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Summary: Lipoprotein(a) (Lp[a]) continues to be a contro-
versial molecule regarding its role in human vascular disease.
Although the physiologic role of this molecule is still unclear,
novel discoveries within the last few years have suggested nu-
merous mechanisms whereby Lp(a) may contribute to athero-
sclerosis and its complications in human subjects. These ef-
fects may differentially occur in vascular tissue and circulating
blood compartments. A complex interplay between tissue-spe-
cific effects is probably more relevant to the pathogenicity of
this molecule than one single effect alone. This review briefly
describes the structure of Lp(a) in relation to its biochemical
function, summarizing the current literature on various patho-
physiologic mechanisms of Lp(a)-induced vascular disease
and the role of cell and tissue-specific effects in promoting
atherogenesis and thrombosis.
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Introduction

Since its discovery by Berg 40 years ago, lipoprotein(a)
(Lp[a]) has been the subject of controversy and debate regard-
ing its role in human atherosclerosis.1 Although several retro-
spective studies have shown an association between Lp(a) ex-
cess and risk of coronary heart disease (CHD),2–4 prospective
studies including three clinical trials5–7 have yielded conflict-
ing results.5–14 Results of positive studies seem to suggest that
Lp(a) is an independent but weak predictor of CHD in unse-
lected populations and a powerful predictor of premature 
CHD in patients with concomitant hypercholesterolemia.15

Conflicting evidence in the literature has been attributed to 
several factors including small sample size, selection bias, lack

of standardized Lp(a) assay methods, storage of plasma sam-
ples at temperatures too high to maintain Lp(a) integrity, and
use of parametric rather than nonparametric methods to ana-
lyze this variable which is not normally distributed.16 How-
ever, the preponderance of current evidence is in favor of 
Lp(a) as a risk factor for atherosclerosis and coronary heart
disease.15–18 Screening for elevated Lp(a) levels in a high-risk
population is currently performed in many centers, and al-
though effective therapies are currently unavailable, novel dis-
coveries regarding the structure and function of this molecule
suggest potential avenues for future drug design and targeting.
This review will briefly discuss the structure and biology of
Lp(a), followed by a step-wise discussion of how Lp(a) may
induce atherogenesis and thrombosis, with particular empha-
sis on recent novel discoveries such as its effects on plaque sta-
bility and the tissue factor pathway.

Lipoprotein(a): Structure and Biochemistry

Lipoprotein(a) can be broadly classified as a heterogeneous
group of low-density lipoproteins containing two protein moi-
eties, apolipoprotein (Apo) B-100 and Apo(a), linked by a
disulphide linkage.19 While Apo B-100 contains low-density
lipoprotein (LDL), Apo(a) is a highly polymorphic glycopro-
tein ranging in size from 300 to 800 kD.16 Apolipoprotein(a)
consists of multiple kringle domains that have a close struc-
tural homology with plasminogen,20, 21 with both genes being
located on chromosome 6.22, 23 The plasminogen cDNA con-
tains a signal sequence, a tail region, five triple-folded disulfide
linked loops called kringles, and a protease region. The Apo(a)
molecule has 10 kringle domains similar to kringle IV of plas-
minogen (kIV types 1–10) and a single kringle similar to
kringle V of plasminogen. Each of the 10 kringles resembling
kringle IV of plasminogen is present in a single copy in the
Apo(a) molecule except kringle 2, which is present in varying
number of repeats both within and among individuals, giving
rise to the size polymorphism of Apo(a).24, 25

The kringles on Apo(a) serve important functions (e.g.,
kringle IV type 10 is responsible for the strong lysine binding
properties of Lp[a]).26, 27 Other kringles play important patho-
biological roles, such as interacting with scavenger receptors
on foam cells and in the formation of Lp(a).16 Enzymes of the
elastase family cleave Apo(a) in the region between kringle IV
and kringle V to yield F1 and F2 fragments representing the
amino and C terminal ends of the molecule, respectively.28, 29
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where they differentiate into macrophages and take up lipopro-
tein to form foam cells, an early pathologic marker of athero-
sclerotic plaque. Cell surface adhesion molecules such as inter-
cellular cell adhesion molecule (ICAM)-1, E-selectin, and
vascular cell adhesion molecule (VCAM)-1, play a key role 
by adhering to corresponding receptors on leukocytes such 
as LFA-1. Moreover, mice deficient in ICAM-1, P-selectin,
CD18, or combinations of these molecules have been shown to
develop smaller atherosclerotic lesions after lipid feeding.37 In
addition, higher levels of soluble VCAM-1 and E-selectin have
been found in subjects with hypercholesterolemia.38

Enhancement of expression of cell surface adhesion mol-
ecules could be an important mechanism of Lp(a)’s athero-
genecity. Other investigators have shown that Lp(a) en-
hances expression of ICAM-1 in cultured human umbilical
vein endothelial cells (HUVEC),39 although a similar effect
with VCAM or E-selectin has not been found. Moreover,
neutralizing transforming growth factor beta (TGF�) anti-
bodies enhanced ICAM expression in HUVECs, while addi-
tion of recombinant TGF� inhibited the enhancement of
ICAM-1 expression in Lp(a)-treated HUVECs, suggesting
that enhancement of ICAM-1 expression by Lp(a) could in
part be due to inhibition of TGF�. This TGF�-mediated ef-
fect of Lp(a) has been well documented both in vitro and in
vivo in animal models and in human subjects by Grainger et
al. and provides a theoretical basis for Lp(a) effects on
smooth muscle proliferation within the vessel wall.40–42

Formation of Foam Cells and Atherosclerotic Plaque

Atherosclerotic plaques but not normal human arteries con-
tain Lp(a). Plasminogen-like lysine binding sites present on

In a similar fashion, elastase cleaves Lp(a) in the same region
to form F1 fragment and mini Lp(a), which is the F2 fragment
connected to the LDL particle. In vivo studies suggest that the
F2 fragment is retained within the atherosclerotic plaque and is
a potential cause for the atherothrombogenic action of Lp(a),1

whereas the F1 fragments may return to the circulation. Fur-
thermore, following intravenous administration of Lp(a), F1-
derived Apo(a) fragments can be isolated from plasma and
urine of humans and mice.30 Indeed, enzymes such as metallo-
proteinases and elastases present within the atherosclerotic
plaque may contribute to this process and hence pathogenicity
of Lp(a) by breaking it down into its F1 and F2 fragments.31

Mechanisms of Lipoprotein(a)-Induced Atherogenesis

Induction of Adhesion Molecules on Vascular 
Endothelial Cells

Lipoprotein(a) is believed to promote atherosclerosis by a
number of separate but related mechanisms which are summa-
rized in Fig. 1. Expression of adhesion molecules, VCAM-1
and E-selectin, on cultured human coronary endothelial cells is
increased in the presence of Lp(a).32 It also induces human vas-
cular endothelial cells to produce monocyte chemotactic pro-
tein (MCP), a potent chemoattractant for monocytes and a key
cytokine implicated in the pathogenesis of atherosclerosis.33

Atherosclerosis is increasingly believed to be an inflamma-
tory disease,34 and recruitment of monocyte macrophages is an
important early step of atheroma formation.35 Within days or
weeks of feeding mice a high-fat and high-cholesterol diet,
monocytes can be observed adhering to the surface of endothe-
lial cells.36 The monocytes then migrate into the arterial intima
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FIG. 1 Lipoprotein(a) (Lp[a])-mediated mechanisms of atherogenesis. Lipoprotein(a) has numerous effects on the nitric oxide (NO) pathway,
cell adhesion molecules, and matrix degradation in addition to growth regulatory molecules. ICAM = intercellular cell adhesion molecule,
VCAM = vascular cell adhesion molecule, UPAR = urokinase plasminogen activator receptor, ECM = extracellular matrix, PG = plasmin gen-
eration, TGF� = transforming growth factor beta.
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the Apo(a) molecule may play a key role in anchoring Lp(a) to
the extracellular matrix within the arterial wall.43 Mutations
affecting the lysine binding sites of kringle IV-10 of Apo(a)
have been shown to decrease affinity of Lp(a) to the vessel
wall.44 Transgenic mice expressing mini Apo(a) containing a
mutation in kringle IV-10 lysine binding sites have significant
reduction in fatty streak formation and Lp(a) accumulation
within the vessel wall.45 Klezovitch et al. have also demon-
strated that proteoglycans within the vessel wall may play an
important role in Lp(a) retention within the vascular intima.46

In these experiments, Apo(a), via its C-terminal domain, was
found to bind to the protein core of the proteoglycan decorin, a
proteoglycan synthesized by vascular endothelial and smooth
muscle cells47–49 and present within atherosclerotic plaques.50

This binding was shown to be hydrophobic in nature and not
dependent on the lysine binding sites on the Apo(a) molecule.
However, the nature of the interaction between decorin and in-
tact Lp(a) was an electrostatic binding of the glycosaminogly-
can (GAG) portion of decorin to the ApoB100 of Lp(a). This
decorin-Apo(a) interaction has recently been proposed by
Klezovitch et al. as an explanation for preferential vessel wall
retention of Lp(a) over LDL.46

Within the diseased arterial wall, Lp(a) probably undergoes
oxidative, proteolytic, and lipolytic changes induced by en-
zymes present within an atherosclerotic plaque, such as metal-
loproteinase, elastase, sphingomyelinase, and phospholipase.
Oxidative modification by malondialdehyde, for instance,
produces avid Lp(a) uptake by human monocyte-macro-
phages.51 Cholesterol loading of macrophages also results in
marked enhancement of Lp(a) and Apo(a) internalization and
degradation,52 revealing a lipid-driven mechanism for Lp(a)
foam cell formation. Incubation of bovine aortic smooth mus-
cle cells with Lp(a) in the presence of lipoprotein lipase and
sphingomyelinase lead to massive aggregation of Lp(a) on the
surface of these cells,53 whereas coincubation with chondroi-
tin ABC lyase prevented this aggregation, suggesting a key in-
teraction with cellular proteoglycans. Moreover, coincubation
of Lp(a)-coated smooth muscle cells with mouse peritoneral
macrophages led to formation of lipid-laden macrophages on
the surface of these cells with disappearance of visible Lp(a)
aggregates. This could be an important interaction between
Lp(a), smooth muscle cells, and macrophages, leading to
foam cell and plaque expansion.

Plaque Inflammation and Instability

Novel mechanisms of Lp(a)-mediated plaque instability
have been described recently. Human THP-1 macrophages
produce interleukin-8 (IL-8) in the presence of Lp(a), an effect
primarily mediated by the C-terminal region of Apo(a).54 Inter-
leukin-8 is a key inflammatory cytokine within atherosclerotic
plaques55 and possesses chemotactic activity toward neutro-
phils,56 T cells,57 monocytes,58 and smooth muscle cells59, 60

while decreasing macrophage expression of tissue inhibitors of
metalloproteinases.61 Disinhibition of metalloproteinases that
cleave Apo(a) into F1 and F2 fragments31 may increase inflam-
matory activity within plaque leading to rupture.

The expression of urokinase and urokinase receptors on
monocytes is also increased in a dose-dependent manner,62 re-
sulting in increased plasmin generation. Increased protease
availability may have multiple effects, including facilitation of
cell migration and growth within plaque.63 Furthermore, mon-
ocyte adhesion to extracellular matrix (ECM) is facilitated by
increased expression of micro PAR and ICAM-1, receptors for
vitronectin and fibrinogen, respectively. Increased monocyte
adherence to ECM and enhanced plasmin and urokinase activ-
ity could be important mechanisms of Lp(a)-mediated ECM
degradation and plaque rupture.

Vascular Cell Proliferation

The induction of human smooth muscle cell proliferation
by Lp(a) was first demonstrated in vitro by Grainger et al.41

This group showed that Lp(a) decreased generation of active
TGF�, an endogenous inhibitor of smooth muscle cell migra-
tion. Bovine pericytes and smooth muscle cells secreting
TGF� have also been shown to inhibit endothelial cell migra-
tion and repair of a denuded portion of a vessel in vitro.64

Antibodies to TGF�1 abrogated the above-mentioned inhibi-
tion, as did inhibitors of plasmin formation. This TGF� effect
is mediated by inhibition of plasminogen activation at the cell
surface with subsequent inhibition of plasmin-mediated
TGF� activation.64, 65 Furthermore, inhibition of TGF� acti-
vation has been observed in Apo(a) transgenic mice40 and in
human subjects with elevated Lp(a). Apo(a) transgenic mice
have been shown to have threefold less active plasmin and sig-
nificantly less active TGF� within the aortic wall than normal
mice. Although the total TGF� concentration was similar in
sera from Apo(a) transgenic and normal mice, the proportion
of total TGF� in active form was significantly lower in the
serum of Apo(a) transgenic mice. This TGF� mechanism of
dysregulated growth induced by Lp(a) is an attractive hypoth-
esis for its effects on plaque growth.

Inhibition of Nitric Oxide and Endothelial Dysfunction

Nitric oxide (NO) has several pleiotropic antiatherogenic
properties, including inhibition of T cell and smooth muscle
proliferation,66 neutrophil adhesion,67, 68 platelet activation,69

and reduction in endothelial permeability.70 It is not surprising
that decreased NO synthesis has been associated with athero-
sclerotic lesion development.71, 72 Oxidized Lp(a) induces
dose-dependent reduction of inducible nitric oxide synthase
(iNOS) protein expression and mRNA synthesis in lipopoly-
saccharide/interferon-stimulated mouse macrophages.73 Dose-
dependent inhibition of iNOS by Lp(a) may lead to increased
atherogenesis. Elevated Lp(a) levels have also been associated
with impaired endothelium-dependent vasodilatation in coro-
nary arteries.74 In hypercholesterolemic children, flow-medi-
ated dilation of the superficial femoral artery was inversely re-
lated to Lp(a),75 and in patients with elevated Lp(a) levels an
increased vasoconstrictor response occurs after administration
of L-NMMA, an NO synthase inhibitor.76 These combined ef-
fects suggest a compensatory increase in basal NO production
by the endothelium in response to elevated Lp(a) levels.
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Mechanisms of Thrombosis

Lipoprotein(a) may promote a more thrombotic state by a
number of mechanisms, including inhibition of the fibrinolyt-
ic system and enhancement of the tissue factor-mediated path-
way. These effects are illustrated in Fig. 2.

Inhibition of Plasmin Generation

Apolipoprotein(a), as discussed previously, has significant
structural homology with plasminogen. A varied number of
cell types have been found to express cell surface receptors
for plasminogen. Both intact Lp(a) and recombinant Apo(a) 
inhibit plasminogen binding to endothelial cells,77 U937
cells,78, 79 and platelets.80 The assembly and activation of
plasminogen on the endothelial cell surface has been studied
extensively, and it is known that plasminogen binds to the sur-
face of endothelial cells via a tissue plasminogen activator 
(t-PA)/plasminogen coreceptor, identified as a member of the
annexin superfamily of proteins.81 In particular annexin II,
which is selectively expressed on the endothelial cell sur-
face,81, 82 possesses independent binding domains for plas-
minogen and t-PA.83, 84 Plasminogen appears to bind to the
annexin receptor in a two step process, whereby the N-termi-
nal glutamine-plasminogen is converted to N-terminal lysine-
plasminogen by cleavage of a 76 amino acid preactivation
peptide85, 86 with subsequent activation of the receptor in the
second step.81 Tissue plasminogen activator binds to annexin
at a separate site in close proximity to the plasminogen-bind-
ing site, leading to more efficient generation of plasmin.87

Lipoprotein(a) inhibits generation of plasmin on the endothe-

lial cell surface without interfering with t-PA binding,88 and in
a similar manner, Apo(a) inhibits plasminogen binding to an-
nexin but has no effect on t-PA binding.85 Decreased plas-
minogen binding on the cell surface may therefore create an
antifibrinolytic state.

In addition, plasminogen activation by both streptoki-
nase89, 90 and t-PA91 has been shown to be impaired in the
presence of Lp(a), and mice transgenic for Lp(a) are resistant
to t-PA-mediated lysis of artificially induced fibrin thrombi.92

The mechanism for this action is believed to be in competi-
tion with plasminogen for binding to fibrin. It is interesting
that plasmin catalyzes the binding of Lp(a) to immobilized
fibrinogen and fibrin.93

The antifibrinolytic effect of Lp(a) is primarily defined by
the size of the Apo(a) polymorphs, which display heterogene-
ity in their fibrin-binding activity.94 The affinity of each iso-
form depends on its size and plasma concentrations, with
smaller size isoforms displaying higher affinity binding to fib-
rin.95, 96 The population most at risk for thrombosis, therefore,
appears to be that possessing a predominant low molecular
weight phenotype with high affinity for fibrin. Moreover, the
Lp(a) phenotype (i.e., affinity for fibrin) may be more impor-
tant as a determinant of risk than the actual plasma concentra-
tion of Lp(a).97

Increased Expression of Plasminogen Activator Inhibitor

Endothelial cell synthesis of plasminogen activator in-
hibitor-1 (PAI-1) is also increased by Lp(a).98 In cultured hu-
man endothelial cells, Lp(a) enhanced PAI-1 antigen activity
and mRNA expression without altering t-PA activity. In addi-

FIG. 2 Lipoprotein(a) (Lp[a])-mediated mechanisms of thrombosis. Lipoprotein(a) interacts with the fibrinolytic and coagulation systems po-
tentiating tissue factor-mediated thrombosis and inhibiting clot lysis. PAI = plasminogen activator inhibitor, t-PA = tissue plasminogen activa-
tor, TFPI = tissue factor pathway inhibitor.
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tion, monocytes derived from male patients with isolated Lp(a)
hyperlipidemia, compared with those from healthy donors
with normal Lp(a) levels, had increased upregulation of PAI-2
mRNA and protein.99 This effect was gender specific, with no
difference noted among females. Monocyte expression of PAI-
2 was also increased, another potential mechanism of an an-
tifibrinolytic effect. Together these data suggest a mechanism
whereby Lp(a) inhibits fibrinolysis at the endothelial cell sur-
face and promotes thrombosis.

Inhibition of Tissue Factor Pathway Inhibitor

Tissue factor pathway inhibitor (TFPI) is a Kunitz type ser-
ine protease inhibitor and a potent inhibitor of the tissue factor-
mediated coagulation cascade.100 Tissue factor pathway in-
hibitor is present on endothelial cells, activated monocytes,
and platelets.101–104 However, the endothelium is believed to
be the principal site of synthesis of TFPI.101 Tissue factor path-
way inhibitor is expressed by vascular smooth muscle cells
within atherosclerotic plaques,105 and TFPI within atheroscle-
rotic plaque is associated with reduced tissue factor activity
within the plaque.106 We have recently shown that Lp(a) binds
and inactivates TFPI,107 potentially augmenting unopposed
tissue factor (TF) effects. Lipoprotein(a) can bind and inacti-
vate recombinant as well as cell-associated TFPI in vitro in a
dose-dependent manner. The LDL portion of Lp(a) isolated by
dithiothreitol (DTT) reduction and gradient ultracentrifuga-
tion did not bind rTFPI, suggesting that this portion of Lp(a)
was not important for binding. Apolipoprotein(a) bound to
rTFPI in a similar concentration-dependent manner as Lp(a).
It is interesting that lysine plasminogen (L-Plg) was also found
to bind to immobilized rTFPI but was inhibited by nanomolar
concentrations of Apo(a) demonstrating a binding affinity that
was lower than that of Apo(a). Furthermore, this dose-depen-
dent inactivation of TFPI by Lp(a) in vitro and on endothelial
cell surfaces was not affected by plasminogen. No Lp(a) dose-
dependent binding was seen when mutated forms of TFPI
lacking the K3 domain or C terminus were immobilized in-
stead of full length rTFPI demonstrating the importance of the
C-terminal region of TFPI for this interaction. The binding of
Apo(a) to rTFPI was shown to be lysine dependent and was in-
hibited by epsilon aminocaproic acid (EACA). This signifi-
cant binding and inactivation of cell associated and recombi-
nant TFPI by Lp(a) adds a further prothrombotic layer to the
pleiotropic effects of this molecule. Thus, inhibition of TFPI
within plaque at the endothelial surface and in the circulation
may have additive effects in promoting thrombosis at the site
of plaque rupture.

Vascular Tissue and Circulatory Effects

Discovery of new mechanisms suggest that the effects of
Lp(a) within the vessel wall might be more relevant to its
pathogenicity and different from its effects on circulating
blood. Such differential effects might be a potential explana-
tion for blood Lp(a) levels often not correlating with the inci-
dence of coronary events. Cleavage of Lp(a) into potential

atherogenic fragments, its retention by proteoglycans, and its
induction of macrophage IL-8 expression are specific vessel
wall atherogenic effects not seen to occur in peripheral blood.
Moreover, Lp(a) causes increased plasmin activity within a
plaque while decreasing circulating plasmin activity. These
differential effects on blood and vessel wall may be additive
in terms of atherothrombotic risk, potentially facilitating
plaque rupture and later thrombosis on the luminal surface of
the vessel.

Conclusion

A complex interplay of mechanisms affecting both vascula-
ture and circulation contributes to the pathogenicity of this
molecule. Novel discoveries elucidating such pathophysiolog-
ic mechanisms have provided us with multiple potential tar-
gets for drug design and therapy.
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