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Summary: Matrix metalloproteinases (MMPs) play an im-
portant role in cardiovascular remodeling by degrading the
extracellular matrix. Enhanced MMP expression has been de-
tected in the atherosclerotic plaque, and activation of MMPs
appears to be involved in the vulnerability of the plaque.
Circulating MMP levels are elevated in patients with acute
myocardial infarction and unstable angina. Increased MMP
expression is also observed after coronary angioplasty, which
is related to late loss index after the procedure. These obser-
vations suggest that MMP expression may be not only related
to instability of the plaque, but also to the formation of
restenotic lesions. The development of therapeutic drugs tar-
geted specifically against MMPs may be useful in the preven-
tion of atherosclerotic lesion development, plaque rupture,
and restenosis.
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Introduction

In human atherosclerosis, unstable atherosclerotic plaque is
an important event that triggers acute coronary syndrome.
Plaque rupture frequently correlates with loss of the extracel-
lular matrix (ECM) at certain locations, often in the shoulder
areas of the plaque. Focal destruction of the ECM renders the
plaque less resistant to mechanical stresses imposed during
systole and therefore vulnerable to rupture. Recent findings

have revealed enhanced expression of matrix metallopro-
teinases (MMPs) in the vulnerable region of plaques and this
contributes to the weakening of plaque caps by degrading the
ECM. This review aims to highlight the involvement of
MMPs in coronary artery diseases and describes the potential
use of MMP inhibitors in their treatment.

Matrix Metalloproteinases and Their Inhibitors

Matrix metalloproteinases are a family of zinc-containing
endoproteinases that share structural domains but differ in sub-
strate specificity, cellular sources, and inducibility. The list of
MMPs has grown rapidly in the past several years, and by now
> 20 mammalian members have been cloned and identified.
All MMPs share the following functional features: (1) they de-
grade ECM components, (2) they are secreted in a latent pro-
form and require activation for proteolytic activity, (3) they
contain Zn2+ at their active site, (4) they need calcium for sta-
bility, (5) they function at neutral pH, and (6) they are inhibited
by specific tissue inhibitors of metalloproteinases (TIMPs).1

The members of the MMP family can degrade all of the com-
ponents of the blood vessel wall and therefore play a major
role in both physiologic and pathologic events that involve the
degradation of ECM components.

Based on their substrate specificity and primary structure,
the MMP family can be subdivided into four groups (Table
I).2, 3 The first group, the collagenases, includes MMP-1 (in-
terstitial collagenase), MMP-8 (neutrophil collagenase), and
MMP-13 (collagenase-3), which can all cleave fibrillar colla-
gens (type I, II, and III). Group 2, the gelatinases (MMP-2
and MMP-9), is well-known for its ability to degrade gel-
atins, which are fragments of collagens degraded by collage-
nases. Gelatinases are also capable of cleaving interstitial col-
lagens. Group 3 is comprised of the stromelysins (MMP-3,
-10, and -11), so named because they are active against a
broad spectrum of ECM components, including proteogly-
cans, laminins, fibronectin, elastin, and some types of colla-
gen. Group 4 contains the membrane-type MMPs (MT-
MMPs), which degrade several ECM components and are
also able to activate other MMPs.

Fully activated MMPs can be inhibited by interaction with
naturally occurring, specific inhibitors, the TIMPs. At present,
the TIMP family consists of four structurally related members,
TIMP-1, -2, -3, and -4.3, 4 The TIMPs bind noncovalently to
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active MMPs in a 1:1 molar ratio. Inhibition is accompanied
by their ability to interact with the zinc-binding site within the
catalytic domain of active MMPs. There is a certain degree of
specificity in the activity of different TIMPs toward distinct
members of the MMP family. Whereas TIMP-1 potentially in-
hibits the activity of most MMPs, with the exception of MMP-
2, TIMP-2 is a potent inhibitor of most MMPs, except MMP-
9; TIMP-3 has been shown to bind MMP-1, -2, -3, -9, and -13;
TIMP-4 inhibits MMP-1, -3, -7, and -9.1

Regulation of Matrix Metalloproteinases

Regulation of MMPs occurs at three levels: induction of ex-
pression, activation of the latent forms, and regulation by
TIMPs. Induction of MMPs at the transcriptional level is me-
diated by a variety of inflammatory cytokines and growth fac-
tors, such as interleukin-1 (IL-1), IL-6, tumor necrosis factor-
� (TNF-�), epidermal growth factor (EGF), platelet-derived
growth factor (PDGF), and basic fibroblast growth factor
(bFGF).3, 4 There are significant differences between the regu-
lation of MMP-2 and the remainder of the MMP family. The
latter are inducible by cytokines and growth factors, but
MMP-2 has a more constant pattern of expression. In contrast,
other cytokines such as IL-4, interferon-� (IFN-�), and IL-10
inhibit the synthesis of MMP-1, MMP-3, and MMP-9.5–7

Direct cell-cell contact may be an additional factor in the
regulation of MMP expression in the atherosclerotic plaque. It
has been suggested that activated T-cells play a pivotal role in
the induction of MMP-1, MMP-3, MMP-9, and MMP-11 ex-
pression in macrophages and vascular smooth muscle cells
(VSMCs).8, 9 Lee et al.10 reported that interactions between
monocytes and VSMCs stimulate MMP-1 and MMP-3 secre-
tion in VSMCs. We also reported increased MMP-1mRNA
and protein expression in human monocytes and vascular en-
dothelial cells through their direct contact.11

Although transcriptional regulation is essential for MMP
production, all MMPs are expressed as inactive zymogens,

and matrix degradation requires the latent enzymes to be acti-
vated by proteinases such as plasmin, trypsin, chymase, elas-
tase, or kallikrein. Among them, plasmin is a potent activator
of most MMPs.12

On the other hand, the activity of MMPs is controlled by
TIMPs. Although TIMP expression appears to be less affected
by cytokines and growth factors, TIMP-1 is induced by IL-10
and TIMP-3 is induced by PDGF and transforming growth
factor-� (TGF-�).5, 7

Reactive oxygen species (ROS) have also been shown to
modulate vascular MMP activity potently.13 In an experimen-
tal hypercholesterolemic rabbit model, treatment with an
ROS scavenger, N-acetyl-cysteine, markedly decreased the
expression and activation of the macrophage-derived MMP-
9.14 Reactive oxygen species can trigger activation of MMP
precursors, which may be related to the mechanism by which 
N-acetyl-cysteine decreases MMP-9 activation. Oxidized
low-density lipoprotein (LDL) may also play an important
role in the regulation of MMPs in atherosclerosis, because it
upregulates MMP activity, by inducing MMP-9 expression
while reducing TIMP-1 expression in macrophages.15

Atherosclerosis

It is widely accepted that atherosclerosis is initiated by
chemical and/or mechanical injury of the endothelium, fol-
lowed by transendothelial infiltration of circulating monocytes
into the intima where they become activated and elaborate a
variety of cytokines and growth factors.16 In response to these
stimuli, VSMCs migrate from the media to the intima and un-
dergo proliferation. Matrix degradation is a prerequisite for
both the recruitment of monocytes and migration of VSMCs,
because in such maneuvers the cells have to transverse the ex-
tracellular barriers, including the basement membranes (con-
sisting of collagen type IV and laminin) underlying the en-
dothelium and surrounding each smooth muscle, as well as a
dense mesh of interstitial collagen. In recent studies using
knockout mice, electrical injury of femoral arteries in mice,
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TABLE I Matrix metalloproteinases (MMP) family members and their substrates

Subgroup MMP number Substrate

Collagenases 1 Collagens (I, II, III, VII, X), gelatin, proteoglycans
8 Collagens (I, II, III), gelatin, proteoglycans
13 Collagens (I, II, III), gelatin, fibronectin, laminins

Gelatinases 2 Gelatin, collagens (I, IV, V, VII, X)
9 Gelatin, collagens (IV, V, VII, X)

Stromelysins 3 Collagens (III, IV, V, IX), fibronectin, laminins, elastin, gelatin, proteoglycans
10 Collagens, (III, IV, V, IX), gelatin, proteoglycans
11 Collagen IV, fibronectin, laminins, gelatin, proteoglycans

Membrane-type MMPs 14 Collagens (I, II, III), fibronectin, laminins, activates proMMP-2 and -13
15 Fibronectin, laminins, activates proMMP-2
16 Collagens (III, IV), fibronectin, gelatin, activates proMMP-2
17 Collagens (III, IV), gelatin
24 Activates proMMP-2
25 Gelatin
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which stimulates intimal thickening, caused enhanced expres-
sion of MMP-2 and MMP-9.17 In TIMP-1-deficient mice 
intimal thickening was significantly higher compared with
that in wild-type controls.18 Together, these observations sup-
port a role for MMP involvement in intimal thickening, partic-
ularly in migration of VSMCs.

Previous studies demonstrated that lipid-laden macro-
phages from human atherosclerotic plaque elaborate MMP-1
and MMP-3,19 and culture of macrophages with fibrous caps
of human atherosclerotic plaque induces MMP-dependent
collagen breakdown.20 Henney et al.21 detected the presence
of MMP-3 transcripts in coronary atherosclerotic lesions,
which were colocalized with large clusters of lipid-laden mac-
rophages in the shoulder areas of the plaque. Galis et al.22, 23

reported that atherosclerotic plaque and lesion-free arteries
had different patterns of MMP expression; MMP-2 together
with TIMP-1and TIMP-2 were expressed by VSMCs in all
layers of nonatherosclerotic arteries, whereas MMP-1, MMP-
3, and MMP-9 were localized to macrophages, VSMCs, and
the endothelium in the fibrous cap and shoulders of the lesions.
Other researchers have also detected the expression of several
other MMPs including MMP-1, MMP-2, MMP-7, MMP-9,
and MMP-12 in the shoulder areas of plaque.24–29

Acute Coronary Syndrome

Acute coronary ischemia is usually initiated by rupture of
the atherosclerotic plaque, leading to intracoronary thrombo-
sis and occlusion. Collagen content contributes critically to the
plaque stability. Cheung et al.30 reported that the rat myocardi-
um subjected to ischemia-reperfusion injury released MMP-2.
Brown et al.31 reported that MMP-9 was commonly expressed
in coronary atherectomy specimens from patients with recent
plaque rupture.

Recently, Kai et al.32 reported that circulating MMP-2 and
MMP-9 levels on admission were elevated in patients with
acute myocardial infarction (AMI) and unstable angina.
Inokubo et al.33 also reported that plasma levels of MMP-9
were significantly increased in the coronary circulation in 
patients with AMI and unstable angina compared with those
in control subjects, suggesting a process of active plaque rup-
ture in acute coronary syndrome. Hirohata et al.34 and we35

also observed increased plasma MMP-1 and MMP-2 levels,
respectively, in patients with AMI. In our study, plasma levels
of TIMP-2 did not change during the course of AMI. In-
creased MMP expression may modulate vascular and ventric-
ular remodeling in acute coronary syndrome.

Restenosis

The role of MMPs in iatrogenic postprocedural vasculopa-
thy has also attracted a great deal of interest. The development
of percutaneous coronary intervention (PCI) has provided a
powerful means for treating ischemic heart disease. However,
25–40% of patients have a recurrence of their symptoms with-
in 6 months because of restenosis at the original site. This is
due to a combination of events, that is, the migration and rapid

growth of medial VSMCs, producing a characteristic lesion of
fibrocellular intimal hyperplasia.

In vitro models have been used to demonstrate the induction
of collagenase and stromelysin gene expression in response to
mechanical injury in VSMCs.36 In animal models, it has been
reported that balloon injury upregulates local gelatinase ex-
pression in damaged arteries.37, 38 Degradation of the extra-
cellular matrix in plaques dilated by PCI may facilitate contact
of tissue factors in the vascular wall with circulating blood and
activation of the extrinsic coagulation pathway. Sawicki et al.39

also reported an MMP-2-mediated pathway of platelet aggre-
gation. Bendeck et al.37 found a correlation between MMP-2
activity and the degree of VSMC migration in balloon-injured
rat carotid arteries. Southgate et al.38 found that upregulation
of MMP-2 activity paralleled the time course of VSMC mi-
gration in pig carotid arteries after PCI. It is interesting to note
that Cheng et al.40 demonstrated that human TIMP-2 gene
transfer inhibited VSMC migration and delayed neointimal
development in balloon-injured rat carotid arteries.

We previously investigated changes in MMP-2 levels in
the coronary circulation after PCI in patients with angina pec-
toris.41 Blood samples were drawn from the coronary sinus
before and after PIC. Plasma MMP-2 levels in the coronary
sinus increased significantly 4 h after PCI, whereas TIMP-2
did not show significant changes. A positive correlation was
observed between MMP-2 level 4 h after PCI and late loss in-
dex 6 months after PCI. These in vitro and in vivo findings
suggested that increased levels of MMPs in dilated coronary
arteries lead to vascular remodeling and late restenosis by
promoting migration of VSMCs and formation of thrombus.

Therapeutic Implications

Statins: Hydroxymethylglutaryl coenzyme A (HMG-CoA)
reductase inhibitors (statins) have been widely used for treat-
ment of hyperlipidemia. In atherosclerotic lesions, collagen is
the major component of extracellular matrix, comprising up to
40% of the total protein. The accumulation of collagen is in-
fluenced by its de novo synthesis and deposition and by degra-
dation of existing collagens by MMPs.

Previously, Bellosta et al.42 reported that lipophilic statins
such as fluvastatin and simvastatin reduced MMP-9 secre-
tion by mouse and human macrophages in culture. We found
that clinical concentrations of fluvastatin decreased MMP-1
expression in cultured human endothelial cells.43 Fukumoto
et al.44 administered pravastatin, fluvastatin, or placebo to
Watanabe heritable hyperlipidemic rabbits for 52 weeks and
found that MMP-1, MMP-3, and MMP-9 expression by
macrophages in the intima were lower in both the pravastatin
and fluvastatin groups than in the placebo group. Statins may
directly inhibit MMP expression and achieve plaque stabi-
lization through effects that are independent of their choles-
terol-lowering properties.45

Calcium-channel blockers: Mason et al.46 reported mem-
brane antioxidant effects of the calcium-channel blocker am-
lodipine. The chemical structure of amlodipine contributes to
distinct biophysical membrane interactions that lead to the po-
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tent lipid antioxidant effect, independent of calcium-channel
modulation. We investigated the effects of amlodipine and
nifedipine on the expression of MMP-1 in cultured human en-
dothelial cells.47 Amlodipine, but not nifedipine, significantly
decreased MMP-1 levels in endothelial cells. The mechanism
by which amlodipine decreases MMP-1 levels may be related
to its membrane antioxidant activity. Like amlodipine, lacidip-
ine is a highly lipophilic compound and shows prolonged
binding to lipid membranes.48 Recently, Bellosta et al.49 re-
ported that lacidipine decreased the secretion of MMP-9 by
human macrophages, while nifedipine showed no effect. To-
gether, these studies suggested that, by intercalating into hy-
drophobic compartments of the cell at high concentrations,
lipophilic calcium-channel blockers may effectively inhibit the
propagation of unstable radicals and contribute to stabilization
of the plaque by interfering with MMP secretion. Indeed, the
recent Prospective Randomized Evaluation of the Vascular
Effects of Norvasc Trial (PREVENT) demonstrated that pa-
tients with documented coronary artery disease treated with
amlodipine experienced marked reductions in the rate of un-
stable angina and coronary revascularization compared with
patients receiving placebo.50 Also in Coronary Angioplasty
Amlodipine Restenosis Study (CAPARES), amlodipine sig-
nificantly reduced the frequency of repeat PCI and clinical
events after PCI.51

Gene therapy: In many recent studies, gene therapy has
been used to examine the role of MMPs in atherosclerosis and
whether TIMPs are good candidates for treatment of athero-
sclerosis. Using VSMCs transfected with TIMP-152 and aden-
oviral delivery of TIMP-1,53 it was shown that overexpression
of TIMP-1 reduced intimal thickening by 40 and 30%, respec-
tively. Adenoviral delivery of TIMP-1 into apoE-deficient
mice fed a lipid-rich diet, reduced lesion area by approximate-
ly 30%.54 Histologic and immunohistochemical analysis re-
vealed increases in collagen, elastin, and VSMC �-actin con-
tent and a marked reduction in macrophages.

Autologous saphenous vein coronary artery bypass graft
surgery is complicated by late graft failure due to neointima
formation and subsequent atherosclerosis. George et al.55 per-
formed adenovirus-mediated overexpression of TIMP-3 in pig
saphenous veins before interposition grafting into carotid ar-
teries in vivo to assess neointimal formation. Neointimal for-
mation was reduced by 58% in 28-day vein grafts. They also
used a highly reproducible organ culture model of neointimal
formation in human saphenous vein to investigate the effects
of adenovirus-mediated gene transfer of TIMP-1.56 Overex-
pression of TIMP-1 significantly inhibited neointimal forma-
tion by 54% after 14 days. These observations confirmed the
importance of MMPs in neointimal formation and highlighted
the potential for application of TIMP gene therapy.

Conclusions

Matrix metalloproteinases play a crucial role in initiating
acute coronary syndrome by degrading ECM components,
which leads to vulnerability of the plaque as well as formation

of atherosclerotic and restenotic lesions. Although the use of
MMP inhibitors may have unforeseen adverse effects if used
in the wrong setting, development of therapeutic drugs specif-
ically targeted against MMPs may be useful in the prevention
of atherosclerotic lesion development and cardiac events.
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