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Supplemental Fig. 1
  (related to Fig. 1)
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Supplemental Fig. 2
  (related to Fig. 4)



Supplemental Fig. 3
  (related to Fig. 5)
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Supplemental Fig. 4
  (related to Fig. 6)
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Supplemental Fig. 5
  (related to Fig. 7)
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Supplemental Fig. 2 (related to Fig. 4) P53 regulates distinct set of miRNAs in G4 mice (a) Heat map of 
differentially regulated miRNAs in G4/p53 +/+ (n= 5) and G4/p53 -/- (n= 6) liver tissue as determined by RNA 
sequencing; (b) RT-qPCR-based analysis of p53-dependent miRNAs in liver tissue of WT and G4 mice (n= 8 
per group). Results are expressed as mean ± s.e.m.; t-test was used to determine statistical significance with 
p <0.05 considered as significant, as indicated by (*). 

Supplemental Fig. 1 (related to Fig. 1) Telomere dysfunction induces sirtuin repression in MEFs and liver 
tissue while telomerase reactivation reverses these changes (a) IP-western: Pgc-1α and Sod2 are 
hyperacetylated in G4 liver compared to WT liver tissue (shown are 3 per group; n= 9 per group; p < 0.05); (b) 
Western blot analysis demonstrates that sirtuins are repressed in a cell-autonomous manner in G4 MEFs (3 
independent cell lines/group; p < 0.05); (c) Combined IP-western blot analysis reveals hyperacetylation of 
several sirtuin targets (p53, Foxo1, Cps1) in G4 MEFs (3 independent MEF lines/group; p < 0.05); (d) 
Telomerase reactivation in two WT (#1; #2) and two G4 (#3; #4) MEF cell lines  increases sirtuin protein 
abundance in G4 MEFs without affecting sirtuin levels in WT MEFs; (e) Telomerase reactivation reverses 
hyperacetylation of PGC-1α and FOXO1 in three G4 MEF cell lines; Results are quantified by densitometry and 
expressed as mean ± s.e.m.; t-test was used to determine statistical significance with p <0.05 considered as 
significant, as indicated by (*). 
 

Supplemental Fig. 4 (related to Fig. 6) (a) Representative H&E staining of liver section derived from WT and 
G4 mice shows that NMN treated mice have less necrosis (see insert for blow-up of necrotic areas; n= 12 per 
group); (b) Liver transaminase (ALT, AST) levels in peripheral blood are decreased in mice treated with NMN 
indicative of decreased liver cell damage (n= 12 per group); (c) RT-qPCR analysis demonstrates decreased 
expression of fibrosis-associated genes in mice treated with NMN (n= 12 per group); (d, e) γH2AX, p53 and 
Tunel staining show minimal effect of TAA in WT mice compared to G4 mice; graphs on the right show 
quantification of  γH2AX foci per cell and number of p53 or Tunel positive cells per high-power field;  (n = 8 per 
group; for  γH2AX determination a total of 50 cells per mouse were scored from 5 randomly chosen liver sections 
and  for p53 and Tunel  the number of  positive cells were determined from 5 random section and counted per 
high-power field per mouse); (f) Hydroxyproline determination shows minimal collagen accumulation in TAA-
treated WT mice compared to G4 mice, which was significantly reduced with NMN treatment (n= 8 mice per 
group); (g) Quantification of fibrosis shows TAA induces  minimal fibrosis in WT mice while G4 mice develop 
marked fibrosis, which is significantly improved with NMN treatment (n= 8 mice per group);  (h) Western blot 
analysis of G4 mice subjected to TAA shows significant increase of sirtuins in mice treated with NMN (shown 
are 4 mice of 8 total analyzed). Results are expressed as mean ± s.e.m.; t-test was used to determine statistical 
significance with p <0.05 considered as significant, as indicated by (*). 
 
 
 
 
 
 
 
Results are expressed as mean ± s.e.m., and t-test was used for statistical differences; *p<0.05. 

Supplemental Fig. 5 (related to Fig. 7) NMN has no effect in TAA- treated wild type mice with preserved 
telomeres (a, b) TAA treatment has little effect on fibrosis development in WT mice after 4 week of treatment 
as indicated by (a) low hydroxyproline and (b) fibrosis score, which is not altered by NMN treatment; (c) number 
of telomere-induced foci (TIF’s) per cell is reduced with NMN treatment in G4 mice and this is blunted in the 
absence of Sirt1; WT mice have very few TIFs and this is not impacted by NMN; (d-f) NMN does not affect (d) 
mitochondrial biogenesis factors, (e) mtDNA copy number and (f) complex I and IV activity (in mice with 
preserved telomeres, irrespective of Sirt1 status; (n= 8 per group).  Results are expressed as mean ± s.e.m.; t-
test was used to determine statistical significance with p <0.05 considered as significant, as indicated by (*). 
 
 
 
 
 
Results are expressed as mean ± s.e.m., and t-test was used for statistical differences; *p<0.05. 

Supplemental Fig. 3 (related to Fig. 5) Telomere dysfunction is not associated with activation of mtUPR 
response in the liver (a) RT-qPCR analysis of WT or G4 liver tissue does not show changes in expression 
levels of mtUPR markers heat shock protein HSP 10, 60, 90 and protease ClpP (n= 4 per group; t-test was 
used to determine statistical significance); (b) Western blot analysis of mtUPR markers does not show any 
difference between WT and G4 mice (n= 4 per group)                     
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