Supplementary Materials

A redox-switchable colorimetric probe for "naked-eye" detection of

hypochlorous acid and glutathione

Qian Han,^{‡1,3} Fang Zhou,^{‡1} Yue Wang,¹ Huan Feng,¹ Qingtao Meng,^{*1} Zhiqiang Zhang,^{*1} and Run Zhang,^{*1,2}

¹ School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning, 114051, P. R. China.

E-mail: qtmeng@ustl.edu.cn; zhangzihqiang@ustl.edu.cn.Tel.: +86-412-5929627

² Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, 4072, Australia.

Email: r.zhang@uq.edu.au; Tel.: + 61 7 3346 3806, Fax: + 61 7 3346 3978

³ School of Chemistry and Life Science, Anshan Normal University, Anshan 114007,P. R. China.

‡ These authors contributed equally to this work and they should be regarded as co-first authors.

Figure S2.¹³ C NMR of L-ol (DMSO-*d*₆).

Figure S3. HRMS of L-ol.

Figure S4. Absorbance at 619 nm of **L-ol** (10 μ M) at different time in PBS aqueous buffer (DMF: PBS=7:3, 20 mM, pH=7.4).

Figure S5. HRMS of L-ol in the presence of HOCl.

Figure S6. HRMS of HOCl pre-treated L-ol in the presence of GSH.

Figure S7. UV-vis absorption spectra changes at 619 nm of L-ol (2 μ M) as a function of HOCl concentration (2.5–25.0 μ M).

Figure S8. Absorption spectra of **L-ol** (10 μ M) in PBS aqueous buffer (DMF: PBS=7:3, 20 mM, pH=7.4) upon addition of various anions (50 μ M): Br⁻, AcO⁻, Cl⁻, F⁻, HSO₃⁻, HSO₄⁻, S²⁻, NO₂⁻, NO₃⁻, OH⁻, PO₄²⁻, SO₃²⁻, SO₄²⁻, HCO₃⁻, Pi, PPi, HOCl, ¹O₂, ONOO⁻, .OH, H₂O₂, Cys, Hcy and GSH.

Figure S9. UV-vis absorption spectra changes at 617 nm of **L-one** (2 μ M) as function of GSH concentrations (0–6.0 μ M).

Figure S10. UV-vis absorption spectra of **L-one** (10 μ M) in the presence of various analytes (500 μ M) in PBS aqueous buffer (DMF:PBS=7:3, 20 mM, pH=7.4): Leu, His, Val, Tyr, Gerl, Try, Phe, Leu, Thr, Lys, Gly, Pro, Ary, Gln, Asn, Asp, Ala, Met, Hcy, Cys, S^{2–}, HSO₄[–], HSO₃[–], SO₄^{2–}, SO₃^{2–}, Vc and GSH.

Figure S11. The color changes of **L-one** (10 μ M) towards various competitive species (500 μ M) in PBS aqueous buffer (DMF:PBS=7:3, 20 mM, pH=7.4). 1. Leu, 2. His, 3. Val, 4. Tyr, 5. Gerl, 6. Try, 7. Phe, 8. Leu, 9. Thr, 10. Lys, 11. Gly, 12. Pro, 13. Ary, 14. Gln, 15. Asn, 16. Asp, 17. Ala, 18. Hcy, 19. Cys, 20. S^{2–}, 21. HSO₄[–], 22. HSO₃[–], 23. SO₄^{2–}, 24. SO₃^{2–}, 25. Met, 26, Cv, 27. GSH.