SUPPLEMENTARY MATERIALS OF

"Evolution of the yeast recombination landscape" By Liu, Maclean, and Zhang (jianzhi@umich.edu)

The supplementary materials include:

 Table S1.
 Summary statistics of the sequencing data.

Table S2. Correlation between local CO rate and heterozygosity and that between local NCO rate and heterozygosity at different scales.

Fig. S1. Distribution of markers in three hybrid yeast strains analyzed in this study. Marker density is measured by the number of markers per nucleotide in 20 kb windows. X-axis shows genomic positions on each chromosome (×100 kb).

Fig. S2. Correction of the number of NCO events per meiosis. (**A**) Mean number of markers per tract as a function of tract length. For each tract length from 100 bp to 3000 bp with a step size of 100 bp, 10,000 random NCO events are simulated and the mean number of markers converted among tracts with at least one marker is calculated and plotted against tract length. (**B**) Probability of detection of a tract in the simulation as a function of tract length. In the real data, an average NCO event converts 18 markers, corresponding to a tract length of 1500 bp in panel A; this tract length corresponds to a detection probability of 0.985 in panel B.

Fig. S3. Tract length distributions for NCO (A) and CO-GeneConv (B) events in Spar.

Fig. S4. Comparison of CO and NCO rates (number of events per Mb per meiosis) among different chromosomal regions.

Fig. S5. CO and NCO counts per meiosis in each chromosome, and CO and NCO rates per Mb per meiosis in each chromosome in *Scer* and *Spar*. Pearson's correlation coefficient and associated *P*-value are shown in each panel. (**A**) Relationship between CO count and chromosome length in *Scer*. (**B**) Relationship between NCO count and chromosome length in *Scer*. (**C**) Relationship between CO count and chromosome length in *Spar*. (**D**) Relationship between NCO count and chromosome length in *Scer*. (**C**) Relationship between CO count and chromosome length in *Spar*. (**E**) Relationship between CO rate and chromosome length in *Scer*. (**F**) Relationship between NCO rate and chromosome length in

Scer. (**G**) Relationship between CO rate and chromosome length in *Spar.* (**H**) Relationship between NCO rate and chromosome length in *Spar.*

Fig. S6. Variations of CO and NCO rates relative to DSB rates with respective to several factors in *Scer* and *Spar.* (A) The CO/DSB rate ratio in regions of various distances to centromere. (B) The CO/DSB rate ratio in regions of various GC contents. (C) The CO/DSB rate ratio in regions of various gene densities. (D) The NCO/DSB rate ratio in regions of various distances to centromere. (E) The NCO/DSB rate ratio in regions of various gene densities. On the X-axis of panels A and D, "1" indicates the 20 kb bin closest to centromere, "2" indicates the next closest 20 kb bin, and so on. In panel B, 20 kb windows are binned based on the GC content, which ranges from 35.5% to 42.5% with a step size of 1%. In (C) and (E), 20 kb windows are binned based on gene density (# of genes per 20 kb), which ranges from 5 to 18 with a step size of 2. In each bin, the data are presented as a bar plot; the lower and upper edges of a box represent the first (qu₁) and third quartiles (qu₃), respectively, the horizontal line inside the box indicates the median (md), the whiskers extend to the most extreme values inside inner fences, md±1.5(qu₃-qu₁), and the dots represent values outside the inner fences (outliers). Wilcoxon rank-sum tests are performed between each bin and all other bins combined, and the associated *P*-values are shown above each bin.

Fig. S7. Comparison of heterozygosity in 1 kb regions around COs, NCOs, and one million random sites. In each bin, data are presented as a bar plot. The lower and upper edges of a box represent the first (qu1) and third quartiles (qu3), respectively, the horizontal line inside the box indicates the median (md), the whiskers extend to the most extreme values inside inner fences, $md\pm1.5(qu3-qu1)$, and the dots represent values outside the inner fences (outliers). Wilcoxon rank-sum tests are performed between COs (or NCOs) and random sites with *P*-values presented at the top.

spores of the terrad	are marked with A, D, C, and	D.
Samples	Sequencing depth	Genomic coverage
N17	51.87	0.99
N44	53.30	1
1A	11.58	0.99
1B	11.45	0.99
1C	11.53	0.99
1D	11.46	0.99
2A	11.47	0.99
2B	11.27	0.99
2C	11.52	0.99
2D	11.45	0.99
3A	11.55	0.99
3B	11.41	0.99
3C	11.48	0.99
3D	11.41	0.99
4A	11.49	0.99
4B	11.42	0.99
4C	11.46	0.99
4D	11.52	0.99
5A	11.64	0.99
5B	11.51	0.99
5C	11.53	0.99
5D	11.36	0.99
6A	11.47	0.99
6B	11.41	0.99
6C	11.36	0.99
6D	11.49	0.99
7A	11.16	0.99
7B	11.39	0.99
7C	11.59	0.99
7D	11.71	0.99
8A	11.24	0.99
8B	11.54	0.99
8C	11.41	0.99
8D	13.81	1
9A	11.68	0.99
9B	13.90	0.99
9C	11.45	0.99
9D	11.59	0.99
10A	11.46	0.99
10B	12.64	0.99
10C	10.79	0.99
10D	11.41	0.99

Table S1. Summary statistics of the sequencing data. N17 and N44 are the parental *Spar* strains, whereas the rest are meiotic spores. Each tetrad has a unique number, and the four spores of the tetrad are marked with A, B, C, and D.

11A	11.37	0.99
11B	11.47	0.99
11C	11.52	0.99
11D	13.84	0.99
12A	11.38	0.99
12B	11.48	0.99
12C	11.51	0.99
12D	11.49	0.99
13A	11.46	0.99
13B	11.49	0.99
13C	11.65	0.99
13D	11.61	0.99
14A	11.55	0.99
14B	11.21	0.99
14C	11.52	0.99
14D	11.36	0.99
15A	11.48	0.99
15B	11.44	0.99
15C	11.45	0.99
15D	11.58	0.99
16A	11.45	0.99
16B	11.45	0.99
16C	11.56	0.99
16D	11.45	0.99
17A	11.61	0.99
17B	11.50	0.99
17C	11.43	0.99
17D	11.52	0.99
18A	11.51	0.99
18B	11.48	0.99
18C	11.47	0.99
18D	11.48	0.99
19A	13.51	0.99
19B	11.43	0.99
19C	11.39	0.99
19D	11.49	0.99
20A	14.84	0.99
20B	11.52	0.99
20C	11.45	0.99
20D	11.46	0.99
21A	11.44	0.99
21B	11.50	0.99
21C	11.45	0.99
21D	11.39	0.99
22A	11.46	0.99
22B	11.33	0.99
22C	11.44	0.99

22D	11.48	0.99
23A	11.55	0.99
23B	11.38	0.99
23C	11.47	0.99
23D	11.43	0.99
24A	11.52	0.99
24B	11.37	0.99
24C	11.46	0.99
24D	13.04	0.99
25A	12.08	0.99
25B	10.19	0.99
25C	11.15	0.99
25D	11.18	0.99
26A	10.30	0.99
26B	9.85	0.99
26C	10.06	0.99
26D	10.49	0.99
27A	12.17	0.99
27B	11.62	0.99
27C	11.42	0.99
27D	12.52	0.99
28A	11.58	0.99
28B	10.66	0.99
28C	12.89	0.99
28D	11.21	0.99
30A	13.71	0.99
30B	13.43	0.99
30C	12.25	0.99
30D	14.11	1
31A	12.30	1
31B	13.13	0.99
31C	11.88	0.99
31D	12.75	0.99
32A	13.96	0.99
32B	13.49	0.99
32C	12.95	0.99
32D	12.77	1
33A	10.81	0.99
33B	11.99	0.99
33C	11.17	0.99
33D	11.99	0.99
34A	13.12	0.99
34B	11.15	0.99
34C	12.82	0.99
34D	13.49	0.99
35A	12.54	0.99
35B	11.33	1

250	11.70	0.00
33C	11.70	0.99
35D	11./9	l
36A	13.20	0.99
36B	11.94	0.99
36C	12.89	0.99
36D	13.14	0.99
37A	14.92	0.99
37B	11.87	0.99
37C	12.27	0.99
37D	12.62	0.99
38A	10.77	0.99
38B	12.64	0.99
38C	12.89	0.99
38D	11.18	0.99
39A	10.18	0.99
39B	11.44	0.99
39C	11.86	0.99
39D	11.10	0.99
40A	11.64	0.99
40B	12.22	0.99
40C	10.19	0.99
40D	12.78	0.99
41A	13.55	0.99
41B	11.17	0.99
41C	12.84	0.99
41D	12.15	0.99
42A	11.84	0.99
42B	14.04	1
42C	12.54	0.99
42D	12.49	0.99
43A	13.63	0.99
43B	14.43	0.99
43C	13.50	0.99
43D	11.39	0.99
44A	11.75	0.99
44B	12.43	0.99
44C	13.34	0.99
44D	11.77	0.99
45A	11.04	0.99
45B	12.11	0.99
45C	13.20	0.99
45D	11.28	0.99
46A	13.67	1
46B	12.84	0 00
46C	11 50	0.99
46D	11 39	0.99
47Δ	11.37	0.99
	11.37	0.79

47B	11.50	0.99
47C	11.45	0.99
47D	11.42	0.99
48A	11.55	0.99
48B	11.40	0.99
48C	11.35	0.99
48D	11.34	0.99
49A	11.23	0.99
49B	11.28	0.99
49C	11.35	0.99
49D	11.23	0.99
50A	11.28	0.99
50B	11.21	0.99
50C	11.21	0.99
50D	11.24	0.99
51A	11.18	0.99
51B	11.37	0.99
51C	11.29	0.99
51D	11.34	0.99
Average	12.22	0.99

Variables	Window	Scer (YJM789 \times S96)		Scer (YJM789	Scer (YJM789 \times YPS128)		Spar (N44 \times N17)	
	size	Spearman's p	P-value	Spearman's p	<i>P</i> -value	Spearman's p	P-value	
CO rate and heterozygosity	7							
	5 kb	0.0992	1.1e-5	0.0177	0.43	-0.0367	0.10	
	10 kb	0.0987	0.0020	0.0108	0.74	-0.0658	0.039	
	20 kb	0.129	0.0041	0.0225	0.62	-0.0308	0.50	
	40 kb	0.116	0.081	0.0201	0.76	0.00415	0.95	
NCO rate and heterozygosity								
	5 kb	0.244	5.7e-28	0.0454	0.044	0.00865	0.70	
	10 kb	0.283	1.8e-19	0.0753	0.018	-0.00672	0.83	
	20 kb	0.329	6.8e-14	0.0700	0.12	-0.0268	0.55	
	40 kb	0.347	9.2e-8	0.107	0.11	-0.0213	0.75	

Table S2. Correlation between local CO rate and heterozygosity and that between local NCO rate and heterozygosity at different scales.

