1		The Existence of Airborne Mercury Nanoparticles
2		Avik. J. Ghoshdastidar ¹ & Parisa A. Ariya ^{1, 2} *
3		¹ Department of Chemistry and ² Department of Atmospheric and Oceanic Sciences
4		McGill University, 801 Sherbrooke St. W., Montreal, QC, Canada, H3A 2K6
5		*Corresponding author: parisa.ariya@mcgill.ca
6		
7		Supplementary Information
8	Tables	
9 10 11	Table S1. Table S2.	Mercury mass spectrometry (Hg-MS) calibration
12 13 14 15 16 17 18	Figures Figure S1. Figure S2. Figure S3. Figure S4.	Mercuric Halides GOM and the contribution of mercury aerosols in Montreal's urban air

20 **Table S1. Summary of GOM and PBM speciation techniques**

21 Expansion of Supplementary Table S1 in Deeds et al. Anal (2015) Chem, 87, (10) 5109-5116

Reference	Sample Collection	Sample Preparation	Detection Technique	Form of GOM/PBM Measured	
	HCl treated – Chromosorb-W				Gaseous Hg(II) type compounds
Braman and Johnson, 1974 ¹	NaOH treated – Chromosorb-W	Thermal Desorption	DC Discharge Emission Spectroscopy	Gaseous Methylmercury (II) type compounds	
	Gold-coated glass beads			Gaseous Dimethylmercury	
Stratton and Lindberg, 1995 ²	HCl Mist Chamber	Stannous Chloride (SnCl ₂) Reduction	Cold Vapor Atomic Fluorescence Spectroscopy	Reactive Gaseous Mercury ^a	
Sommar et al., 1997 ³	Sommar et al., 1997 3KCl DenuderThermal Decomposition		Cold Vapor Atomic Fluorescence Spectroscopy Divalent Gaseo Mercury		
Tong et al., 1999 ⁴	None	None	Photo-fragment Fluorescence Spectroscopy	Gaseous HgBr ₂	
Landis et al., 2002 ⁵	KCl Denuder	Thermal Decomposition Cold Vapor Atomic Fluorescence Spectroscopy		Reactive Gaseous Mercury ^b	
Olson et al., 2002 ⁶	5% MnO ₂ Alumina and Activated Carbon Sorbents	Thermal Desorption	Gas Chromatography – Mass Spectrometry	Gaseous HgCl ₂ Gaseous Hg(NO ₃) ₂	
Xiu et al. 2005 ⁷	Glass Fiber and Quartz Fiber Filter	Successive Digestions using Leaching Solutions	Cold Vapor Atomic Absorption Spectroscopy	Reactive PM Volatile PM Inert PM	
Xiu et al. 2009 ⁸	Glass Fibre Filter	Successive Digestions using Leaching Solutions	Cold Vapor Atomic Absorption Spectroscopy	Exchangeable PM HCl-soluble PM, Elemental PM Residual PM	
Lynam et al., 2010 ⁹	Polysulfone Cation- Exchange Membrane	Acid Digestion and Chemical Reduction	Cold Vapor Atomic Fluorescence Spectroscopy	Gaseous Oxidized Mercury	
Huang et al. 2013 ¹⁰	Nylon Membrane	Thermal Desorption	Cold Vapor Atomic Fluorescence Spectroscopy	Gaseous Oxidized Mercury	

Zverina et al. 2014 ¹¹	Fibrous Filters	Successive Extractions using Leaching Solutions	Cold Vapor Atomic Absorption Spectroscopy	Water extractable PM, Acid-released PM, Organic bound PM Elemental and complex-bound PM
Deeds et al, 2015 ¹²	Particle-based Sorbent Trap	Thermal Desorption	Atmospheric Pressure Chemical Ionization Mass Spectrometry	HgBr ₂ HgCl ₂
Jones et al., 2016 ¹³	Nylon Membrane, PDMS, quartz wool and deactivated fused silica- coated stainless steel	Thermal Desorption with Cryogenic preconcentration focusing	Gas Chromatography – Mass Spectrometry	HgBr ₂ HgCl ₂

22 23 ^a Described as the "fraction of Hg reducible by SnCl₂"

^bDescribed as "water soluble (divalent) inorganic forms"

	HgCl ₂ Detection Limit (pg)	HgBr ₂ Detection Limit (pg)	Sensitivity – HgCl ₂ (cnts/pg)	Sensitivity – HgBr ₂ (cnts/pg)	$R^2 - HgCl_2$	$R^2 - HgBr_2$
Trap 1	16	13	240	480	0.82	0.88
Trap 2	69	61	275	565	0.91	0.90
Trap 3	43	13	280	475	0.95	0.83
Trap 4	39	21	600	805	0.93	0.82
Trap 5	23	16	645	655	0.83	0.91
Trap 6	34	26	390	675	0.90	0.94
Trap 7	16	49	360	765	0.91	0.95
Trap 8	9	7	320	650	0.96	0.89
Trap 9	18	22	515	635	0.88	0.85
Trap 10	13	13	375	810	0.83	0.80
Trap 11	60	56	395	455	0.89	0.91
Trap 12	15	27	470	875	0.92	0.78

Table S2. Mercury mass spectrometry (Hg-MS) calibration

28

29 Non-filtered and filtered mercuric halides concentrations by shredded PFA-Teflon preconcentration mercury

30 mass spectrometry in Montreal urban. GOM measurements by KCl denuder and GEM measurements by CVAFS.

31 The percentage of mercuric halide aerosols was estimated by the difference between the filtered and non-filtered 32 mass spectrometry concentration averages where the difference was statistically significant.

34

35 Teflon preconcentration mercury mass spectrometry in Montreal urban air. NOx, sulphur dioxide, relative

- 36 *humidity and temperature measurements were taken 400 m away.*
- 37

39 40 41 Figure S4. The experimental setup for the detection of gaseous and particulate mercuric
 42 halides with concurrent gaseous oxidized mercury and gaseous elemental
 43 mercury measurements

44

45

46

47 S2. References

- Braman, R. S. & Johnson, D. L. Selective absorption tubes and emission technique for determination of
 ambient forms of mercury in air. *Environ Sci Technol* 8, 996-1003 (1974).
- Stratton, W. J. & Lindberg, S. E. in *Mercury as a Global Pollutant* (eds DonaldB Porcella, JohnW Huckabee, & Brian Wheatley) Ch. 144, 1269-1278 (Springer Netherlands, 1995).
- 52 3 Xiao, Z., Sommar, J., Wei, S. & Lindqvist, O. Sampling and determination of gas phase divalent 53 mercury in the air using a KCl coated denuder. *Fresenius J Anal Chem* **358**, 386-391,
- 54 doi:10.1007/s002160050434 (1997).
- Tong, X., Barat, R. B. & Poulos, A. T. Detection of Mercuric Bromide in a Gas Phase Flow Cell by
 Laser Photofragment Fluorescence Spectroscopy. *Environ Sci Technol* 33, 3260-3263,
 doi:10.1021/es9813461 (1999).
- Landis, M. S., Stevens, R. K., Schaedlich, F. & Prestbo, E. M. Development and Characterization of an
 Annular Denuder Methodology for the Measurement of Divalent Inorganic Reactive Gaseous Mercury
 in Ambient Air. *Environ Sci Technol* 36, 3000-3009, doi:10.1021/es015887t (2002).
- 6 Olson, E., Sharma, R. & Pavlish, J. On the analysis of mercuric nitrate in flue gas by GC–MS. *Anal Bioanal Chem* 374, 1045-1049, doi:10.1007/s00216-002-1602-6 (2002).
- Kiu, G. L. *et al.* Characterization of size-fractionated particulate mercury in Shanghai ambient air.
 Atmospheric Environment 39, 419-427, doi:<u>https://doi.org/10.1016/j.atmosenv.2004.09.046</u> (2005).
- Kiu, G. L. *et al.* Speciated mercury in size-fractionated particles in Shanghai ambient air. *Atmospheric Environment* 43, 3145-3154, doi:10.1016/j.atmosenv.2008.07.044 (2009).
- Lyman, S. N., Gustin, M. S. & Prestbo, E. M. A passive sampler for ambient gaseous oxidized mercury concentrations. *Atmos Environ* 44, 246-252, doi:<u>http://dx.doi.org/10.1016/j.atmosenv.2009.10.008</u>
 (2010).
- Huang, J., Miller, M. B., Weiss-Penzias, P. & Gustin, M. S. Comparison of Gaseous Oxidized Hg
 Measured by KCl-Coated Denuders, and Nylon and Cation Exchange Membranes. *Environ Sci Technol* 47, 7307-7316, doi:10.1021/es4012349 (2013).
- Zverina, O., Coufalik, P., Komarek, J., Gadas, P. & Sysalova, J. Mercury associated with size fractionated urban particulate matter: three years of sampling in Prague, Czech Republic. *Chem Pap* 68, 197-202, doi:10.2478/s11696-013-0436-3 (2014).
- Deeds, D. A. *et al.* Development of a particle-trap preconcentration-soft ionization mass spectrometric
 technique for the quantification of mercury halides in air. *Anal Chem* 87, 5109-5116,
 doi:10.1021/ac504545w (2015).
- Jones, C. P., Lyman, S. N., Jaffe, D. A., Allen, T. & O'Neil, T. L. Detection and quantification of gasphase oxidized mercury compounds by GC/MS. *Atmos. Meas. Tech.* 9, 2195-2205, doi:10.5194/amt-92195-2016 (2016).
- Johnson, F. THE VAPOR PRESSURES OF MERCURIC CHLORIDE, BROMIDE AND IODIDE. J
 Am Chem Soc 33, 777-781 (1911).
- Stull, D. R. Vapor Pressure of Pure Substances. Organic and Inorganic Compounds. *Industrial & Engineering Chemistry* 39, 517-540, doi:10.1021/ie50448a022 (1947).
- Yaws, C. L. & Satyro, M. A. in *The Yaws Handbook of Vapor Pressure (Second Edition)* 315-322
 (Gulf Professional Publishing, 2015).
- Bernard, L. *et al.* Détermination de la pression de vapeur de HgCl\$\mathsf{_2}\$ par la méthode
 d'effusion de Knudsen. *J. Phys. III France* 7, 311-319 (1997).
- Ruf, R. & Treadwell, W. D. Zur Kenntnis des Dampfdrucks von Quecksilber(II)-chlorid. *Helvetica Chimica Acta* 37, 1941-1948, doi:10.1002/hlca.19540370705 (1954).

92