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*Correspondence:

g.ascolani@sheffield.ac.uk
1Department of Computer Science

and Technology, Computer

Laboratory, University of

Cambridge, William Gates

Building, 15 JJ Thomson Avenue,

CB3 0FD Cambridge, UK

Full list of author information is

available at the end of the article
†Equal contributor

Additional File 2. Master equation subordinated to a mutation
process

For the sake of consistency, let us rewrite here the conditional probability density

in the natural time and the meaning of each term as expressed in the main text.

The conditional probability density ρ(d,mn,mm) that a cell starting from the

state σ0 = {0, 0, 0, k} arrives after mm steps to the state σ = {d,mn,mm, k} is:

ρ(d,mn,mm, k) =[
1

md

md∑
i=1

rasym(md − 1,mn, k)rd(md − 1,mn, k)ρ(d− ui,mn,mm − 1, k)

+ rasym(md,mn − 1, k) rn(md,mn − 1, k) ρ(d,mn − 1,mm − 1, k)

]

+ 2

[
1

md

md∑
i=1

rsym(md − 1,mn, k) rd(md − 1,mn, k) ρ(d− ui,mn,mm − 1, k)

+ rsym(md,mn − 1, k) rn(md,mn − 1, k) ρ(d,mn − 1,mm − 1, k)

]
− rsym(md,mn, k) ρ(d,mn,mm, k)− rapop(md,mn, k)ρ(d,mn,mm, k)

+ [rpass(md,mn, k − 1)ρ(d,mn,mm, k − 1)− rpass(md,mn, k)ρ(d,mn,mm, k)]

(1)

The first term enclosed in square brackets describes the increase of number of cells

in the state σ = {d,mn,mm, k} due to asymmetric proliferation. The mutation

occurring during the asymmetric proliferation can be driver or passenger; hence

rd(σ) + rn(σ) = 1. The second term enclosed in square brackets takes into account

the increase of cells due to symmetric proliferation, while the third term express

the fact that both the daughter cells equally change their state and there is no

self-renewal. The fourth term is the decreasing of cells due to apoptosis, and the

last term is due to the change of compartment.

In order to compare the dynamics with the biological process, we can switch

from the natural time of the events to the physical time [1], meaning the time is

measured with a macroscopic clock advancing with a regular periodic step. To do

so, we introduce the conditional probability density ρ(d,mn,mm, k, t) that exactly

at time t a cell, starting a time t = t0 in the state σ0 = {0, 0, 0, k}, changes its state

to σ = {d,mn,mm, k}:
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(2)ρ(d,mn,mm, k, t) =

∫ t

0

{
ψ(mm − 1, t− t′)

[(
1

md

md∑
i=1

rasym rd ρ(d−ui,mn,mm−1, k, t′)+rasym rnρ(d,mn−1,mm−1, k, t′)

)

+2

(
1

md

md∑
i=1

rsym rd ρ(d−ui,mn,mm−1, k, t′)+rsym rn ρ(d,mn−1,mm−1, k, t′)

)]

+ ψ(mm, t− t′)

[
− rsym ρ(d,mn,mm, k, t

′)− rapop ρ(d,mn,mm, k, t
′)

+

(
rpass ρ(d,mn,mm, k − 1, t′)− rpass ρ(d,mn,mm, k, t

′)

)]}
dt′,

where ψ(i, t) is the waiting time distribution that the i-th mutational event occurs

exactly at time t, and the corresponding survival probability is given by the relation

Ψ(i, t) = 1 −
∫ t

0
ψ(i, t′) dt′. The integral in Eq. 2 means that the event before the

last may have occurred at any possible time t′ between 0 and t.

Let us consider an ensemble of cells, whose genome generates a trajectory in

the mutation state which starts from a common initial state (the healthy state)

and evolves in time. If we let the system run and then freeze it, what we see is

a population of cells which are in different states. Differently from the natural

time frame, we observe cells which have accomplished unequal amounts of jumps;

therefore, if i is associated to the age of the cells, then at any time i in the natural

time frame, the system is composed of cells having the same age, while at any

instant t in the physical time frame, there are cells with few mutations together

with cells which have accumulated a large number of mutations.

The total amount of cells with σ = {d,mn,mm, k} mutations observed at time t

are the sum of all cells which changed their state to σ (with any possible order of

the occurrence of d and n) at any earlier time t′ without further events between

the time t′ and t included those jumping exactly at time t. Hence the probability

density p(d,mn,mm, k, t) of finding a cell in σ is:

(3)

p(d,mn,mm, k, t) =

∫ t

0

ρ(d,mn,mm, k, t
′) Ψ(mm, t− t′) dt′

= δ(d− d0)δ(mn − n0)Ψ(mm, t)

+

∫ t

0

ρ+(d,mn,mm, k, t
′)Ψ(mm, t− t′) dt′,

where we have performed a Riemann-Stieltjes integral over time with a discontinuity

of the conditional probability densities ρ in t = 0 which can be expressed as:

(4)ρ(d,mn,mm, k, t
′) = δ(mn − n0)δ(t− 0+) + ρ+(d,mn,mm, k, t

′).
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The time derivative of the previous equation give:

(5)

d

dt
p(d,mn,mm, k, t)

= ρ+(d,mn,mm, k, t)

−
∫ t

0

ρ+(d,mn,mm, k, t
′)ψ(mm, t− t′) dt′ − δ(d− d0)ψ(mm, t)

where the flux of particle exiting the σ state is:

j(d,mn,mm, k, t) =

∫ t

0

ρ(d,mn,mm, k, t
′)ψ(mm, t− t′) dt′

=

∫ t

0

ρ+(d,mn,mm, k, t
′)ψ(mm, t− t′) dt′ + δ(d)− d0)ψ(mm, t).

(6)

Therefore, the master equation in terms of incoming and outgoing fluxes are:

(7)
d

dt
p(d,mn,mm, k, t) = ρ+(d,mn,mm, k, t)− j(d,mn,mm, k, t).

Using Eq. 4, we can write the incoming flux in terms of the outgoing flux defined

in Eq. 6. The explicit result for the specific set of reaction is:

ρ+(d,mn,mm, k, t) =

{
[

1

md

md∑
i=1

rasym rd j(d− ui,mn,mm, k, t) + rasym rnj(d,mn − 1,mm, k, t)

]

+2

[
1

md

md∑
i=1

rsym rd j(d− ui,mm, k, t) + rsym rn j(d,mn − 1,mm, k, t)

]
− rsym j(d,mn,mm, k, t)− rapop j(d,mn,mm, k, t)

+ [rpass j(d,mn,mm, k − 1, t)− rpass j(d,mn,mm, k, t)]

}
.

In order to express the master equation only in terms of the probability density

(see the derivation in [2] for more general case), we can Laplace transform both

Eq. 3 and Eq. 6:

L{p(d,mn,mm, k, t)} = p̃(d,mn,mm, k, s) = L{ρ(d,mn,mm, k, t)} L{Ψ(mm, t)},

L{j(d,mn,mm, k, t)} = j̃(d,mn,mm, k, s) = L{ρ(d,mn,mm, k, t)} L{ψ(mm, t)},

from which it is easy to derive the relation between the transformed probability

density p̃ and the transformed influx of cells j̃ in terms of the transformed memory

kernel K̃:

j̃(d,mn,mm, k, s) = p̃(d,mn,mm, k, s)
ψ̃(mm, s)

Ψ̃(mm, s)
, (8)
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and

K̃(mm, s) =
ψ̃(mm, s)

Ψ̃(mm, s)
. (9)

The previous results allow us to rewrite the master equation in terms only of the

Laplace transform of the probability density:

(10)L
{

d

dt
p(d,mn,mm, k, t)

}
= s p̃(d,mn,mm, k, s)− p(d,mn,mm, k, 0)

= K̃(mm − 1, s){[
1

md

md∑
i=1

rasym rd p̃(d− ui,mn,mm − 1, k, s) + rasym rn p̃(d,mn,mm − 1, k, s)

]

+ 2

[
1

md

mm∑
i=1

rsym rd p̃(d− ui,mn,mm − 1, k, s) + rsym rn p̃(d,mn,mm − 1, k, s)

]}

+ K̃(mm, s)

{
− rsym p̃(d,mn,mm, k, s)− rapop p̃(d,mn,mm, k, s)

+

[
rpass p̃(d,mn,mm, k − 1, s)− rpass p̃(d,mn,mm, k, s)

]}
,

and the Laplace transform of the memory kernel

K̃(mm, s) =
ψ̃(mm, s)

Ψ̃(mm, s)
. (11)

The master equation can be directly anti-Laplace transformed resulting in integro-

differential equations with memory kernel K(mm, t). Nevertheless, explicitly intro-

ducing the functional form of the waiting time distributions may result in further

simplifications.
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