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Data, code, and materials 
 
Data, code, and materials for all studies and analyses can be downloaded at: 
https://github.com/beausievers/supramodal_arousal  
 
Power analysis 
 
We performed a power analysis based on Davis’s (1961) test of the Bouba–Kiki 
paradigm (using the words takete and uloomu) in a population of school children 
in Tanganyika (N=131). A reanalysis of Davis’s data using Fisher’s exact test of 
proportion yielded an observed effect size of g=.23, indicating 58 participants 
were required for 95% power. Accordingly, the minimum sample size for each 
between-subjects task was set to N=60. For within-subjects tasks, we lacked a 
pre-existing basis for power analysis, and so chose to use a much larger 
number of trials to ensure we could detect small-to-medium sized effects for 
each participant (Study 3: 520 trials per participant, 19,630 total trials; Study 5: 
220 trials per participant, 10,934 total trials). 
 
Bayesian modeling 
 
The Bayesian model used in Study 1 estimated the likelihood of a congruent 
outcome using a binomial distribution with parameters n, k, and θ, where n is 
the total number of trials, k is the number of congruent trials, and θ is the 
success rate, or the probability of a congruent result. We selected a flat beta 
prior probability distribution, reflecting the possibility that though the behavior of 
the participant population could match expectations, they could just as likely 
perform at chance or possess consistent sound–shape associations opposite 
previous research. We estimated the posterior distribution of θ given our data 
using Monte Carlo Markov Chain simulation with JAGS (Plummer, 2003) for R (R 
Core Team, 2014).  
 
Studies 2 and 4 used a Bayesian generalized linear model with a logit link 
function and two parameters: the intercept α and slope β. Noninformative 



uniform priors were used. The posterior distributions of α and β were estimated 
using STAN (Carpenter et al., in press) and PyStan (http://mc-stan.org/). 
 
Study 3 used a Bayesian generalized linear model with a logit link function and 
parameters corresponding to each model predictor and each possible 
interaction between predictors (including three- and four-way interactions). All 
models included random slopes and intercepts per participant for all parameters 
and interactions. Posterior distributions were modeled using BAMBI (Yarkoni & 
Westfall, 2016) and PyMC3 (Salvatier, Wiecki, & Fonnesbeck, 2016). BAMBI’s 
default “smart” weakly informative priors were used, shrinking parameter 
estimates toward zero. 
 
Study 5 used a Bayesian generalized linear model with parameters as described 
in the main text, and was modeled using BAMBI and “smart” priors as in Study 
3. 
 
Harris corner detection 
 
Before detecting corners, images were converted to 8-bit grayscale and 
smoothed using a median filter (to remove irregularities caused by differences in 
pen pressure, dust on the scanner, etc.), and gamma corrected. The Harris 
corner detection algorithm requires four parameters: k, a sensitivity factor for 
separating corners from edges; ε, a normalization factor; σ, the standard 
deviation of a Gaussian kernel, which is used as a weighting function; and a 
minimum distance between corners. For the first survey, images were scanned 
at 600 pixels per inch along both axes. After completing the first free-drawing 
survey, our department replaced its copier/scanner, and so for the second 
survey, images were scanned at 200 pixels per inch along both axes. Because 
the effects of the image processing and Harris corner detection parameters are 
resolution- and scanner-dependent, we used different settings for the first and 
second surveys. Within each survey, all images were processed using the same 
settings regardless of emotion content. Images from the first survey were 
smoothed using a median filter with a five-pixel radius, gamma corrected by a 
factor of 5, and used k = .05, ε = .000006, σ = 15, and a 20px minimum distance 
between corners for Harris corner detection. Images from the second survey 
were smoothed using a median filter with a one-pixel radius, were not gamma 
corrected, and used k = .05, ε = .000006, σ = 5, and a 20px minimum distance 
between corners for Harris corner detection. Image processing was performed 
using Scikit-Image (van der Walt et al., 2014). 
 
Additional PBML analysis 
 
To determine whether all joints communicated arousal with equal effectiveness, 
we conducted linear discriminant analysis per joint, using stratified 10-fold cross 
validation. Ten of fifteen individual joints had higher accuracy than the whole-



body analysis (M = 89%, range: 86%–93%), suggesting relationships between 
joint-axis features interfered with rather than increased classification accuracy. 
This indicates coarse differences in SC within individual joints best predicted 
emotional arousal. 
   
Study 4: Procedurally generated stimuli 
 
Shapes. Shapes were created using one of two algorithms. The first algorithm 
randomly placed a number of vertices, then connected those vertices with either 
a randomly parameterized Bezier curve or a straight line. The second algorithm 
randomly placed a number of vertices both on and near the circumference of a 
circle, then connected those points in counter-clockwise order using a single 
curve. 
 
Sounds. Sounds were created using one of three algorithms. The first algorithm 
used a sine wave oscillator modulated by a feedback network of low-frequency 
oscillators with variable wave shapes. The second algorithm used a sawtooth 
oscillator with randomly varied harmonics. The third algorithm used a Rössler 
attractor (Rössler, 1976) modulated by a randomly parameterized sine wave 
oscillator. All stimuli were generated using Pyo (Belanger, 2016). 
 
Study 4: Model summaries 
 
Summary tables for all models including means, standard deviations, and 95% 
credible intervals for all parameters and interactions are included as an 
attachment. 
 
Study 4: All model plots 
 
Plots of the posterior probability of high arousal emotion judgment for the 
largest fixed main effect in each model are included below. 
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Description

This document contains summary tables of posterior probabilities for each Bayesian hierarchical logistic
regression model in Study 3. For all tables, “bin” refers to the spectral centroid/corner count bin of the
stimulus. Boolean categorical factors contain the positive term in their name, e.g., “modalitySound.” Terms
including “|subID_sd” refer to per-participant random e�ects. All CIs are 95% credible intervals. The
Gelman-Rubin statistic assesses Monte Carlo Markov Chain convergence (Gelman & Rubin, 1992); values
close to 1 indicate good convergence.
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Study 3: The spectral centroid predicts emotional arousal across many shapes
and sounds

Multimodal: full model

M SD CI lower CI upper E�ective N Gelman-Rubin
1|subID_sd 0.36 0.08 0.22 0.52 1234.4 1
Intercept 0.13 0.09 -0.05 0.31 2090.4 1
bin 1.12 0.1 0.92 1.32 1760 1
bin:modalitySound 0.69 0.15 0.4 1 2337.6 1
bin:modalitySound:positiveValence 0.04 0.28 -0.49 0.6 3094.8 1
bin:modalitySound:positiveValence|subID_sd 0.64 0.3 0.02 1.16 1229.2 1
bin:modalitySound|subID_sd 0.57 0.13 0.34 0.83 1673.6 1
bin:positiveValence 0.72 0.17 0.39 1.04 2265.2 1
bin:positiveValence|subID_sd 0.21 0.15 0 0.48 1345 1
bin|subID_sd 0.42 0.07 0.29 0.56 2335.4 1
modalitySound 0.57 0.22 0.14 0.99 1267.2 1
modalitySound:positiveValence 0.13 0.44 -0.75 0.97 2340.4 1
modalitySound:positiveValence|subID_sd 1.31 0.44 0.36 2.21 1071 1
modalitySound|subID_sd 0.9 0.19 0.58 1.28 878 1
positiveValence 0.38 0.22 -0.05 0.8 2509.4 1
positiveValence|subID_sd 0.75 0.19 0.39 1.15 1793 1

Multimodal: SC

1



M SD CI lower CI upper E�ective N Gelman-Rubin
1|subID_sd 0.45 0.06 0.35 0.57 1348 1
Intercept 0.49 0.08 0.34 0.64 904.6 1
bin 1.61 0.08 1.45 1.77 1160.4 1
bin|subID_sd 0.47 0.06 0.36 0.6 1584 1

Multimodal: modality

M SD CI lower CI upper E�ective N Gelman-Rubin
1|subID_sd 0.35 0.05 0.26 0.44 2706 1
Intercept 0.17 0.06 0.05 0.29 4675.4 1
modalitySound 0.3 0.1 0.09 0.49 4083.4 1
modalitySound|subID_sd 0.6 0.08 0.45 0.76 2652.8 1

Multimodal: valence

M SD CI lower CI upper E�ective N Gelman-Rubin
1|subID_sd 0.24 0.04 0.16 0.32 1177.6 1
Intercept 0.23 0.06 0.12 0.35 955.2 1
positiveValence 0.14 0.09 -0.04 0.31 1158.4 1
positiveValence|subID_sd 0.13 0.09 0 0.28 476 1

Shapes: full model

M SD CI lower CI upper E�ective N Gelman-Rubin
1|subID_sd 0.82 0.11 0.62 1.05 2130.2 1
Intercept 0.51 0.14 0.24 0.78 1434.6 1
areaRatio -1.23 0.08 -1.39 -1.08 5048.4 1
areaRatio:boundingBoxArea -0.41 0.06 -0.52 -0.3 6000 1
areaRatio:boundingBoxArea|subID_sd 0.11 0.07 0 0.24 2275.2 1
areaRatio|subID_sd 0.35 0.07 0.22 0.48 2846.6 1
bin 2.16 0.11 1.94 2.38 3239.4 1
bin:areaRatio -0.05 0.06 -0.17 0.07 6000 1
bin:areaRatio:boundingBoxArea -0.03 0.06 -0.15 0.08 6000 1
bin:areaRatio:boundingBoxArea|subID_sd 0.09 0.07 0 0.22 2675.4 1
bin:areaRatio|subID_sd 0.17 0.08 0.01 0.31 1546.8 1
bin:boundingBoxArea -0.61 0.05 -0.7 -0.51 6000 1
bin:boundingBoxArea|subID_sd 0.09 0.06 0 0.2 2359.2 1
bin|subID_sd 0.61 0.09 0.44 0.79 2936.2 1
boundingBoxArea -0.93 0.1 -1.11 -0.74 2852 1
boundingBoxArea|subID_sd 0.53 0.08 0.38 0.68 2798.6 1

Shapes: SC

M SD CI lower CI upper E�ective N Gelman-Rubin
1|subID_sd 0.65 0.09 0.49 0.83 1550.8 1
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M SD CI lower CI upper E�ective N Gelman-Rubin
Intercept 0.31 0.11 0.1 0.52 816.6 1
bin 1.48 0.1 1.28 1.68 1259.2 1
bin|subID_sd 0.6 0.08 0.45 0.76 1608.2 1

Shapes: convexity

M SD CI lower CI upper E�ective N Gelman-Rubin
1|subID_sd 0.46 0.06 0.34 0.58 1924.2 1
Intercept 0.2 0.08 0.05 0.35 2061 1
areaRatio -0.83 0.05 -0.92 -0.74 4575.4 1
areaRatio|subID_sd 0.22 0.05 0.13 0.31 2295 1

Shapes: bounding box area

M SD CI lower CI upper E�ective N Gelman-Rubin
1|subID_sd 0.39 0.05 0.29 0.49 2055 1
Intercept 0.17 0.07 0.04 0.3 2084.4 1
boundingBoxArea -0.21 0.07 -0.35 -0.07 2117.2 1
boundingBoxArea|subID_sd 0.41 0.06 0.31 0.53 1766.6 1

Sounds: full model

M SD CI lower CI upper E�ective N Gelman-Rubin
1|subID_sd 1.01 0.13 0.77 1.28 1422.8 1
Intercept 1.11 0.17 0.77 1.45 708 1
bin 2.26 0.13 2.01 2.52 1836.2 1
bin:duration -0.33 0.1 -0.51 -0.14 3030 1
bin:duration:numOnsets -0.07 0.07 -0.2 0.07 4673.8 1
bin:duration:numOnsets:onsetStrength -0.16 0.08 -0.32 0 4707.6 1
bin:duration:numOnsets:onsetStrength|subID_sd 0.12 0.08 0 0.27 1483.8 1
bin:duration:numOnsets|subID_sd 0.14 0.08 0 0.28 1300.2 1
bin:duration:onsetStrength -0.37 0.11 -0.59 -0.15 3006.8 1
bin:duration:onsetStrength|subID_sd 0.13 0.08 0 0.28 1580.8 1
bin:duration|subID_sd 0.09 0.06 0 0.2 2047.4 1
bin:numOnsets 0.59 0.12 0.36 0.83 3051.8 1
bin:numOnsets:onsetStrength 0.78 0.14 0.5 1.05 2949.4 1
bin:numOnsets:onsetStrength|subID_sd 0.15 0.09 0 0.31 1613.8 1
bin:numOnsets|subID_sd 0.11 0.07 0 0.24 1728.6 1
bin:onsetStrength -0.16 0.13 -0.41 0.09 2969.8 1
bin:onsetStrength|subID_sd 0.52 0.1 0.34 0.71 2674.8 1
bin|subID_sd 0.66 0.1 0.47 0.86 2066.8 1
duration -0.03 0.08 -0.19 0.13 2799.6 1
duration:numOnsets -0.04 0.05 -0.14 0.06 5919.8 1
duration:numOnsets:onsetStrength -0.12 0.06 -0.23 -0.01 5723.8 1
duration:numOnsets:onsetStrength|subID_sd 0.08 0.05 0 0.18 1674 1
duration:numOnsets|subID_sd 0.06 0.05 0 0.15 2011.4 1
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M SD CI lower CI upper E�ective N Gelman-Rubin
duration:onsetStrength -0.18 0.1 -0.37 0.01 2730.6 1
duration:onsetStrength|subID_sd 0.21 0.07 0.07 0.35 1436.4 1
duration|subID_sd 0.09 0.06 0 0.19 1766.4 1
numOnsets 0.14 0.1 -0.05 0.34 2875.2 1
numOnsets:onsetStrength 0.48 0.11 0.27 0.7 2807.4 1
numOnsets:onsetStrength|subID_sd 0.18 0.08 0.02 0.33 1088.8 1
numOnsets|subID_sd 0.11 0.06 0 0.22 1499.8 1
onsetStrength 0.69 0.12 0.46 0.92 1716.6 1
onsetStrength|subID_sd 0.58 0.09 0.42 0.76 2066.6 1

Sounds: SC

M SD CI lower CI upper E�ective N Gelman-Rubin
1|subID_sd 0.95 0.12 0.72 1.19 997.2 1
Intercept 0.92 0.16 0.6 1.22 574.8 1
bin 2.11 0.11 1.9 2.34 1237.4 1
bin|subID_sd 0.63 0.09 0.46 0.81 1536 1

Sounds: mean onset strength

M SD CI lower CI upper E�ective N Gelman-Rubin
1|subID_sd 0.49 0.07 0.37 0.63 1818.2 1
Intercept 0.52 0.08 0.36 0.68 1582.2 1
onsetStrength 0.61 0.06 0.5 0.73 3301 1
onsetStrength|subID_sd 0.31 0.05 0.22 0.41 2463 1

Sounds: number of onsets

M SD CI lower CI upper E�ective N Gelman-Rubin
1|subID_sd 0.46 0.06 0.35 0.59 1631.8 1
Intercept 0.47 0.08 0.31 0.62 1364.2 1
numOnsets -0.07 0.03 -0.13 -0 5580.8 1
numOnsets|subID_sd 0.13 0.04 0.05 0.21 1792.6 1

Sounds: duration

M SD CI lower CI upper E�ective N Gelman-Rubin
1|subID_sd 0.46 0.06 0.35 0.58 1477.4 1
Intercept 0.46 0.08 0.31 0.62 1129.6 1
duration 0.01 0.03 -0.04 0.07 5979.2 1
duration|subID_sd 0.07 0.04 0 0.14 1512.4 1

Study 5: Continuous arousal across emotions
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M SD CI lower CI upper E�ective N Gelman-Rubin
1|subID_sd 0.06 0.01 0.03 0.09 2158.8 1
Intercept 0.15 0.02 0.11 0.19 4727.4 1
arousalRating 0.76 0.03 0.71 0.81 2467.4 1
arousalRating:modalitySound[T.1] -0.22 0.02 -0.27 -0.18 5628.6 1
arousalRating|subID_sd 0.12 0.02 0.09 0.16 2062.2 1
modalitySound[T.1] -0.27 0.02 -0.3 -0.23 5993.2 1
sc_sd 0.83 0.01 0.82 0.85 6000 1
valenceRating -0.09 0.02 -0.13 -0.05 4585.4 1
valenceRating:arousalRating -0.1 0.01 -0.13 -0.07 5340.8 1
valenceRating:arousalRating:modalitySound[T.1] 0.15 0.02 0.11 0.18 5204.2 1
valenceRating:modalitySound[T.1] -0.06 0.02 -0.11 -0.02 5001.6 1
valenceRating|subID_sd 0.05 0.02 0.02 0.08 1722.8 1
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