Supplementary material

Liebl et al.

Supplementary Tables

 Table S1. List of bacterial strains and mutants

Bacterial strain	Description	Source or reference
P. aeruginosa PAO1	PAO1-UW	J. Mougous Lab
	∆ <i>рррА</i> (РА0075)	(51)
	Δ <i>ppkA</i> (PA0074)	(51)
	Δ <i>tagQ</i> (PA0070)	(51)
	Δ <i>tagR</i> (PA0071)	(51)
	Δ <i>tagS</i> (PA0072)	(51)
	Δ <i>tagT</i> (PA0073)	(51)
	Δ <i>tssM</i> (PA0077)	(51)
	Δ <i>tssE</i> (PA0087)	this work
	Δ <i>tssK</i> (PA0079)	this work
A. baumannii 17978	WT	(40)
	ΔtssM	(40)
E. coli	DH5α pRK2013	Laboratory collection
E.coli	DH5α pBluescript	Laboratory collection

Table S2. List of plasmids

Name	Description and relevant features	Source or reference
pJN105	<i>Replicative plasmid</i> (<i>araC</i> -p <i>BAD</i> cloned in pBBR1MCS-5; Gm ^R)	(52)
pSW196	mini-CTX1 based plasmid <i>(araC-pBAD</i> from pBAD30; Tc ^R)	(56)
pRK2013	helper plasmid for conjugation (oriColE1 RK2-Mob+ RK2-Tra+; Km ^R)	Addgene
pEXG2	Cloning vector for allelic exchange, <i>sacB</i> , Gm ^R	(53)
pCR-Blunt-II-Topo	Plasmid for fusion gene subcloning and sequencing	Invitrogen
pJN105:TssK-sfGFP pJN105:TssB-GFP pJN105:TssE-sfGFP pSW196:TssK-RFPT	C-Term. PA0079 translational fusion with sfGFP C-Term. PA0083 translational fusion with GFP C-Term. PA0087 translational fusion with sfGFP C-Term. PA0079 translational fusion with RFPT	This study This study This study This study

Table S3. List of primers

Primers	Sequence	Description
TssK-F	5'CCGAATTCACCTTCGGAGTCCCTATGTCC'3	PCR PA0079/TssK
TssK-R	5'CCACTAGTTCCTCGAATGGCCCAGAAGGC'3	
TssK.TGA-R	5' CGACTAGTTCATCCTCGAATGGCCC 3'	
TssE-F	5'CCGAATTCGCCGACGGACGCCTGACATG'3	PCR PA0087/TssE
TssE-R	5'CCACTAGTTGTACGCCTCCGCTCGCCCT'3	
TssE.TGA-R	5' CGACTAGTTCATGTACGCCTCCGCTC 3'	

Supplementary Figures

Prey - E. coli (pBluescript)

Figure S1. Functionality of T6SS analysed by competition assays between PAO1 strains expressing different fusion constructs and *E. coli* DH5 α containing pBlueScript. PAO1 (WT) expressing RFPT (from pSW196) and PAO1 Δ *ppkA* were used as positive and negative control, respectively. PAO1 expressing (1) *tssK-sfGFP*, (2) *tssE-sfGFP*, (3) *tssB-GFP*, (4) *tssB-GFP* and *tssK-RFPT*, (5) *tssE-sfGFP* and *tssB-RFPT* and (6) *tssE-sfGFP* and *tssK-RFPT* were tested against *E. coli* as a prey. All fusions are described in Material & Methods. Expression of fusions were induces with 0.025% arabinose. Competition assays show that all fusions inhibit T6SS-mediated killing compared to the PAO1 WT. Upper panel: counts of *E. coli* colony forming units (CFU) in three independent competing reaction. Lower panel: representative images of 10⁻⁵ dilution spotted on LB, X-gal/IPTG plates.

FIGURE S2

Figure S2. Fluorescence microscopy images of *P. aeruginosa* wild-type, $\Delta pppA$ and $\Delta ppkA$ mutants expressing TssK-sfGFP. Note that no discernible TssK-sfGFP assemblies were found in $\Delta ppkA$ mutant cells. Representative fluorescence images are shown. TssK-spots are highlighted by arrows. Bars = 0.5 µm

Figure S3. Expression levels of different protein fusions with sfGFP in wild-type strain and different mutants. Strains expressing *tssB-sfGFP* (A) or *tssK-sfGFP* (B) from either integrative

pSW196 or replicative pJN105 plasmid were analyzed by immunoblotting using GFP polyclonal antibodies. RpoA was used as loading control.

FIGURE S4

Figure S4. Time-lapse series of *P. aeruginosa* expressing TssK-sfGFP in mixed culture with *A. baumannii* (border by dashed lines). Note that perimembrane TssK spots are oriented specifically towards the contact with competing bacteria (arrows). Selected bright field (upper panel) and fluorescence (lower panel) images from a time-lapse are shown. Bars = $0.5 \mu m$

FIGURE S5

Figure S5. (A) Dynamics of TssK-baseplate assembly-disassembly is not significantly affected in $\Delta tssE$ mutant in comparison to the wild-type *P. aeruginosa* PAO1. Time-lapse series demonstrate transient, perimembrane assembly and disassembly of TssK-baseplate structure (indicated by arrows) within a period of 90-100 sec. Bars = 0.5 µm. (B) TssK spot incidence in the wild-type PAO1 strain, in $\Delta tssE$ and in complemented strain $\Delta tssE/tssE$ expressing the same construct was not significantly different. (C) Assembly of TssB-GFP structures in wild type (WT), $\Delta tssE$ and $\Delta tssE::tssE$. Note readily detectable TssB structures in WT and $\Delta tssE::tssE$.

Supplementary Material and Methods

Competition assays

The competition assays were performed as previously described (Hachani *et al.*, 2013). *P. aeruginosa* and *E. coli* (pBluescript) were grown overnight in 3 ml LB medium supplemented with appropriate antibiotics. Diluted overnight cultures were inoculated in the same medium containing 0.025% arabinose (to induce the expression of specific fusion) and the culture was grown until OD_{600} =1. Then 1 ml of each culture were spin down and pellet was resuspended in 100 µl LB with arabinose 0.025%. Indicated *P. aeruginosa* strains (predator) were mixed with *E. coli* (prey) in ratio 1:2 (predator:prey). Competition reactions (20 µl), realized in triplicate, were spotted onto LB agar plates containing 50 µg/ml ampicillin and incubated 5 hours at 37°C. The totality of bacteria was recover in LB and dilutions were plated in triplicates onto LB plates containing Xgal (40 µg/ml) and IPTG (100 µM) to visualize *E. coli* (blue colonies).

Western blotting

The expression levels of protein fusions in different mutants were assessed by immunoblotting. For the Western blot, total bacterial samples (OD₆₀₀=1) were separated on Criterion 4-20% TGX precasted gels, BioRad and transferred onto a PVDF membrane (GE.Healthcare) by electrotransfert in 20 % Laemmli buffer. After blocking step in 5 % milk, polyclonal anti-GFP antibodies (diluted 1/5000^e in PBS buffer with 0.1 % Tween20) were incubated one hour at room temperature, followed with a second antibodies incubation (anti-rabbit HRP, dilution 1/20 000, Sigma). Detection was performed using Luminata Classico HRP-substrate (Millipore) using BioRad ChemiDoc apparatus.

Supplementary reference

 Hachani A, Lossi NS, & Filloux A (2013) A visual assay to monitor T6SS-mediated bacterial competition. *Journal of visualized experiments : JoVE* 10.3791/50103(73):e50103.