumis EjutlaA 0.61 no migration no migration 69 0.8 —
Highest adaptive 

score locally

parviglumis EjutlaB 0.6 migration no migration 7 0.61 7 0.61

parviglumis ElSauz 0.37 migration no migration 54 0.6 55 0.61

parviglumis Guachinango_Guauchinango 0.35 no migration no migration 84 0.61 84 0.61

parviglumis LaCadena 0.6 migration migration 78 0.6 164 0.72

parviglumis LaMesa 0.16 no migration no migration 8 0.6 15 0.61

parviglumis LosGuajes 0.6 migration migration 13 0.61 119 0.72

parviglumis Mochitlan_Mochitlan 0.56 migration migration 14 0.65 54 0.97

parviglumis PasoMorelos_Huitzuco 0.78 no migration no migration 139 0.97 —
Highest adaptive 

score locally

parviglumis
SanCristobalHonduras_SanJeronim
oCoatlan 0.65 no migration no migration 251 0.96 251 0.97

parviglumis SanLorenzo 0.23 no migration no migration 12 0.6 20 0.61

parviglumis SMH565_Ejutla 0.49 no migration no migration 1 0.61 1 0.61

parviglumis SMH577_VilladePurificacion 0.86 migration migration 664 0.97 —
Highest adaptive 

score locally

parviglumis SMH578_Toliman 0.26 no migration no migration 42 0.6 42 0.61

parviglumis SMHMGCH581_Zitacuaro 0.61 no migration no migration 115 0.63 124 0.72
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parviglumis Teconoapan_Teconoapa 0.97 migration migration —
Highest adaptive 
score in species —

Highest adaptive 
score locally

parviglumis Teloloapan_Teloloapan 0.72 migration migration 67 0.78 67 0.78

parviglumis Telpitita_VillaPurificacion 0.8 migration migration 7 0.86 7 0.86
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Supplementary Table 8. Geographical coordinates, genotype for putative adaptive SNPs, and estimated adaptive scores for maize landraces accessions in Mexico. Detailed information on landrace and known occurrences can be obtained at 
www.biodiversidad.gob.mx/usos/maices/maiz.html
Landrace Longitude Latitude PZE.100001195 PZE.108035280 PZE.109096578 SYN27200 SYN32365 SYN37470 PZE.101131254 PZE.103059706 PZE.104026211 PZE.104044827 PZE.105090166 PZE.106008139 PZE.109029456 PZE.104055811 Adaptive score

Ancho -98.77861111 18.9975 GG AA AA CA GA GG AA AC CC GA GG GG AG GG 0.4545454545

Ancho -98.80944444 18.96805556 AA GG AA AA AA GG CA CC AC GA GA GG GG GA 0.5909090909

Ancho -98.77861111 18.9975 AA GG AA CA GG AA CC AC CC GA GG GG AA GA 0.6363636364

Apachito -107.583 28.68577778 GG AA AA AA AA AG AA AC CC AA GA GG AA AA 0.6818181818

Apachito -108.0796111 29.11311111 GG GA AA AA AA AG AA AC CC GA GA AG AG GA 0.6363636364

Arrocillo -97.98080556 19.93408333 GG AA AA CA GA AG AA AC CC AA GG AA AA GG 0.3636363636

Arrocillo -97.97941667 19.95577778 AG AA AA AA GA AA AA CC AC AA AA GG GG GG 0.5454545455

Arrocillo -97.98033333 19.94305556 AG GA AA CA AA AG CA AC AC AA AA AG AG GA 0.5909090909

Arrocillo -97.97941667 19.95577778 AG AA AA CA GA AG AA CC AC GA AA AG AG GG 0.4545454545

Azul -108.0152222 28.45538889 GG GA AA AA AA AA AA CC CC AA GG GG GG AA 0.6363636364

Azul -108.0157778 28.45730556 AG AA AA CC AA AA AA CC CC GA GA GG GG AA 0.6363636364

Blando de Sonora -108.3833333 26.39472222 GG GG AA AA AA AA AA AA CC GG AA AG AG AA 0.8636363636

Bofo -108.0082222 27.43477778 AA GA AA AA GA GG AA CC AC AA AA AA AA GA 0.4090909091

Cacahuacintle -99.50888889 19.19638889 AG GA AA AA GA GG AA AC CC GA GA AG AG AA 0.5909090909

Cacahuacintle -99.61805556 19.1675 GG 0 AA AA GA GG AA AC CC GG GA GG AG AA 0.6818181818

Cacahuacintle -98.05666667 19.59972222 GG GA AA AA AA GG CA AC CC AA GA GG AA GG 0.5909090909

Cacahuacintle -98.43111111 20.33916667 GG GA AA AA AA AA CA CC CC GA AA AA GG AA 0.7272727273

Cacahuacintle -97.90083333 19.22194444 GG AA AA CC GA AG AA CC CC GA GA AG GG GG 0.4090909091

Celaya -101.1188889 20.09111111 GG AA AA CA AA AG AA AC CC GA GA AA AA AA 0.5909090909

Celaya -101.4052778 21.00861111 AG AA AA CC AA AG AA CC AC AA AA AA GG GA 0.4090909091

Celaya -101.1611111 20.37416667 AG AA AA CA GA GG AA AC CC GA AA AG GG GG 0.5

Chalqueño -97.92944444 19.29083333 AA AA AA CC GG AG AA CC CC AA GG AG AA AA 0.3636363636

Chalqueño -100.2275 18.66027778 GG AA AA CC AA AG CA AC CC GA GA AG AG GG 0.5454545455

Chalqueño -97.98805556 19.35916667 GG AA AA CA GA AA AA CC CC GA AA GG AA GA 0.6363636364

Chalqueño -99.59527778 19.41808889 AG GG AA CA AA GG AA AA AC GG AA AG AG GA 0.6363636364

Chalqueño -98.33722222 20.22138889 AG GA GA CA GA AG AA CC CC AA GA GG AG AA 0.5

Chalqueño -98.28055556 20.02972222 AG GG AA CA AA GG CA CC CC GA GG AG GG GA 0.5

Chalqueño -98.80388889 19.10361111 GG AA AA CC GA AG AA AC CC AA GG GG AG GG 0.4090909091

Chapalote -109.2996667 29.90441667 GG AA AA AA GG AG AA AC CC AA AA AG AG GG 0.5

Chapalote -109.6742778 29.80538889 GG GG AA AA AA AG AA AC CC GA GG AG GG GG 0.5454545455

Cónico -98.04833333 19.51888889 GG AA AA AA AA AG AA CC CC AA GA GG AG AA 0.6363636364

Cónico -99.50972222 19.18472222 GG AA AA AA AA AG AA CC CC GA GG GG AA GA 0.5909090909

Cónico -98.37861111 20.33166667 AG AA AA CC AA AG AA CC AC AA AA AA GG GA 0.4090909091

Cónico -97.65222222 19.31916667 GG GA AA AA AA AG AA AA CC AA GG AG AG GA 0.5909090909

Cónico -100.0627778 19.46055556 AG GG AA AA GA GG AA CC CC AA GA GG AA GA 0.5

Cónico -98.29111111 20.24333333 AA GA AA AA GA GG CA AC CC GA AA GG AG AA 0.7272727273

Cónico -98.405 20.28666667 AA AA AA CA GG AG AA CC CC GA AA AG GG GA 0.5

Cónico -98.37388889 20.35888889 AG AA AA CA GA AA AA CC CC AA GA GG AG AA 0.5909090909

Cónico -98.78166667 19.09055556 GG AA AA AA GA AG AA CC CC AA GA GG AG GG 0.5

Cónico -98.64722222 19.75944444 AG AA AA CA GA GG AA AC CC AA AA AA GG GG 0.4090909091

Cónico -99.95611111 19.65111111 AG AA AA CC GA AG AA CC CC AA AA AG AG GA 0.4545454545

Cónico -98.27472222 19.99861111 GG AA AA AA AA GG AA CC CC GG AA AG AA AA 0.6818181818

Cónico -99.79111111 19.56944444 GG AA AA CC AA AG AA CC CC GA AA AA AG AA 0.5454545455

Cónico -98.06944444 19.39388889 AG AA AA CA GA AG AA CC AC AA GA GG AA AA 0.5

Cónico -100.1675028 19.35202222 GG GA AA CA GG AG AA AA CC GA GA AG AA GA 0.5454545455

Cónico -100.0255556 19.49083333 AG AA AA CA GG GG AA AC CC GA AA AG AG GA 0.5

Comiteco -91.97702778 16.19611111 AA GG AA AA AA AG CA AC CC GA GG AG AG GA 0.6363636364

Comiteco -93.09966667 16.62313889 AG GA AA CC AA AG CC CC CC AA AA GG AG GG 0.5909090909

Comiteco -92.02008333 16.24877778 AG GA AA CA GA AA AA AC CC GA GA GG AA AA 0.6818181818

Supplementary Table 8. Geographical coordinates, genotype for putative adaptive SNPs, and estimated adaptive scores for maize landraces accessions in Mexico. Detailed information on landrace and known occurrences can be obtained at 
www.biodiversidad.gob.mx/usos/maices/maiz.html
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Comiteco -91.97488889 16.23313889 AG GA AA CA AA GG AA CC CC GA AA GG AA GA 0.5909090909

Comiteco -91.93747222 16.19525 AG GA AA AA AA GG AA CC CC AA AA AG AA AA 0.5909090909

Complejo Serrano de Jalisco -103.6666667 19.93333333 AA GG AA AA GA GG CA AC CC GG GA GG AG GG 0.6363636364

Complejo Serrano de Jalisco -103.43833 19.92833 GG GA AA CA GA AG CA CC AC AA AA AA AA GG 0.4090909091

Conejo -98.74311111 17.78013889 GG GA AA AA AA AG CA AC CC GA GA GG AG AA 0.7727272727

Conejo -98.74188889 17.77797222 AG GA AA AA GA GG CA AC CC GA AA AG GG GA 0.6363636364

Conejo -98.68102778 17.88563889 AA GA AA AA GG GG CC AC CC GA GA AG AG AA 0.6363636364

Conejo -98.65641667 17.74525 GG GG AA AA AA GG CA AA CC AA GA GG AA AA 0.7272727273

Conico_Norteno -106.63225 28.49672222 AG GA AA CC AA GG AA AA CC GA GA AG GG AA 0.5909090909

Conico_Norteno -106.6291111 28.49488889 AA GG AA CC GA AG CA AC CC GA GA AG GG AA 0.5909090909

Conico_Norteno -106.6555 28.51872222 GG AA AA CA AA AA AA AC AC AA AA AG AA AA 0.6363636364

Coscomatepec -97.56488889 19.96466667 GG GG AA AA AA GG AA AC AC AA AA GG AG GA 0.5909090909

Coscomatepec -96.78333333 18.5 AG GG AA AA AA AG AA CC CC GA AA GG AG GA 0.6818181818

Coscomatepec -97.45566667 20.12658333 GG GA AA CA AA GG AA CC CC GG GA GG GG AA 0.6363636364

Cristalino_de_Chihuahua -106.8788889 28.19322222 AG GA AA CA AA AG AA CC CC AA AA AA AA AA 0.5454545455

Cristalino_de_Chihuahua -107.4748056 28.50283333 AG GG AA CC GA AG AA AC AC AA AA AG AA GA 0.4545454545

Dulce -108.5333333 28.13333333 AG GA AA CA GA GG CC CC AC GA AA GG GG AA 0.6363636364

Dulcillo del Noroeste -108.9246667 28.53702778 AG AA AA AA GA GG AA AC CC AA GA GG GG AA 0.5909090909

Dulcillo del Noroeste -109.106 28.613 AA GG AA AA GA AG AA CC CC AA AA GG GG AA 0.6363636364

Dzit-Bacal -92.97972222 16.03225 GG GG AA CA AA GG CC AC AC GG GG GG GG GA 0.6363636364

Dzit-Bacal -93.00194444 16.36402778 AG GG AA CA AA AG AA AC CC AA AA GG GG AA 0.6818181818

Dzit-Bacal -93.45688889 16.75177778 AA GG AA CA AA AG AA AC AC GG AA AG GG GA 0.6363636364

Elotero de Sinaloa -105.5463889 22.88972222 GG AA AA CA GA AG AA CC CC AA AA AA AG GA 0.4545454545

Elotero de Sinaloa -105.8916667 23.40611111 AG GA AA AA GA GG AA CC CC GA GA GG AA AA 0.5909090909

Elotero de Sinaloa -106.0816667 23.43083333 AA GG AA CA GA GG AA AC AC GA AA GG AA GG 0.5

Elotero de Sinaloa -106.4261111 23.84611111 AG GG AA CA GG GG CA AA CC GG GA AG AG GA 0.5909090909

Elotero de Sinaloa -105.8308333 23.4575 AG GG AA AA GG AG CA AC CC GG GA GG GG AA 0.7272727273

Elotes Conicos -99.79111111 19.56944444 AG AA AA CC GG GG AA CC AA AA AA GG AG GA 0.3181818182

Elotes Conicos -97.9725 19.32166667 AG AA AA CC GA AG AA CC AC AA AA AG AG GG 0.3636363636

Elotes Conicos -97.92472222 19.19055556 AG AA AA CA GA GG AA AC CC GA AA AG AA GA 0.5454545455

Elotes Conicos -100.0255556 19.49083333 AG GG AA AA AA AG CA AA AC GG GG GG GG GA 0.7272727273

Elotes Conicos -98.37388889 20.35888889 GG GG AA AA AA AG AA CC CC GG GA GG AG GA 0.6818181818

Elotes Conicos -98.37555556 20.35472222 AG GG AA AA GA AG CA CC AC GA GG GG AG GG 0.5

Elotes Conicos -98.38333333 20.3975 AG AA AA CA GA GG AA AC AA GG GG AG GG AA 0.4545454545

Elotes Conicos -99.05027778 19.19166667 GG AA AA CA AA GG AA CC CC GA GA AG AA GA 0.5

Elotes Conicos -98.31555556 19.4875 AG GA AA CA GA GG AA CC CC GA GA AG AG GA 0.4545454545

Elotes Conicos -98.37555556 20.35472222 AG AA AA CA AA GG AA CC CC GA GA AA AG AA 0.5

Elotes Conicos -98.77233333 19.05555556 GG GA AA CA GA GG AA CC AA AA GA GG AA GA 0.3636363636

Elotes Conicos -98.04722222 19.33861111 AG AA AA AA GG AG AA AC AC GA AA AA AG GG 0.4545454545

Elotes Conicos -99.92944444 19.70611111 GG AA AA AA GG GG AA AC AC AA GA GG AA GA 0.4545454545

Elotes Conicos -98.80666667 19.10861111 AG AA AA CA AA AA AA CC CC AA GA GG AG GA 0.5909090909

Elotes Occidentales -100.7658333 20.74416667 GG AA AA CA AA AG AA AC CC AA GA GG AG AA 0.6363636364

Elotes Occidentales -100.1083333 19.04388889 AG GA AA AA AA AG CA CC CC GA GG GG AG AA 0.6818181818

Elotes Occidentales -100.8147222 20.78444444 GG GG AA AA GA AG CC AC AC AA GA GG GG GA 0.6363636364

Elotes Occidentales -100.9355556 20.78722222 AG GA AA AA GG AG AA CC CC GA GG AA AA GA 0.4090909091

Gordo -108.7097222 29.84027778 AG GG AA AA GA AG AA AA CC AA GA GG AA GG 0.5909090909

Gordo -108.7097222 29.84027778 AG GA AA AA AA GG AA CC AC GA AA GG AA GA 0.5909090909

Jala -104.4286944 21.10166667 AG GG AA CA GA AA AA CC AC GA AA GG AG AA 0.6363636364

Jala -104.4405556 21.1 AA GA AA AA AA GG AA CC CC GA AA GG AA GA 0.6363636364
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Jala -104.4286944 21.10166667 GG GG AA AA GA AG AA AA AC GA GA AG AG GA 0.5909090909

Jala -104.4399794 21.07805 GG GA AA CA GA AG AA AC AC AA AA GG AG AA 0.5909090909

Mushito -99.805 21.2775 AA AA AA CC AA AG AA AC CC GA AA AG GG GA 0.5909090909

Mushito -111.9864167 26.89047222 AG 0 GA AA AA GG AA CC CC GA GG GG GG AA 0.5454545455

Mushito -100.13722 21.3575 AG AA AA CA GA AA CA AC CC AA AA GG AG GA 0.6818181818

Nal-tel de Altura -98.21666667 16.3 GG GG AA AA AA GG CA AA CC GG 0 GG AA AA 0.7727272727

Nal-tel de Altura -96.73333333 18.01666667 AG GA AA CA GA GG CA AC CC AA GG AA AA AA 0.4545454545

Nal-tel de Altura -91.97688889 16.23319444 GG AA AA CA GA GG CA AC AC GA GA AA AA GA 0.4545454545

Nal-tel de Altura -91.91638944 16.21563917 GG AA AA CC GG GG AA CC CC AA AA AG AG GA 0.3636363636

Nal-tel de Altura -97.06666667 18.85 AG GA AA AA GA GG AA CC CC AA AA GG AG GA 0.5454545455

Oloton -92.3145 15.36608333 GG GA GA CA GA AG AA AC CC AA AA GG AA AA 0.5909090909

Oloton -92.29358333 15.36011111 AG AA AA CA AA AG AA CC AC AA GA GG AG GA 0.5

Oloton -92.54222222 16.63975 AG AA AA CA GA AG AA CC CC GG GG AG AA AA 0.5454545455

Oloton -92.18767778 15.29614444 AG AA AA CC AA AA AA CC CC GA AA AG GG AA 0.6363636364

Olotillo -98.43611111 21.13333333 GG AA AA AA AA GG AA AC CC AA AA GG GG AA 0.6818181818

Olotillo -98.34638889 21.06388889 GG GA AA AA GA AA AA AC CC AA GG GG AG GA 0.5909090909

Olotillo -92.97972222 16.03225 GG AA GA CA AA AA CA AC CC GA AA AG AG AA 0.7272727273

Olotillo -93.00194444 16.36402778 AA AA AA CA AA AG CA CC CC GA GA GG AA GA 0.6363636364

Olotillo -92.216925 14.90176111 AG GG AA CA AA AG CA AC CC GA AA AG GG GG 0.6363636364

Olotillo -92.2045 14.87376389 AA AA AA CC AA GG AA AC CC GA GA GG AG GA 0.5454545455

Onaveño -109.68 29.80894444 AA GA AA AA AA GG CA AA CC GG GG GG AG GG 0.6818181818

Onaveño -108.8240833 27.17294444 GG GA AA AA AA GG AA CC CC AA GG AG AA AA 0.5

Palomero de Chihuahua -106.4436667 26.35983333 AA GG AA CA GA AA AA CC CC GA GA AG GG GG 0.5

Palomero_Toluqueno -99.71715556 19.79833333 AG AA AA CC AA GG AA AC AC AA AA GG AG GA 0.5

Pepitilla -100.1686111 19.0525 GG GA AA AA GA GG AA CC CC GG AA AG AG AA 0.6363636364

Pepitilla -100.1686111 19.0525 GG GA AA AA GG GG AA CC CC GG GA GG AG AA 0.5909090909

Pepitilla -100.1083333 19.04388889 GG GA AA CC GA AG AA AC CC AA GA AG AA GA 0.4545454545

Pepitilla -100.1083333 19.04388889 AG GA AA CA AA GG CA CC CC AA GG AG AA GA 0.4545454545

Raton -100.7042778 25.68125 GG GG AA AA AA GG CA CC CC GA GA GG GG GG 0.5909090909

Raton -99.25505556 24.12780556 AG GG AA CA AA GG AA AC CC AA GA AG GG GG 0.4545454545

Raton -99.02108333 24.29011111 GG AA AA AA AA GG AA AA CC GA AA AG GG AA 0.7272727273

Reventador -108.9119444 26.84361111 AG GG AA AA GA GG AA AC CC GG AA GG AG GA 0.6818181818

Reventador -110.2101111 29.79355556 GG GA AA CA AA AG CA AC AC GA AA GG AG AA 0.7272727273

Tablilla de Ocho -106.6324722 28.32019444 AG GG AA AA GA AG CC AA AC AA AA AA GG GA 0.6363636364

Tablilla de Ocho -106.0163611 26.94213889 AG GA AA CA AA AA AA AC AC AA AA 0 GG AA 0.5909090909

Tabloncillo -105.6068056 22.94927778 GG GG AA AA GA AG AA AC CC GA GA AG AG GA 0.5909090909

Tabloncillo -109.2448056 27.82702778 GG GG AA AA GA AG AA AC CC AA AA AG AA AA 0.6363636364

Tabloncillo -107.5618889 25.40125 GG GA AA AA GG AA AA AC AC GA GA AG AG GA 0.5454545455

Tabloncillo -108.9255278 28.41063889 AG GA AA AA AA AG AA AC CC AA AA GG AG AA 0.7272727273

Tabloncillo_Perla -105.39025 21.99097222 AA GG AA AA GA GG AA CC CC GG AA GG GG GA 0.6363636364

Tabloncillo_Perla -105.2216111 21.94602778 AA GG AA AA GG AA CA AC CC GA AA GG AG GA 0.7272727273

Tabloncillo_Perla -105.1493611 20.87416667 AG GG AA AA AA GG AA AC CC GG AA AG GG AA 0.7272727273

Tehua -93.206 17.19680556 AA AA AA CA GA AG AA AC CC AA GA GG AA GG 0.5

Tehua -93.17527778 17.21630556 AA GA AA CC GA AG AA CC CC AA AA GG AG AA 0.5454545455

Tepecintle -92.08888889 17.32222222 GG AA AA CC AA GG AA AC CC GA GA AG AG GG 0.4545454545

Tepecintle -92.31925 15.36652778 AA AA AA CA GA AG AA AC CC GA AA GG AA AA 0.6818181818

Tepecintle -92.19657222 14.82029722 GG GG AA AA AA AG AA AC CC GG GG 0 GG GG 0.5454545455

Tepecintle -92.46687222 17.25071111 AA GA AA AA AA AG CA AA CC GG AA GG GG GG 0.8181818182

Tuxpeno -92.81925 16.04422222 GG GG AA CA AA GG AA AC AC GG AA AG GG GG 0.5454545455

Supplementary Table 8. Geographical coordinates, genotype for putative adaptive SNPs, and estimated adaptive scores for maize landraces accessions in Mexico. Detailed information on landrace and known occurrences can be obtained at 
www.biodiversidad.gob.mx/usos/maices/maiz.html

Longitude Latitude PZE.100001195 PZE.108035280 PZE.109096578 SYN27200 SYN32365 SYN37470 PZE.101131254 PZE.103059706 PZE.104026211 PZE.104044827 PZE.105090166 PZE.106008139 PZE.109029456 PZE.104055811 Adaptive score

Supplementary Table 8. Geographical coordinates, genotype for putative adaptive SNPs, and estimated adaptive scores for maize landraces accessions in Mexico. Detailed information on landrace and known occurrences can be obtained at 
www.biodiversidad.gob.mx/usos/maices/maiz.html

Landrace

�3



Tuxpeno -106.1319444 23.25388889 GG GG AA AA GA AG AA CC CC GA GG AG GG GA 0.5

Tuxpeno -99.72272222 24.75586111 AG GG AA AA GA AG AA CC CC GA GA AA GG GG 0.4545454545

Tuxpeno -92.68894972 16.1194325 AA GA AA CC AA AG AA AC AC AA GG GG AG AA 0.5

Tuxpeno_Norteno -99.53447222 24.85894444 AG AA AA AA AA AG AA AC CC GA GA GG GG GA 0.6818181818

Tuxpeno_Norteno -100.2275 18.66027778 GG GA AA AA AA GG AA CC CC GA AA AG AG GG 0.5454545455

Vandeno -110.2121667 29.79602778 GG AA AA AA GA GG AA CC CC GA AA GG AG GG 0.5454545455

Vandeno -92.97783333 16.04222222 AA GG AA CA GA AG CA AC CC GA AA GG GG GA 0.6818181818

Vandeno -92.69643389 16.12061694 AG GG AA CC GG GG AA CC CC GA AA AG AG GA 0.4090909091

Vandeno -92.46687222 17.25071111 GG GG AA AA GA GG AA AC CC GG GA GG GG GA 0.6363636364

Zamorano Amarillo -104.45 19.6 AA GG AA AA GA GG CA AA AC GA GA GG GG GG 0.5909090909

Zamorano Amarillo -102.7166667 19.96666667 AG GA AA AA GG AG CA AC AC AA GA AG AG GA 0.5

Zamorano Amarillo -104.6333333 19.71666667 GG GG AA CC AA AA AA CC AC GG GA AG AG GG 0.5

Zapalote Grande -93.00194444 16.36402778 AG GG AA AA GA GG CC AC CC AA AA AG AG AA 0.6818181818

Zapalote_Chico -93.00194444 16.36402778 AG GA AA AA GA GG CC AC CC AA AA AG AG AA 0.6818181818
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Supplementary Table 9. Geographic distribution, environmental information and most common use of different 
maize landraces in Mexico with the potential for crop improvement (ref. 14). Detailed information on landraces can 
be obtained at www.biodiversidad.gob.mx/usos/maices/maiz.html

Landrace Distribution Enviroment Use 

Azul Chihuahua Not reported in ref. 14 Food source

Conejo
Oaxaca, Guerrero 
and Michoacan tempered and dry Not reported in ref. 14

Cónico Norteño 

Guanajuato, 
Chihuahua, 
Zacatecas, Durango, 
Aguascalientes, San 
Luis Potosi, Coahuila 
and Nuevo Leon

low precipitation and 
extreme temperatures Improvement for drought resistance

Elotes Occidentales

Nayarit, Jalisco, 
Michoacan, 
Guanajuato, 
Zacatecas, San Luis 
Potosi, Morelos, 
Puebla, Guerrero 
and Oaxaca Not reported in ref. 14 Food source

Olotillo

Chiapas, Oaxaca y 
Guerrero, Veracruz, 
Puebla, Hidalgo and 
San Luis Potosi

Humid and dry tropics, 
poor soils Food source

Raton

Tamaulipas, Nuevo 
León, Coahuila, 
Chihuahua, 
Durango, Zacatecas, 
San Luis Potosí, 
Veracruz, Guerrero 
and Morelos

subtropics y deserts, 
needs low humidity, Improvement for highland races

Tabloncillo

Michoacán, Jalisco, 
Nayarit y Sinaloa, 
Sonora, Chihuahua 
and Baja California 
Sur Not reported in ref. 14 Improvement, food source

Tabloncillo perlas

Sinaloa, Nayarit, 
Jalisco, Colima, 
Michoacan, Sonora 
and Baja California 
Sur

Low lands and dry, thin 
soils Food source

Tepecintle Oxaca y Chiapas Laderas Food source

Tuxpeño Norteño
North, Center of 
Mexico Subtropics, season, Improvement 

Vandeño Pacific coast
Seasonaility and low 
precipitation Improvement
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