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(related to Fig. 1)
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(related to Fig. 5)
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Supplemental Fig. 4
(related to Fig. 6)
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Supplemental Fig. 1 (related to Fig. 1) Telomere dysfunction induces sirtuin repression in MEFs and liver
tissue while telomerase reactivation reverses these changes (a) IP-western: Pgc-1a and Sod2 are
hyperacetylated in G4 liver compared to WT liver tissue (shown are 3 per group; n= 9 per group; p < 0.05); (b)
Western blot analysis demonstrates that sirtuins are repressed in a cell-autonomous manner in G4 MEFs (3
independent cell lines/group; p < 0.05); (c) Combined IP-western blot analysis reveals hyperacetylation of
several sirtuin targets (p53, Foxo1, Cps1) in G4 MEFs (3 independent MEF lines/group; p < 0.05); (d)
Telomerase reactivation in two WT (#1; #2) and two G4 (#3; #4) MEF cell lines increases sirtuin protein
abundance in G4 MEFs without affecting sirtuin levels in WT MEFs; (e) Telomerase reactivation reverses
hyperacetylation of PGC-1a and FOXO1 in three G4 MEF cell lines; Results are quantified by densitometry and
expressed as mean * s.e.m.; t-test was used to determine statistical significance with p <0.05 considered as
significant, as indicated by ().

Supplemental Fig. 2 (related to Fig. 4) P53 regulates distinct set of miRNAs in G4 mice (a) Heat map of
differentially regulated miRNAs in G4/p53 +/+ (n= 5) and G4/p53 -/- (n= 6) liver tissue as determined by RNA
sequencing; (b) RT-qPCR-based analysis of p53-dependent miRNAs in liver tissue of WT and G4 mice (n= 8
per group). Results are expressed as mean + s.e.m.; t-test was used to determine statistical significance with
p <0.05 considered as significant, as indicated by ().

Supplemental Fig. 3 (related to Fig. 5) Telomere dysfunction is not associated with activation of mtUPR
response in the liver (a) RT-qPCR analysis of WT or G4 liver tissue does not show changes in expression
levels of mtUPR markers heat shock protein HSP 10, 60, 90 and protease CIpP (n= 4 per group; t-test was
used to determine statistical significance); (b) Western blot analysis of mtUPR markers does not show any
difference between WT and G4 mice (n= 4 per group)

Supplemental Fig. 4 (related to Fig. 6) (a) Representative H&E staining of liver section derived from WT and
G4 mice shows that NMN treated mice have less necrosis (see insert for blow-up of necrotic areas; n= 12 per
group); (b) Liver transaminase (ALT, AST) levels in peripheral blood are decreased in mice treated with NMN
indicative of decreased liver cell damage (n= 12 per group); (c) RT-gPCR analysis demonstrates decreased
expression of fibrosis-associated genes in mice treated with NMN (n= 12 per group); (d, e) yH2AX, p53 and
Tunel staining show minimal effect of TAA in WT mice compared to G4 mice; graphs on the right show
quantification of yH2AX foci per cell and number of p53 or Tunel positive cells per high-power field; (n = 8 per
group; for yH2AX determination a total of 50 cells per mouse were scored from 5 randomly chosen liver sections
and for p53 and Tunel the number of positive cells were determined from 5 random section and counted per
high-power field per mouse); (f) Hydroxyproline determination shows minimal collagen accumulation in TAA-
treated WT mice compared to G4 mice, which was significantly reduced with NMN treatment (n= 8 mice per
group); (g) Quantification of fibrosis shows TAA induces minimal fibrosis in WT mice while G4 mice develop
marked fibrosis, which is significantly improved with NMN treatment (n= 8 mice per group); (h) Western blot
analysis of G4 mice subjected to TAA shows significant increase of sirtuins in mice treated with NMN (shown
are 4 mice of 8 total analyzed). Results are expressed as mean * s.e.m.; t-test was used to determine statistical
significance with p <0.05 considered as significant, as indicated by (+).

Supplemental Fig. 5 (related to Fig. 7) NMN has no effect in TAA- treated wild type mice with preserved
telomeres (a, b) TAA treatment has little effect on fibrosis development in WT mice after 4 week of treatment
as indicated by (a) low hydroxyproline and (b) fibrosis score, which is not altered by NMN treatment; (c) number
of telomere-induced foci (TIF’s) per cell is reduced with NMN treatment in G4 mice and this is blunted in the
absence of Sirt1; WT mice have very few TIFs and this is not impacted by NMN; (d-f) NMN does not affect (d)
mitochondrial biogenesis factors, () mtDNA copy number and (f) complex | and IV activity (in mice with
preserved telomeres, irrespective of Sirt1 status; (n= 8 per group). Results are expressed as mean * s.e.m.; t-
test was used to determine statistical significance with p <0.05 considered as significant, as indicated by (+).
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