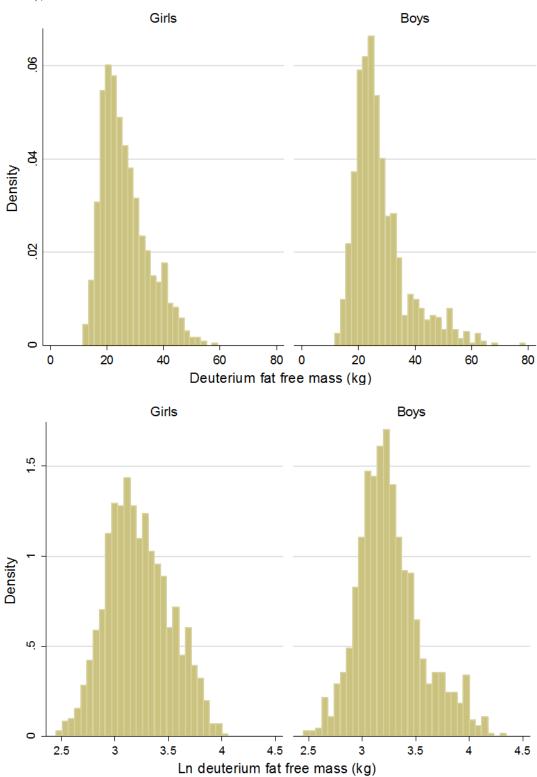
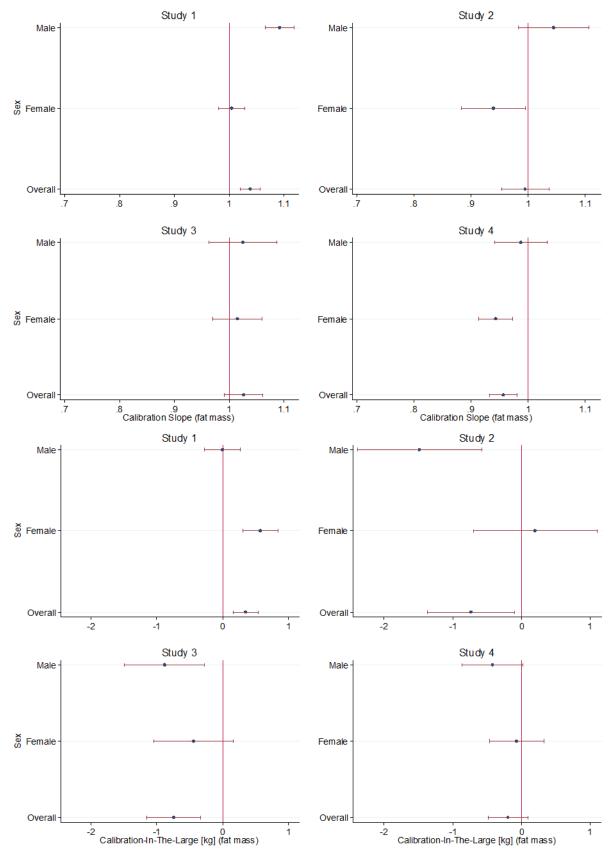
SUPPLEMENTARY TABLES & FIGURES:


SUPPLEMENTARY TABLE 1: INFORMATION ON THE DERIVATION AND EXTERNAL VALIDATION STUDIES

Study [ref]	Date of Study	Location	Setting	Age Group	Response Rate	Ethnicity Reporting		
Derivation Datasets:								
1) The assessment of Body Composition in Children (ABCC) Study [17]	2011-2012	London	Primary schools	8-10 years	64%	Reported by parent		
2) The East London Bioelectrical Impedance (ELBI) [23]	2008-2009	London	Secondary schools, weight management clinic and volunteers recruited by advertisement	11-15 years	Not Applicable	Self-reported		
3) The Reference Child (RC) [24]	2001-2010	London	Volunteers recruited by advertisement	4-22 years	Not Applicable	Self-reported or reported by parent		
4) The Size and Lung function in Children (SLIC) Study [25]	2012-2013	London	Primary Schools	5-11 years	52%	Reported by parent		
Validation Dataset:								
Avon Longitudinal Study of Parents and Children (ALSPAC) [26, 27]	2002-2003	Bristol	Population based advertising	11-12 years	Not Applicable	Reported by parent		

SUPPLEMENTARY TABLE 2: ASSESSMENT OF CALIBRATION SLOPE AND CALIBRATION-IN-THE-LARGE IN TERMS OF FAT MASS AND FAT FREE MASS FROM INTERNAL-EXTERNAL CROSS-VALIDATION


Study omitted	Fat Free Mas	ss	Fat Mass		
for external validation	Calibration-In-The-Large	Calibration Slope	Calibration-In-The-Large	Calibration Slope	
1	0.05 (-0.45 to 0.55)	0.97 (0.95 to 0.99)	0.35 (0.16 to 0.54)	1.03 (1.01 to 1.05)	
2	1.62 (0.34 to 2.90)	0.98 (0.95 to 1.01)	-0.73 (-1.37 to -0.10)	0.99 (0.95 to 1.03)	
3	1.02 (0.36 to 1.67)	0.98 (0.96 to 1.01)	-0.74 (-1.15 to -0.33)	1.02 (0.98 to 1.05)	
4	-0.37 (-0.97 to 0.22)	1.05 (1.02 to 1.07)	-0.20 (-0.48 to 0.09)	0.95 (0.93 to 0.97)	
Pooled	0.46 (-0.30 to 1.21)	1.00 (0.96 to 1.03)	-0.29 (-0.83 to 0.25)	1.00 (0.95 to 1.04)	

SUPPLEMENTARY FIGURE 1: HISTOGRAM OF FAT FREE MASS (TOP) AND LN(FAT FREE MASS), BY SEX


FOOTNOTE: LN = Natural logarithmic transformation

SUPPLEMENTARY FIGURE 2: CALIBRATION SLOPES AND CALIBRATION-IN-THE-LARGE (KG), BY SEX, FROM INTERNAL-EXTERNAL CROSS VALIDATION

FOOTNOTE: Study codes: 1 = The assessment of Body Composition in Children Study, 2 = The East London Bioelectrical Impedance, 3 = The Reference Child, 4 = The Size and Lung function in Children Study.

SUPPLEMENTARY FIGURE 3: CALIBRATION SLOPES AND CALIBRATION-IN-THE-LARGE (KG), BY ETHNIC GROUP, FROM INTERNAL-EXTERNAL CROSS VALIDATION

FOOTNOTE: Study codes: 1 = The assessment of Body Composition in Children Study, 2 = The East London Bioelectrical Impedance, 3 = The Reference Child, 4 = The Size and Lung function in Children Study. Ethnic group labels: 1 = White, 2 = Black, 3 = South Asian, 4 = Other Asian, 5 = Other.

APPENDIX 1: COMPARISON OF ESTIMATING FM DIRECTLY OR INDIRECTLY

The two approaches for estimating FM can be written as follows:

Equation 1: FM_{direct} = f (height, weight, age, sex, ethnic group) + ϵ ; such that $\epsilon \sim N(0, \sigma^2)$

Equation 2: $FM_{indirect} = weight - FFM = weight - [g(height, weight, age, sex, ethnic group) + <math>\mu$]; such that $\mu \sim N$ (0, τ^2).

Therefore, possible estimates of FM are \widehat{f} or $weight - \widehat{g}$. It was clear from scatter plots of both FM and FFM, obtained from the DD method, plotted against height (Figure 1 below), that the variance in FFM with height was more homogeneous than for FM (i.e. $\tau^2 < \sigma^2$). Hence, a regression model for FFM (equation 2) should be estimated with greater precision than a model for FM (equation 1) because of the more homogeneous relationship with height. As the variance of weight is ≈ 0 due to negligible measurement error, equation 2 ($weight - \widehat{g}$) would be expected to provide more precise estimates of FM compared to estimates from \widehat{f} , making the indirect approach likely to be the preferred method for estimating FM.

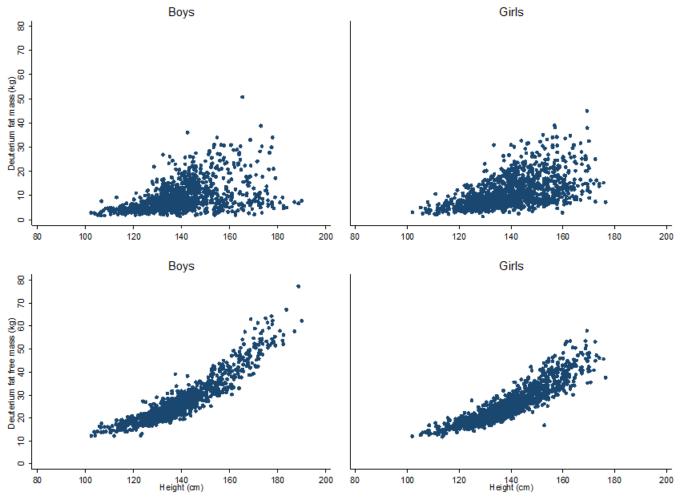


Figure 1: Scatterplot of FM (top) and FFM (bottom) against height in boys (left) and girls (right)

APPENDIX 2: INTERNAL VALIDATION VIA BOOTSTRAPPING

The following steps were undertaken for the bootstrapping process³³:

- 1. 1000 bootstrap samples were randomly selected from the entire DD derivation datasets, with replacement, such that the size of each bootstrap sample (N= 2375) was equal to that of the entire DD derivation dataset (N=2375). This selection process was stratified by sex, ethnic group and age to ensure that each bootstrap sample contained a representative sample of each of the subgroups.
- 2. The final developed prediction model was fitted within each bootstrap sample to obtain estimates of model performance based on R², the calibration slope and calibration-in-the-large (CIL).
- 3. Calculation of optimism-adjustments for R², the calibration slope and CIL:
 - a. Values of \mathbb{R}^2 , the calibration slope and CIL were obtained, for each 1000 bootstrap sample
 - b. The values from a. were subtracted from the original R², the calibration slope and CIL values from the original DD derivation datasets to obtain the level of optimism in each performance measure within each of the 1000 bootstrap samples
 - c. The average of the differences in measures from b. across the 1000 bootstrap samples were determined
 - d. Optimism-adjusted values of R^2 (denoted as $R^2_{adjusted}$), the calibration slope (denoted as Calibration Slope_{adjusted}) and CIL (denoted as CIL_{adjusted}) were obtained by subtracting the average of the differences (i.e. the value from c.) from the original R^2 and calibration slopes from the original DD derivation datasets