Quantitative imaging of electric surface potentials with single-atom sensitivity

Christian Wagner^{1,2*} Matthew. F. B. Green,^{1,2,3} Michael Maiworm,⁴ Philipp Leinen,^{1,2,3} Taner Esat,^{1,2,3} Nicola Ferri,⁵ Niklas Friedrich,^{1,2,3} Rolf Findeisen,⁴ Alexandre Tkatchenko,^{5,6} Ruslan Temirov,^{1,2,7} F. Stefan Tautz,^{1,2,3}

> ¹Peter Grünberg Institut (PGI-3), Forschungszentrum Jülich, 52425 Jülich, Germany
> ²Jülich Aachen Research Alliance (JARA)-Fundamentals of Future Information Technology, 52425 Jülich, Germany

³Experimentalphysik IV A, RWTH Aachen University, Otto-Blumenthal-Straße, 52074 Aachen, Germany

⁴Otto-von-Guericke-Universität Magdeburg, Laboratory for Systems Theory and Automatic Control, Magdeburg, Germany

⁵Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany

⁶Physics and Materials Science Research Unit, University of Luxembourg, 1511 Luxembourg, Luxembourg

⁷II. Physikalisches Institut, Universität zu Köln, Zülpicher Straße 77, 50937 Köln, Germany

*To whom correspondence should be addressed; E-mail: c.wagner@fz-juelich.de.

1 Raw SQDM images

Supplementary Figure 1: Raw SQDM images. a, b SQDM V^+ and V^- images as recorded with the slope tracking controller. Forward and backward scan direction have been averaged to optimize the signal-to-noise ratio. c, d V^* and α_{rel} images as calculated from V^+ and V^- via Eqs. 5 and 6 of the main paper. e, f Same as Panels c and d but with a colour scale that reveals weak contrast variations.

2 SQDM on NaCl

Supplementary Figure 2: SQDM data for a NaCl bilayer on Ag(111). a STM image of a NaCl island edge and a PTCDA molecule which is subsequently used as quantum dot for SQDM. b $V^*(r_{||})$ profile (location indicated in red in Panel a) across the NaCl island edge recorded at two different tip heights. The work function change of -0.73 eV which we determine from SQDM for the NaCl bilayer on Ag(111) corresponds well to the value of -0.63 eV obtained with KPFM for NaCl on Au(111) [1]. The salt film was prepared by thermal evaporation [2].

References and Notes

- Loppacher, C., Zerweck, U. & Eng, L. M. Kelvin probe force microscopy of alkali chloride thin films on Au(111). Nanotechnology 15, S9–S13 (2004). URL stacks.iop.org/Nano/15/S9.
- [2] Repp, J., Meyer, G. & Rieder, K. H. Snell's Law for Surface Electrons: Refraction of an Electron Gas Imaged in Real Space. <u>Physical Review Letters</u> 92, 036803 (2004). URL https://journals.aps.org/prl/ abstract/10.1103/PhysRevLett.92.036803.0311415.