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Review

Lipoprotein(a): New Insghtsinto Mechanismsof Atherogenesis

and Thrombosis
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Summary: Lipoprotein(a) (Lp[a]) continuesto beacontro-
versia moleculeregardingitsrolein human vascular disease.
Although the physiologic role of thismoleculeistill unclear,
novel discoverieswithinthelast few yearshave suggested nu-
merous mechanismswhereby Lp(a) may contributeto athero-
sclerosis and its complications in human subjects. These ef-
fectsmay differentialy occur invascular tissueand circulating
blood compartments. A complex interplay between tissue-spe-
cific effectsis probably more relevant to the pathogenicity of
thismoleculethan onesingle effect dlone. Thisreview briefly
describesthe structure of Lp(a) in relation to its biochemical
function, summarizing the current literature on various patho-
physiologic mechanisms of Lp(a)-induced vascular disease
and the role of cell and tissue-specific effects in promoting
atherogenesisand thrombosis.
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Introduction

Since its discovery by Berg 40 years ago, lipoprotein(a)
(Lp[a]) hasbeenthe subject of controversy and debateregard-
ing itsrolein human atherosclerosis.t Although several retro-
Spective studies have shown an associ ation between Lp(a) ex-
cessand risk of coronary heart disease (CHD),2# prospective
studiesincluding threeclinical trials>7 haveyielded conflict-
ing results.>14 Results of positive studies seem to suggest that
Lp(a) isan independent but weak predictor of CHD in unse-
lected populations and a powerful predictor of premature
CHD in patients with concomitant hypercholesterolemial®
Conflicting evidence in the literature has been attributed to
severd factorsincluding small samplesize, selection bias, lack
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of standardized L p(a) assay methods, storage of plasmasam-
plesat temperaturestoo high to maintain L p(a) integrity, and
use of parametric rather than nonparametric methodsto ana-
lyze this variable which is not normally distributed.6 How-
ever, the preponderance of current evidence is in favor of
Lp(a) asarisk factor for atherosclerosis and coronary heart
disease. 1518 Sereening for dlevated Lp(a) levelsin ahigh-risk
population is currently performed in many centers, and a-
though effectivetherapiesare currently unavailable, novel dis-
coveriesregarding the structure and function of thismolecule
suggest potentia avenuesfor futuredrug design and targeting.
This review will briefly discuss the structure and biology of
Lp(a), followed by a step-wise discussion of how Lp(a) may
induce atherogenesis and thrombosi's, with particular empha-
ssonrecent nove discoveriessuch asitseffectson plaquesta:
bility and thetissuefactor pathway.

Lipoprotein(a): Structureand Biochemistry

Lipoprotein(a) can bebroadly classified asaheterogeneous
group of low-density lipoproteinscontaining two protein moi-
eties, gpolipoprotein (Apo) B-100 and Apo(a), linked by a
disulphidelinkage.1® While A po B-100 contains|ow-density
lipoprotein (LDL), Apo(a) isahighly polymorphic glycopro-
tein ranging in size from 300 to 800 kD.16 Apolipoprotein(a)
consigts of multiple kringle domains that have a close struc-
tura homology with plasminogen, 20 21 with both genesbeing
located on chromosome 6.22 23 The plasminogen cDNA con-
tainsasignal sequence, atail region, fivetriple-folded disulfide
linked loopscalled kringles, and aproteaseregion. The Apo(a)
moleculehas 10 kringledomainssimilar tokringlelV of plas-
minogen (KIV types 1-10) and a single kringle similar to
kringleV of plasminogen. Each of the 10 kringlesresembling
kringle IV of plasminogen is present in asingle copy in the
Apo(a) moleculeexcept kringle 2, whichispresent invarying
number of repests both within and among individuas, giving
riseto the size polymorphism of Apo(a).2+ 2

The kringles on Apo(a) serve important functions (e.g.,
kringlelV type 10isresponsiblefor the strong lysine binding
propertiesof Lp[a]).26. 27 Other kringles play important patho-
biological roles, such asinteracting with scavenger receptors
onfoam cellsand in theformation of Lp(a).16 Enzymesof the
elastasefamily cleave Apo(a) intheregion betweenkringle VvV
and kringle V toyidd F1 and F2 fragments representing the
amino and C terminal ends of the molecule, respectively.28: 29
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Inasimilar fashion, elastase cleavesL p(a) in the sameregion
toform F1 fragment and mini Lp(a), whichisthe F2 fragment
connectedtothe LDL particle. Invivo studiessuggest that the
F2 fragment isretained within the atherosclerotic plaqueandis
apotentia causefor the atherothrombogenic action of Lp(a),!
whereasthe F1 fragments may return to the circulation. Fur-
thermore, following intravenous administration of Lp(a), F1-
derived Apo(a) fragments can be isolated from plasma and
urineof humansand mice.3° Indeed, enzymessuch asmetallo-
proteinases and elastases present within the atherosclerotic
plague may contributeto thisprocessand hence pathogenicity
of Lp(a) by bresking it downintoitsF1 and F2 fragments.3!

M echanismsof Lipoprotein(a)-I nduced Atherogenesis

Induction of Adhesion M oleculeson Vascular
Endothdial Cdls

Lipoprotein(a) is believed to promote atherosclerosisby a
number of separate but related mechanismswhich aresumma-
rized in Fig. 1. Expression of adhesion molecules, VCAM-1
and E-sdlectin, on cultured human coronary endothelia cellsis
increasedinthepresenceof Lp(a).32 It dsoinduceshumanvas-
cular endothelia cellsto produce monocyte chemotactic pro-
tein (MCP), apotent chemoattractant for monocytesand akey
cytokineimplicated inthe pathogenesis of atherosclerosis. >3

Atherosclerosisisincreasingly believed to be aninflamma-
tory disease 3 and recruitment of monocytemacrophagesisan
important early step of atheromaformation.3> Within days or
weeks of feeding mice a high-fat and high-cholesteral digt,
monocytes can be observed adhering to the surface of endothe-
lid cells36 Themonocytesthen migrateinto thearterid intima
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wherethey differentiateinto macrophagesand takeuplipopro-
teinto form foam cdlls, an early pathologic marker of athero-
sdleratic plague. Cdl surface adhesion moleculessuch asinter-
celular cell adheson molecule (ICAM)-1, E-sdectin, and
vascular cell adhesion molecule (VCAM)-1, play akey role
by adhering to corresponding receptors on leukocytes such
as LFA-1. Moreover, mice deficient in ICAM-1, P-selectin,
CD18, or combinationsof these moleculeshavebeen shownto
develop smaller atheroscleratic lesions after lipid feeding.3” In
addition, higher levelsof solubleVCAM-1and E-sdlectinhave
beenfound in subjectswith hypercholesterolemia 3
Enhancement of expression of cell surface adhesion mol-
ecules could be an important mechanism of Lp(a)’s athero-
genecity. Other investigators have shown that Lp(a) en-
hances expression of ICAM-1 in cultured human umbilical
vein endothelia cells (HUVEC),? although asimilar effect
with VCAM or E-selectin has not been found. Moreover,
neutralizing transforming growth factor beta (TGFB) anti-
bodiesenhanced ICAM expressionin HUVECs, while addi-
tion of recombinant TGFB inhibited the enhancement of
ICAM-1 expression in Lp(a)-treated HUVECSs, suggesting
that enhancement of ICAM-1 expression by Lp(a) could in
part be dueto inhibition of TGFR. This TGFR-mediated ef-
fect of Lp(a) has been well documented bothin vitroandin
vivoin animal modelsand in human subjectsby Grainger et
al. and provides a theoretical basis for Lp(a) effects on
smooth muscle proliferation within the vessel wall.40-42

Formation of Foam Cellsand Atherosclerotic Plaque

Atherosclerotic plaquesbut not norma human arteriescon-
tain Lp(a). Plasminogen-like lysine binding sites present on
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Fic.1 Lipoprotein(a) (Lp[a))-mediated mechanismsof atherogenesis. Lipoprotein(a) has numerous effects on the nitric oxide (NO) pathway,
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the Apo(a) moleculemay play akey roleinanchoring Lp(a) to
the extracellular matrix within the arterial wall.*® Mutations
affecting the lysine binding sites of kringle I'V-10 of Apo(a)
have been shown to decrease affinity of Lp(a) to the vessd
wall 44 Transgenic mice expressing mini Apo(a) containing a
mutationinkringleV-10lysinebinding siteshave significant
reduction in fatty streak formation and Lp(a) accumulation
within the vessdl wall.* Klezovitch et al. have aso demon-
strated that proteoglycanswithin the vessel wall may play an
important rolein Lp(a) retention within the vascular intima.46
Inthese experiments, Apo(a), viaits C-terminal domain, was
found to bind to the protein core of the proteoglycan decorin, a
proteoglycan synthesized by vascular endothelia and smooth
muscle cells* 2 and present within atheroscl eratic plagues.®
Thisbinding was shown to be hydrophaobic in nature and not
dependent on thelysinebinding siteson the Apo(a) molecule.
However, thenature of theinteraction between decorinandin-
tact L p(a) wasan el ectrostatic binding of the glycosaminogly-
can (GAG) portion of decorintothe ApoB100 of Lp(a). This
decorin-Apo(a) interaction has recently been proposed by
Klezovitch et al. asan explanation for preferentia vessel wall
retention of L p(a) over LDL.%

Withinthediseased arteria wall, Lp(a) probably undergoes
oxidative, proteolytic, and lipolytic changes induced by en-
zymespresent within an atherosclerotic plague, such asmetal -
loproteinase, €l astase, sphingomyelinase, and phospholipase.
Oxidative modification by malondialdehyde, for instance,
produces avid Lp(a) uptake by human monocyte-macro-
phages.5! Cholesterol |oading of macrophages also resultsin
marked enhancement of L p(a) and Apo(a) interndization and
degradation,52 revedling alipid-driven mechanism for Lp(a)
foam cell formation. Incubation of bovine aortic smooth mus-
cle cellswith Lp(a) in the presence of lipoprotein lipase and
sphingomyelinaselead to massive aggregation of Lp(a) onthe
surface of these clls, %3 whereas coincubation with chondroi-
tin ABC lyase prevented thisaggregation, suggesting akey in-
teraction with cdllular proteoglycans. M oreover, coincubation
of Lp(a)-coated smooth muscle cellswith mouse peritonera
macrophagesled to formation of lipid-laden macrophageson
the surface of these cellswith disappearance of visible Lp(a)
aggregates. This could be an important interaction between
Lp(a), smooth muscle cells, and macrophages, leading to
foam cdll and plaque expansion.

Plaquelnflammation and I nstability

Nove mechanisms of Lp(a)-mediated plague instability
have been described recently. Human THP-1 macrophages
produceinterleukin-8 (1L-8) in the presence of Lp(a), an effect
primarily mediated by the C-terminal region of Apo(a).> Inter-
leukin-8isakey inflammatory cytokinewithin atherosclerotic
plagues®® and possesses chemotactic activity toward neutro-
phils,8 T cdls>” monocytes, > and smooth muscle cells> 80
whiledecreasing macrophage expression of tissueinhibitorsof
metalloproteinases.f! Disinhibition of metalloproteinasesthat
cleaveApo(a) into F1 and F2 fragments3! may increaseinflam-
matory activity within plaqueleading to rupture.

The expression of urokinase and urokinase receptors on
monocytesisa soincreased in adose-dependent manner,5 re-
sulting in increased plasmin generation. Increased protease
availability may have multipleeffects, including facilitation of
cell migration and growth within plague.®3 Furthermore, mon-
ocyteadhesion to extracel lular matrix (ECM) isfacilitated by
increased expression of micro PAR and ICAM-1, receptorsfor
vitronectin and fibrinogen, respectively. Increased monocyte
adherenceto ECM and enhanced plasmin and urokinase activ-
ity could be important mechanisms of L p(a)-mediated ECM
degradation and plaquerupture.

Vascular Cell Proliferation

The induction of human smooth muscle cell proliferation
by Lp(a) wasfirst demonstrated in vitro by Grainger et al.*
Thisgroup showed that Lp(a) decreased generation of active
TGFB, an endogenousinhibitor of smooth musclecdl migra-
tion. Bovine pericytes and smooth muscle cells secreting
TGFB have dso been showntoinhibit endothelid cell migra:
tion and repair of a denuded portion of a vessd in vitro.54
Antibodiesto TGF 1 abrogated the above-mentioned inhibi-
tion, asdidinhibitorsof plasminformation. ThisTGF effect
ismediated by inhibition of plasminogen activation &t the cell
surface with subsequent inhibition of plasmin-mediated
TGFB activation.5* 6 Furthermore, inhibition of TGFp acti-
vation has been observed in Apo(a) transgenic mice®and in
human subjectswith elevated L p(a). Apo(a) transgenic mice
have been shownto havethreefoldlessactiveplasminand sig-
nificantly lessactive TGFB withinthe aorticwall than normal
mice. Although thetota TGF3 concentration wassimilar in
serafrom Apo(a) transgenic and norma mice, the proportion
of total TGFB in active form was significantly lower in the
serum of Apo(a) transgenic mice. This TGFB mechanism of
dysregulated growth induced by L p(a) isan attractive hypoth-
esisforitseffectson plaguegrowth.

Inhibition of Nitric Oxideand Endothelial Dysfunction

Nitric oxide (NO) has several pleiotropic antiatherogenic
properties, including inhibition of T cell and smooth muscle
proliferation,® neutrophil adhesion,5”: %8 platelet activation,®®
and reductionin endothelial permeability.”® Itisnot surprising
that decreased NO synthesis has been associated with athero-
sclerotic lesion development.” 72 Oxidized Lp(a) induces
dose-dependent reduction of inducible nitric oxide synthase
(iINOS) protein expression and mRNA synthesisin lipopoly-
saccharidelinterferon-stimul ated mouse macrophages.” Dose-
dependent inhibition of INOS by L p(a) may lead toincreased
atherogenesis. Elevated L p(a) level shave a so been associated
with impaired endothelium-dependent vasodil atation in coro-
nary arteries.” In hypercholesterolemic children, flow-medi-
ated dilation of the superficial femord artery wasinversdy re-
lated to Lp(a),” and in patients with elevated Lp(a) levels an
increased vasoconstrictor response occurs after administration
of L-NMMA, an NO synthaseinhihitor.” These combined &f-
fectssuggest acompensatory increasein basal NO production
by theendothdliumin responseto elevated L p(a) levels.
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M echanismsof Thromboss

Lipoprotein(a) may promote amorethrombotic state by a
number of mechanisms, including inhibition of thefibrinolyt-
ic system and enhancement of thetissuefactor-mediated path-
way. Theseeffectsareillugtratedin Fig. 2.

I nhibition of Plasmin Generation

Apolipoprotein(a), asdiscussed previoudly, hassignificant
structural homology with plasminogen. A varied number of
cell types have been found to express cdll surface receptors
for plasminogen. Bothintact Lp(a) and recombinant Apo(a)
inhibit plasminogen binding to endothelial cells,”” U937
cells,’8 7 and platelets.® The assembly and activation of
plasminogen on the endothelial call surface has been studied
extensively, and it isknown that plasminogen bindsto the sur-
face of endothelial cells via a tissue plasminogen activator
(t-PA)/plasminogen coreceptor, identified asamember of the
annexin superfamily of proteins.8! In particular annexin Il,
which is selectively expressed on the endothelia cell sur-
face,8L 82 possesses independent binding domains for plas-
minogen and t-PA 8384 Plasminogen appears to bind to the
annexin receptor in atwo step process, whereby the N-termi-
nal glutamine-plasminogenisconvertedto N-terminal lysine-
plasminogen by cleavage of a 76 amino acid preactivation
peptided>: 86 with subsequent activation of the receptor inthe
second step.8! Tissue plasminogen activator bindsto annexin
at aseparate sitein close proximity to the plasminogen-bind-
ing site, leading to more efficient generation of plasmin.g”
Lipoprotein(a) inhibitsgeneration of plasmin ontheendothe-
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lid cell surfacewithout interfering with t-PA binding,8 andin
asimilar manner, Apo(a) inhibits plasminogen binding to an-
nexin but has no effect on t-PA binding.8> Decreased plas-
minogen binding on the cell surface may therefore create an
antifibrinolytic Sate.

In addition, plasminogen activation by both streptoki-
nase?® 9 and t-PA9L has been shown to be impaired in the
presence of Lp(a), and micetransgenicfor Lp(a) areresistant
tot-PA-mediated lysisof artificidly induced fibrin thrombi.9
The mechanism for this action is believed to be in competi-
tion with plasminogen for binding to fibrin. It isinteresting
that plasmin catalyzes the binding of Lp(a) to immobilized
fibrinogen and fibrin.%3

Theantifibrinolytic effect of Lp(a) isprimarily defined by
the size of the Apo(a) polymorphs, which display heterogene-
ity in their fibrin-binding activity.®* The affinity of each iso-
form depends on its size and plasma concentrations, with
smaller sizeisoformsdisplaying higher affinity binding tofib-
rin.%5 % The popul ation most at risk for thrombosis, therefore,
appears to be that possessing a predominant low molecular
weight phenotype with high affinity for fibrin. Moreover, the
Lp(a) phenotype (i.e., affinity for fibrin) may be moreimpor-
tant asadeterminant of risk than the actual plasmaconcentra-
tion of Lp(a).¥”

I ncreased Expression of Plasminogen Activator Inhibitor

Endothelial cell synthesis of plasminogen activator in-
hibitor-1 (PAI-1) isalso increased by Lp(a).% In cultured hu-
man endothelia cells, Lp(a) enhanced PAI-1 antigen activity
and MRNA expression without altering t-PA activity. In addi-
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tion, monocytesderived from male patientswithisolated Lp(a)
hyperlipidemia, compared with those from hedthy donors
with normal Lp(a) levels, had increased upregulation of PAI-2
mRNA and protein.? Thiseffect was gender specific, withno
difference noted among fema es. Monocyteexpresson of PAI-
2 was aso increased, another potential mechanism of an an-
tifibrinolytic effect. Together these datasuggest amechanism
whereby Lp(a) inhibitsfibrinolysisat the endothelia cdll sur-
faceand promotesthrombosis.

Inhibition of TissueFactor Pathway I nhibitor

Tissuefactor pathway inhibitor (TFPI) isaKunitz type ser-
ineproteaseinhibitor and apotent inhibitor of thetissuefactor-
mediated coagulation cascade.l® Tissue factor pathway in-
hibitor is present on endothelia cells, activated monocytes,
and platelets.101-104 However, the endotheliumisbelieved to
betheprincipd siteof synthesisof TFPI.191 Tissuefactor path-
way inhibitor is expressed by vascular smooth muscle cells
within atheroscl erotic plagues, 195 and TFPI within atheroscle-
rotic plague is associated with reduced tissue factor activity
withinthe plague. 1% We have recently shownthat L p(a) binds
and inactivates TFPI, 197 potentially augmenting unopposed
tissuefactor (TF) effects. Lipoprotein(a) can bind and inacti-
vate recombinant aswell as cell-associated TFPI invitroina
dose-dependent manner. TheLDL portion of Lp(a) isolated by
dithiothreitol (DTT) reduction and gradient ultracentrifuga-
tion did not bind rTFP!, suggesting that this portion of Lp(a)
was not important for binding. Apolipoprotein(a) bound to
rTFPI inasimilar concentration-dependent manner asLp(a).
Itisinteresting that lysine plasminogen (L-Plg) wasa sofound
to bind toimmobilized rTFPI but wasinhibited by nanomolar
concentrationsof Apo(a) demonstrating abinding affinity that
waslower than that of Apo(a). Furthermore, this dose-depen-
dent inactivation of TFPI by Lp(a) in vitro and on endothdlia
cdll surfaceswashot affected by plasminogen. No Lp(a) dose-
dependent binding was seen when mutated forms of TFPI
lacking the K3 domain or C terminus were immobilized in-
stead of full length rTFPI demonstrating theimportance of the
C-termina region of TFP! for thisinteraction. The binding of
Apo(a) torTFPI wasshownto belysine dependent and wasin-
hibited by epsilon aminocaproic acid (EACA). This signifi-
cant binding and inactivation of cell associated and recombi-
nant TFPI by Lp(a) addsafurther prothrombotic layer to the
pleiotropic effects of thismolecule. Thus, inhibition of TFPI
within plague et the endothdlial surfaceandinthecirculation
may have additive effectsin promoting thrombosisat the site
of plaguerupture.

Vascular Tissueand Circulatory Effects

Discovery of new mechanisms suggest that the effects of
Lp(a) within the vessel wal might be more relevant to its
pathogenicity and different from its effects on circulating
blood. Such differentid effects might be apotential explana
tionfor blood L p(a) levels often not correlating with theinci-
dence of coronary events. Cleavage of Lp(a) into potentia

atherogenic fragments, itsretention by proteoglycans, and its
induction of macrophage IL-8 expression are specific vessd
wall atherogenic effects not seen to occur in periphera blood.
Moreover, Lp(a) causesincreased plasmin activity withina
plaque while decreasing circulating plasmin activity. These
differential effectson blood and vessel wall may be additive
in terms of atherothrombotic risk, potentialy facilitating
plaguerupture and later thrombosisonthelumina surface of
thevessdl.

Conclusion

A complexinterplay of mechanismsaffecting both vascula-
ture and circulation contributes to the pathogenicity of this
molecule. Nove discoveriese ucidating such pathophysiolog-
ic mechanisms have provided us with multiple potential tar-
getsfor drug design and therapy.
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