
Reviewers' Comments: 

Reviewer #1: 
Remarks to the Author: 
In this manuscript, Sichtig and colleagues describe the development and benchmarking of the 
publicly available FDA-ARGOS database, designed to be a regulatory-grade database that 
addresses existing database gaps with quality-controlled genomic sequences. In addition to 
presenting quality control metrics, they also describe 3 case studies highlighting potential 
applications of FDA-ARGOS for infectious disease diagnostics: (1) as an in silico comparator tool, 
(2) to identify Enterococcus avium in a contrived cultured genome spiked into matrix, and (3) to
identify Ebola virus in clinical serum samples. The authors are to be commended for the
development of what will likely be a valuable public database resource for researchers, laboratory
physicians, and clinical assay developers. We do need more comprehensive and accurate
databases, and the existence of and ongoing additions to the FDA-ARGOS database are critical to
addressing this need. The C-RM approach is novel and an elegant method to benchmark ID-NGS
assays. Overall, the findings of this manuscript and the presentation of the FDA-ARGOS database
are of great interest to the genomics community and the fields of microbiology, microbiome,
biothreat surveillance, public health, and infectious diseases. The database is public and open to
further submissions by others. However, I believe that the selective advantages of the database
have been overstated and related to this have several concerns about the case studies and
bioinformatics analyses as presented that should be addressed.

1. First, a major premise of the manuscript is that when considering alternatives of “the more data
the better” versus the need for “quality-controlled, highly curated genomes”, the “experiments and
data presented here support the latter of these two arguments”. I don’t believe that the results as
currently presented justify these claims. For example, in Figure 4, it’s clear that the major factor in
sensitivity of identification is the availability of genome sequences and not the quality of those
sequences per se. It’s obvious that Kraken did not identify E. avium because its database doesn’t
have any representation of E. avium genomes. When FDA-ARGOS E. avium genomes are added,
either alone or in combination with the standard Kraken database, Kraken is able to detect E.
avium. The authors should add existing E. avium, non-FDA-ARGOS sequences to the Kraken
database and rerun the algorithm (as well as MegaBLAST) as a more fair and appropriate
comparison. This would allow them to address the critical question of whether incompleteness of
databases or quality of genome sequences is more important in determining the performance of
reference-based ID-NGS alignment.

2. Also, for MegaBLAST, there were fewer reads identified specifically as E. avium when using the
standard database in combination versus using the FDA-ARGOS alone. I would argue that this is a
good thing – in contrast with the views of the authors (lines 469-472) -- because presumably the
standard database (NCBI Nt) has more genomes of related organisms such as E. faecium, E.
faecalis, E. gallinarum, etc. so that MegaBLAST is appropriately taxonomically classifying the reads
so that only reads that are species-specific to E. avium are included. If this is the case, it is an
example of the limitations of using a more limited, albeit higher-quality database such as FDA-
ARGOS versus NCBI nt. The authors should comment on this.

3. I do not believe that FDA-ARGOS as an incomplete, albeit high-quality database would be
superior to NCBI Nt, a variable quality, yet comprehensive database. Having fewer sequences
limits your ability to appropriately taxonomically classify organisms; for instance, we have found
that the more genome representation in your database, the better you are able to distinguish
between closely related species such as Shigella flexneri and Escherichia coli. It is true that
misannotations and bias in databases are an issue; however, the comprehensiveness alone would
lead one to prefer end-users to adopt NCBI Nt rather than FDA-ARGOS at present (FDA-ARGOS is
severely limited with respect to viruses and parasites, for instance), at least until FDA-ARGOS
grows much larger. It seems to me that a combination of NCBI Nt and FDA-ARGOS would be at
present the best database to use, instead of reliance on FDA-ARGOS alone. This should be



discussed in-depth in the manuscript.  
 
4. A more direct comparison of FDA-ARGOS with “standard databases” would be if the authors 
took the curated, finished FDA-ARGOS genomes and simulated the incomplete and error-prone 
genomes that may exist in NCBI nt, and then used this modified FDA-ARGOS database for 
purposes of in silico comparison. This would be probably the best method to separate the effects of 
database size/completeness and database quality. It's unclear why the authors did not do so.  
 
5. It would be helpful to the readers to understand the justification for why the authors chose their 
threshold metrics for the FDA-ARGOS database (i.e. 95% coverage at 20X depth, at least 5 
representative genomes in that species) as constituting “regulatory-grade” genomes.  
 
6. For the E. avium case, it would be useful to make clear in the figures about how many isolates 
of E. avium in NCBI Nt were remaining after removing SAMN04327393 versus how many isolates 
of E. avium were in FDA-ARGOS (n=4 is mentioned but only in line 486). The authors state that 
“..reads classified as E. avium ranged from an average 3829 and 840 when FDA-ARGOS genomes 
were added...compared to an average 29 and 0 reads when these genomes were absent...”. I find 
it hard to believe that there were only 29 reads identified using MegaBLAST (versus 3829 with 
FDA-ARGOS) if there were 4 genomes of E. avium in NCBI Nt, no matter how poor the quality. 
Furthermore, it is a little deceptive to state that E. avium reads were 840 for Kraken with FDA-
ARGOS but 0 for Kraken because the standard Kraken database doesn’t contain E. avium 
sequences. A more fair assessment, as mentioned previously, is to add the NCBI Nt E. avium 
sequences to the Kraken database and re-run the algorithm.  
 
7. For the Ebola case study, why were only FDA-ARGOS EBOV genomes assessed? EBOV genomes 
are well represented in NCBI Nt especially due to the amount of sequencing done during the West 
African EBOV outbreak and the ongoing recent outbreaks in the DRC. Why are FDA-ARGOS EBOV 
sequences needed specifically? Why can’t a representative subset of EBOV sequences from NCBI 
Nt be used for the C-RM approach? It is stated that “FDA-ARGOS alone was sufficient for in silico 
comparison”. However, wouldn’t a random selection of representative EBOV sequences (non FDA-
ARGOS) from NCBI Nt also be “sufficient”?  
 
8. The C-RM approach is elegant but still requires a gold standard. This needs to be underscored in 
the discussion, as for many diseases, there may not be a gold standard clinical diagnostic test. A 
particularly relevant example is early acute Lyme disease (Borrelia burgdorferi PCR has low 
sensitivity; two-tiered antibody testing takes 2-4 weeks). This should be mentioned as a potential 
limitation of in silico validation using C-RM.  
 
 
MINOR POINTS:  
 
1. The authors mention using two different read technologies, PacBio and Illumina, in generating 
consensus sequences. Is this really needed? Arguably, the long reads may be needed for gene 
synteny but this would be primarily useful for unknown and/or novel reference genomes rather 
than genomes for which there is at least one high- or moderate-quality reference in NCBI nt. 
Furthermore, the use of even PacBio and Illumina may not even be sufficient to finish genomes 
with highly repetitive genome structures such as Prevotella copri, as elegantly described by Bhatt, 
et al and colleagues 
(https://www.nature.com/articles/nbt.4266?WT.feed_name=subjects_genome-informatics), in 
which nanopore sequencing and de novo assembly were required. This should be mentioned 
somewhere in the manuscript.  
 
2. Regarding lines 360-365, it would be helpful for more description of what is meant by “gaps” in 
the database that FDA-ARGOS sought to address. Are these genomes? Near neighbors?  
 



3. The authors should mention that finishing the ends of viral genomes with 5’/3’ RACE, while 
critically important in virology such as development of an infectious clone, is likely less important 
for the purposes of reference-based NGS alignment, as the ends of viruses are usually not well-
represented in metagenomic sequencing (especially with library preparation techniques using 
transposons such as Nextera which cleave internal to the sequence).  
 
4. It might be preferable to describe the case studies as 2 rather than 3, as the first case study 
appears to be embedded with the EBOV example.  
 
 
 
Reviewer #2:  
Remarks to the Author:  
In their manuscript “FDA-ARGOS: A Public Quality-Controlled Genome Database Resource for 
Infectious Disease Sequencing Diagnostics and Regulatory Science Research”, Dr. Sichtig et al. 
describe extensive efforts to generate a publicly available database as a tool to support innovation 
of emerging technologies and provide an in-silico comparator tool that could reduce the burden for 
completing ID-NGS clinical trials. The manuscript also discusses quality control metrics for the 
proposed FDA-ARGOS database and presents three examples demonstrating potential applications 
for FDA-ARGOS in infectious disease diagnostics.  
 
Major Comments  
 
1) This reviewer congratulates the authors for undertaking a very important effort in generating a 
reference database of regulatory-grade, high-quality genome sequences. In several of the 
discussed applications of ID NGS, it will be common to generate sequencing data for microbes and 
pathogens that have no identical reference genome available (as the full genomic diversity of 
bacteria, viruses, and eukaryotic pathogens is not known and continuously changing). While likely 
not of higher quality, test-specific databases may be larger than the FDA-ARGOS database. It is 
therefore possible that test-specific databases will contain one or more reference sequences that 
are more similar to a given organism identified by a new test. In this case, analysis of the same 
raw sequencing data with the FDA-ARGOS database may produce different (but not necessarily 
wrong) results. The authors should consider discussing the limitations of inherently incomplete 
databases and potential pathways to resolving discrepancies that result from varying database 
completeness.  
Clearly, scalability of efforts required to create curated and comprehensive databases is a concern. 
The authors briefly discuss how scalability of the FDA-ARGOS database could be increased (lines 
589-592). Could the authors expand on the strategy and timeline for including existing genomic 
data into a regulatory-grade database? What quality control metrics could be implemented to 
include existing (rather than newly-generated) genome data into the FDA-ARGOS database?  
 
2) Lines 368-369: “An initial collection criterion focused on sequencing at least 5 diverse isolates 
per species”  
The authors may want to discuss how intra-species diversity may affect completeness of genetic 
representation by 5 isolates. This number may be too small for some taxa, especially bacteria with 
high genetic diversity and viruses.  
 
3) Use Case 1  
This contrived sample contained ~4000 sequencing reads of E. avium, representing approximately 
10-15% of the bacterial genome. Do the authors consider this a sufficient representation for a 
positive result? This reviewer does not necessarily disagree with a positive interpretation. Given 
the intended use of the FDA ARGOS database, it would be valuable to the audience to learn more 
about how the authors think about defining true positive results.  
 
 



Minor Comments  
• Lines 297-298, 312-313: “For this study, the taxon associated with the first reported alignment 
was used as the taxonomic label for each read...”  
Albeit easy to implement, this approach oversimplifies the complexity of the classification problem. 
For example, ‘assigning the taxonomic label for each read to the first reported alignment’ is highly 
dependent on the accuracy of reference sequence annotations, which are frequently incorrect or 
incomplete in the NCBI nt database. In addition, sequencing reads may map equally well to 
reference sequences with different taxonomic annotations. In this case, simply assigning the 
sequencing read to the ‘first reported alignment’ (presumably sorted by max alignment score).  
 
• Lines 249-250: “...paired end reads were trimmed utilizing a quality of 0.05 and reads below 
50bp in length were removed...“  
Please provide additional details for quality trimming.  
 
• Lines 250-253: “Trimmed reads were then mapped to E. avium assembly GCF_000407245.1 and 
H. sapiens assembly GCA_000001405.27. Mapping parameters were as follows: mismatch 
costs=2, insertions costs=3, deletion costs=3, length and similarity fraction = 0.8.”  
What mapping tool was used for this analysis?  
 
• Line 262: “The threshold for positive calls was determined by the no template control (NTC).”  
This sentence is not entirely clear. Was the number of reads obtained with the NTC defined as the 
threshold for a positive call? If so, the use of an NTC for this purpose may provide a false sense of 
security as higher read counts may be obtained in samples positive for related viruses (causing 
false-positive results).  
 
• Lines 360-362: “FDA, DOD, NCBI and other agencies using scientific literature, a phylogenetic 
data mining approach, and FDA microbial species-specific guidance documents identified more 
than 1000 gaps in public microbial genomic repositories. We prioritized these gaps and selected 
biothreat microorganisms, common clinical pathogens and closely related species (See 
Supplemental Materials for the organism gap list).”  
Which supplemental file are the authors referring to?  
 
• Lines 449-451 “For frame-of-reference, we would need over 30,000 reads to de novo assemble 
an entire genome of approximately 5 Mb at 1X coverage, assuming a read size of 150 bp and 
perfect quality of each generated read at all positions”  
The authors may want to choose a more realistic example. De novo assembly of a bacterial 
genome is not possible with 1X coverage.  
 
• Lines 465-467 “Interestingly, while E. avium genomes were available in the NCBI nt database 
and part of the read classification for MegaBLAST analyses, positive ID-NGS identification required 
the addition of quality-controlled FDA-ARGOS reference genomes”  
Did the authors assess whether the E. avium genomes were available in the NCBI nt database 
were complete? Were they correctly identified? What was the average nucleotide identity of 
SAMN04327393 with the E. avium genomes contained in the NCBI nt database? Please provide 
additional information for the difference in results.  
 
• Lines 488-489 “These top hits were potentially database contaminants and illustrate the risk of 
using non-curated databases in ID-NGS diagnostics”  
In addition, the authors may want to consider discussing the potential impact of different 
classification algorithms or criteria.  
 
• Lines 614-615 “Experiments and data presented here support the latter of these two 
arguments.”  
This reviewer does not disagree with this conclusion for the given examples. However, this was in 
part because the FDA ARGOS database included reference genomes for the studied examples. The 



authors should discuss how results may differ in cases where a high-quality genome is not 
available for a pathogen contained in a given sample.  



Reviewer’s comments: 

Note: We highlighted all edits in response to reviewer comments throughout the paper. 

Reviewer #1 (Remarks to the Author): 

In this manuscript, Sichtig and colleagues describe the development and benchmarking of the publicly 
available FDA-ARGOS database, designed to be a regulatory-grade database that addresses existing 
database gaps with quality-controlled genomic sequences. In addition to presenting quality control 
metrics, they also describe 3 case studies highlighting potential applications of FDA-ARGOS for infectious 
disease diagnostics: (1) as an in silico comparator tool, (2) to identify Enterococcus avium in a contrived 
cultured genome spiked into matrix, and (3) to identify Ebola virus in clinical serum samples. The 
authors are to be commended for the development of what will likely be a valuable public database 
resource for researchers, laboratory physicians, and clinical assay developers. We do need more 
comprehensive and accurate databases, and the existence of and ongoing additions to the FDA-ARGOS 
database are critical to addressing this need. The C-RM approach is novel and an elegant method to 
benchmark ID-NGS assays. Overall, the findings of this manuscript and the presentation of the FDA-
ARGOS database are of great interest to the genomics community and the fields of microbiology, 
microbiome, biothreat surveillance, public health, and infectious diseases. The database is public and 
open to further submissions by others. However, I believe that the selective advantages of the database 
have been overstated and related to this have several concerns about the case studies and 
bioinformatics analyses as presented that should be addressed. 

We thank the reviewer for the remarks and the opportunity to address concerns about the case studies 
and bioinformatics analyses. 

1. First, a major premise of the manuscript is that when considering alternatives of “the more data the 
better” versus the need for “quality-controlled, highly curated genomes”, the “experiments and data 
presented here support the latter of these two arguments”. I don’t believe that the results as currently 
presented justify these claims. For example, in Figure 4, it’s clear that the major factor in sensitivity of 
identification is the availability of genome sequences and not the quality of those sequences per se. It’s 
obvious that Kraken did not identify E. avium because its database doesn’t have any representation of E. 
avium genomes. When FDA-ARGOS E. avium genomes are added, either alone or in combination with 
the standard Kraken database, Kraken is able to detect E. avium. The authors should add existing E. 
avium, non-FDA-ARGOS sequences to the Kraken database and rerun the algorithm (as well as 
MegaBLAST) as a more fair and appropriate comparison. 

This would allow them to address the critical question of whether incompleteness of databases or 
quality of genome sequences is more important in determining the performance of reference-based ID-
NGS alignment. 

We thank the reviewer for the suggestions. We revised our use case 1 to address the impact of genome 
quality on performance of reference-based ID-NGS alignment applications.  



More specifically, we generated 200 randomized database instances by sub sampling NCBI GenBank and 
FDA-ARGOS assemblies.  Each database instance has the identical species composition and number of 
assemblies per species. The exact species composition of the assembly sets was determined by finding 
an intersection of the FDA-ARGOS assemblies and GenBank assemblies. We ran 2400 simulations using 
triplicate E. avium metagenomics and isolate samples in combination with the normalized NCBI and 
FDA-ARGOS database instances. A summary and the underlying raw data are available in updated 
Supplemental Tables 4, 4a, 4b, 5, 5a and 5b. We updated Figure 4 with a heatmap visualization of the 
MegaBLAST tool results from triplicate metagenomics E. avium samples.   

We believe that these new simulations provide a more fair comparison. MegaBlast and Kraken tools 
were used for bioinformatics analyses. Our updated results clearly demonstrated that genome quality 
critically impacts final call performance.  

2. Also, for MegaBLAST, there were fewer reads identified specifically as E. avium when using the 
standard database in combination versus using the FDA-ARGOS alone. I would argue that this is a good 
thing – in contrast with the views of the authors (lines 469-472) -- because presumably the standard 
database (NCBI Nt) has more genomes of related organisms such as E. faecium, E. faecalis, E. gallinarum, 
etc. so that MegaBLAST is appropriately taxonomically classifying the reads so that only reads that are 
species-specific to E. avium are included. If this is the case, it is an example of the limitations of using a 
more limited, albeit higher-quality database such as FDA-ARGOS versus NCBI nt. The authors should 
comment on this.  

While NCBI Nt has more genome diversity our updated use case 1 clearly demonstrated that quality 
matters and is expected to impact more accurate species-specific organism identification.  

For use case 1, we sequenced an E. avium metagenome (E. avium at 105 in mock clinical matrix) and 
isolate sample. Our expectation was to see low level E. avium reads in the metagenome sample. The 
species identification algorithms (MegaBLAST, Kraken) were connected to 200 normalized NCBI Nt 
database (varying quality) and FDA-ARGOS database instances and contained the same number of 
randomly chosen E. avium, E. faecium, E. faecalis, E. durans, E. gallinarum and E. hirae reference 
genomes. Our results from 2400 simulations showed that high quality reference genomes enable more 
precise species-specific calls.  

Most outstanding were the 1200 metagenome simulations. E. avium was called consistently at an 
average read number of 61 with the FDA-ARGOS and normalized NCBI Nt database instances. However, 
an average 20% of reads mapped to other microbial species with the normalized NCBI Nt database 
instances. Here, Vibrio vulnificus and E. faecium were called at over 10% each in the metagenome 
sample (Supplemental Table 4, 4a, 4b). This presents a dilemma for species identification applications 
where sample makeup is presumably unknown. In our cases, 33 (MegaBLAST) and 39 (Kraken) species 
would need to be ruled out before the correct call could be made. Many of these species calls are 
clinically relevant and well above a 1% mapped reads cutoff. 



The 1200 isolate simulations revealed that Enterococcus genus was consistently called with Enterococcus 
avium as the top species. To our surprise, several simulations with the normalized NCBI Nt database 
showed Enterococcus hirae as top hit (Supplemental Table 5, 5a, 5b). 

3. I do not believe that FDA-ARGOS as an incomplete, albeit high-quality database would be superior to 
NCBI Nt, a variable quality, yet comprehensive database. Having fewer sequences limits your ability to 
appropriately taxonomically classify organisms; for instance, we have found that the more genome 
representation in your database, the better you are able to distinguish between closely related species 
such as Shigella flexneri and Escherichia coli. It is true that misannotations and bias in databases are an 
issue; however, the comprehensiveness alone would lead one to prefer end-users to adopt NCBI Nt 
rather than FDA-ARGOS at present (FDA-ARGOS is severely limited with respect to viruses and parasites, 
for instance), at least until FDA-ARGOS grows much larger. It seems to me that a combination of NCBI Nt 
and FDA-ARGOS would be at present the best database to use, instead of reliance on FDA-ARGOS alone. 
This should be discussed in-depth in the manuscript. 

We would like to thank the reviewer and added additional content to the discussion section of the 
manuscript regarding this topic.   

To our knowledge, all current databases are incomplete regarding coverage of the tree of life, including 
NCBI Nt. FDA-ARGOS genomes are a subset of NCBI Nt. We agree with the reviewer that genomes in 
NCBI Nt are of variable quality and may contribute to uncertainties in data analysis as demonstrated in 
our updated use case 1. 

We are not claiming superiority but propose control of uncertainties in data analysis through “walled 
off” genomes within NCBI Nt that passed through rigorous quality control fit for diagnostic use. The FDA-
ARGOS genome subset contains quality-controlled reference genomes for diagnostic use with minimum 
metadata, high quality assemblies, high depth of raw sequence coverage from two independent 
sequencing platforms, orthogonal validation and de-novo sequence-based taxonomy verified by NCBI 
ANI.  

We fully support the use of NCBI Nt as a reference database, but with caution. FDA-ARGOS is an 
additional resource, specifically tailored for diagnostic purposes. Our primary goal for FDA-ARGOS 
genomes is to provide a reference method to enable in silico validation and advance innovation.  

The high-quality reference genome data and quality metrics are publicly available, so the community 
can develop FDA-ARGOS like quality genomes and deposit. It is also our intent to expand FDA-ARGOS 
with existing high quality public genome data.  

4. A more direct comparison of FDA-ARGOS with “standard databases” would be if the authors took the 
curated, finished FDA-ARGOS genomes and simulated the incomplete and error-prone genomes that 
may exist in NCBI nt, and then used this modified FDA-ARGOS database for purposes of in silico 
comparison. This would be probably the best method to separate the effects of database 
size/completeness and database quality. It's unclear why the authors did not do so. 



This is a great suggestion. Unfortunately, we are not aware of published NCBI nt error profile metrics 
that would allow systematic simulation of incomplete and error-prone genomes. Instead, we updated 
use case 1 and generated normalized NCBI Nt database instances that resemble FDA-ARGOS in 
composition and size and ran 2400 simulations to test effects of database quality (see response to 
comment 1 and 2). 

We ran additional simulations for use case 1 with randomly “chopped up” FDA-ARGOS genomes. We did 
not observe a significant impact on species identification performance. This is expected given thatmost 
classification algorithms “chop up” genomes as part of their processing. We hypothesize that there is a 
dependency between size of contigs and species identification performance however this study is 
outside the scope of this paper.  

5. It would be helpful to the readers to understand the justification for why the authors chose their 
threshold metrics for the FDA-ARGOS database (i.e. 95% coverage at 20X depth, at least 5 
representative genomes in that species) as constituting “regulatory-grade” genomes. 

Thank you for your comment. We expanded the discussion section and added our justification. 

6. For the E. avium case, it would be useful to make clear in the figures about how many isolates of E. 
avium in NCBI Nt were remaining after removing SAMN04327393 versus how many isolates of E. avium 
were in FDA-ARGOS (n=4 is mentioned but only in line 486). The authors state that “..reads classified as 
E. avium ranged from an average 3829 and 840 when FDA-ARGOS genomes were added...compared to 
an average 29 and 0 reads when these genomes were absent...”. I find it hard to believe that there were 
only 29 reads identified using MegaBLAST (versus 3829 with FDA-ARGOS) if there were 4 genomes of E. 
avium in NCBI Nt, no matter how poor the quality. Furthermore, it is a little deceptive to state that E. 
avium reads were 840 for Kraken with FDA-ARGOS but 0 for Kraken because the standard Kraken 
database doesn’t contain E. avium sequences. A more fair assessment, as mentioned previously, is to 
add the NCBI Nt E. avium sequences to the Kraken database and re-run the algorithm. 

We revised use case 1 as described in our responses to comments 1 and 2. We utilized the 4 E. avium 
genome assemblies from Supplemental Table 3 for subset NCBI Nt simulations to match the 4 E.avium 
genome assemblies in FDA-ARGOS. These genomes stay fixed for all simulations with MegaBLAST and 
Kraken to ensure consistency. SAMN04327393 is an E. avium genome contained within FDA-ARGOS. This 
isolate was used to generate the isolate and metagenome use case data. Hence, we excluded it from the 
FDA-ARGOS database for use case 1 simulations to avoid self-referencing.  

We randomly selected microbial genome assemblies from NCBI Nt or ARGOS to simulate 200 database 
instances and matched composition and size. For example, FDA-ARGOS may have more genome 
assemblies for a species than NCBI Nt (rare). Here, we randomly selected genome assemblies for that 
microbial species from ARGOS for ARGOS database instance simulations. 

Below are sample simulation results of 100 MegaBLAST runs using 1,000,000 subsampled data from 
each triplicate sample (See Supplemental Tables 4, 4a, 4b, 5, 5a and 5b for all simulation results): 



E. avium Metagenome MegaBLAST Simulations 
o We observed that E. avium is consistently called  

 NCBI nt: (min 18, max 109, median 44) 
 ARGOS: (min 36, max 104, median 43) 

o Considering all Enterococcus genus reads 
 On average, NCBI Nt top hit is E. faecium (11.52%), followed by E. hirae (2.88%), E. 

faecalis (0.21%) and E. avium (0.03%) 
 On average, ARGOS top hit is E. avium (88.68%) 

o Considering all mapped reads 
 On average, NCBI Nt top hit is Vibrio vulnificus (18.11%), followed by 32 species with 

>1% 
• Simulations with NCBI Nt revealed extremely variable results with calls all over 

the place burying E. avium (on average 62 reads, 0.03% of all mapped reads), 
unclear why this happens 

• Interestingly, several simulations with NCBI Nt revealed E. hirae at extremely 
high read counts (up to 90,000, 46.72% of all mapped reads) versus E. avium (up 
to 109, 0.06% of all mapped reads), resulting in E. hirae coming up as top hit 
leading to potentially false species calls 

 All simulations with ARGOS resulted in E. avium as the top hit (on average 60 reads, 
88.68% of all mapped reads).  E. hirae, E. durans, E. faecium and E. faecalis were 
included as near neighbors as were all other species represented within NCBI Nt. 

o Clearly shows quality matters  
 

E. avium Isolate MegaBLAST Simulations 
o We observed that E. avium is consistently called, on average 

 NCBI Nt: 651639 number of reads, 92.04% of all mapped reads  
• (min 297836 (42.07%), max 754219, median 669295) 

 ARGOS: 628420 number of reads, 97.89% of all mapped reads 
• (min 544710 (84.85%), max 719035, median 629205) 

o Considering all Enterococcus genus reads 
 On average, NCBI nt top hit is E. avium (92.04%), followed by E. hirae (3.10%), E. faecium 

(2.46%), E. faecalis (0.11%) and E. durans (0.04%) 
 On average, ARGOS top hit is E. avium (97.89%), followed by E. faecium (0.91%), E. 

faecalis (0.33%), E. durans (0.24%) and E. hirae (0.01%) 
o Considering all mapped reads 

 On average, simulations with both NCBI Nt and ARGOS resulted in E. avium as the top 
hit 

 Interestingly, several simulations with NCBI Nt revealed E. hirae as top hit, a similar 
phenomenon seen with the E.avium metagenome data. This could potentially lead to 
false positive species identification calls. 

o Again, shows quality matters. 



We updated the discussion section and generated an updated Figure 4 to demonstrate the effect of 
database quality on species identification performance. 

We thank the reviewer for these suggestions. 

7. For the Ebola case study, why were only FDA-ARGOS EBOV genomes assessed? EBOV genomes are 
well represented in NCBI Nt especially due to the amount of sequencing done during the West African 
EBOV outbreak and the ongoing recent outbreaks in the DRC. Why are FDA-ARGOS EBOV sequences 
needed specifically? Why can’t a representative subset of EBOV sequences from NCBI Nt be used for the 
C-RM approach? It is stated that “FDA-ARGOS alone was sufficient for in silico comparison”. However, 
wouldn’t a random selection of representative EBOV sequences (non FDA-ARGOS) from NCBI Nt also be 
“sufficient”?  

We also think that ARGOS-like quality is sufficient for the C-RM approach. We are currently working on 
an open source tool utilizing FDA-ARGOS reference genome characteristics. More specifically, we are 
assessing genome quality (e.g. coverage, ANI, GC content, assembly size), genome continuity (e.g. N50, 
L50, number of contigs), taxonomy and metadata (e.g.  species name, isolation source, submitter, 
orthogonal reference method) metrics to allow the community to qualify genomes for ARGOS 
deposition.  

In the meantime, requests for genome validation and addition can be send to the FDA-ARGOS team 
FDA-ARGOS@fda.hhs.gov.We clarified this in the manuscript. 

8. The C-RM approach is elegant but still requires a gold standard. This needs to be underscored in the 
discussion, as for many diseases, there may not be a gold standard clinical diagnostic test. A particularly 
relevant example is early acute Lyme disease (Borrelia burgdorferi PCR has low sensitivity; two-tiered 
antibody testing takes 2-4 weeks). This should be mentioned as a potential limitation of in silico 
validation using C-RM. 

The proposed C-RM combines clinical validation of representative organisms against a reference method 
with dry lab testing of any number of desired organisms. The clinical validation can be done with any 
scientifically valid reference method. We updated this in Fig 1. 

We also added a limitation in the discussion section to specifically address cases where orthogonal 
reference method testing is not feasible. 

 

MINOR POINTS: 

 

1. The authors mention using two different read technologies, PacBio and Illumina, in generating 
consensus sequences. Is this really needed? Arguably, the long reads may be needed for gene synteny 
but this would be primarily useful for unknown and/or novel reference genomes rather than genomes 



for which there is at least one high- or moderate-quality reference in NCBI nt. Furthermore, the use of 
even PacBio and Illumina may not even be sufficient to finish genomes with highly repetitive genome 
structures such as Prevotella copri, as elegantly described by Bhatt, et al and colleagues 
(https://www.nature.com/articles/nbt.4266?WT.feed_name=subjects_genome-informatics), in which 
nanopore sequencing and de novo assembly were required. This should be mentioned somewhere in 
the manuscript. 

We treat every genome as a novel reference genome. Based on current experiences with the FDA 
ARGOS effort, assembly quality appears to be species and technology dependent. For most species, 
PacBio was sufficient to generate the top assembly. For some species, PacBio + Illumina or Illumina only 
data generated the top assembly. 

We agree with the reviewer that PacBio and Illumina data is likely not sufficient to finish genomes. The 
goal of ARGOS is to generate and make publicly available near finished genomes of sufficient quality for 
diagnostic purposes. The quality metrics were an unknown at the beginning of the effort and existing 
public genomes were mostly untraceable with missing minimum metadata and more importantly 
underlying raw data. We were not able to regenerate assemblies or attribute genomes.  

The implemented and validated hybrid approach based on long and short read sequencing technology 
was the best strategy at the time. However, we found that PacBio may be sufficient to generate near 
finished genomes de novo. We are also looking to qualify other NGS technology data (e.g. Nanopore) 
but these efforts are outside the scope for this paper. 

We added a clarification that the goal of FDA-ARGOS is to generate and make publicly available near 
finished genomes of sufficient quality for diagnostic purposes. 

2. Regarding lines 360-365, it would be helpful for more description of what is meant by “gaps” in the 
database that FDA-ARGOS sought to address. Are these genomes? Near neighbors?  

Generally, “gaps” were defined as non-existent traceable and attributable diagnostic relevant high-
quality genomes. We clarified this in the manuscript. 

3. The authors should mention that finishing the ends of viral genomes with 5’/3’ RACE, while critically 
important in virology such as development of an infectious clone, is likely less important for the 
purposes of reference-based NGS alignment, as the ends of viruses are usually not well-represented in 
metagenomic sequencing (especially with library preparation techniques using transposons such as 
Nextera which cleave internal to the sequence). 

We thank the reviewer for this insightful comment.  

We agree that finishing ends of viral genomes with 5’/3’ RACE may not be critical for viral reference-
based NGS alignment. This is not a quality metric used for FDA-ARGOS inclusion as outlined in the paper. 
Finishing ends of viral genomes is a desired metric to obtain the highest quality viral reference genome.  



FDA-ARGOS efforts encompass several collaborative efforts with different goals. As mentioned by the 
reviewer, finishing ends is Important for other applications (therapeutics, vaccines). The FDA-ARGOS 
database resource is utilized for these efforts, but this is out of scope for this paper. 

We clarified that finishing ends with RACE is optional in the viral reference genome sequencing and 
assembly method section. 

4. It might be preferable to describe the case studies as 2 rather than 3, as the first case study appears 
to be embedded with the EBOV example. 

We revised the manuscript to reflect 2 case studies. 

 

Reviewer #2 (Remarks to the Author): 

In their manuscript “FDA-ARGOS: A Public Quality-Controlled Genome Database Resource for Infectious 
Disease Sequencing Diagnostics and Regulatory Science Research”, Dr. Sichtig et al. describe extensive 
efforts to generate a publicly available database as a tool to support innovation of emerging 
technologies and provide an in-silico comparator tool that could reduce the burden for completing ID-
NGS clinical trials. The manuscript also discusses quality control metrics for the proposed FDA-ARGOS 
database and presents three examples demonstrating potential applications for FDA-ARGOS in 
infectious disease diagnostics. 

Major Comments 

1) This reviewer congratulates the authors for undertaking a very important effort in generating a 
reference database of regulatory-grade, high-quality genome sequences. In several of the discussed 
applications of ID NGS, it will be common to generate sequencing data for microbes and pathogens that 
have no identical reference genome available (as the full genomic diversity of bacteria, viruses, and 
eukaryotic pathogens is not known and continuously changing). While likely not of higher quality, test-
specific databases may be larger than the FDA-ARGOS database. It is therefore possible that test-specific 
databases will contain one or more reference sequences that are more similar to a given organism 
identified by a new test. In this case, analysis of the same raw sequencing data with the FDA-ARGOS 
database may produce different (but not necessarily wrong) results. The authors should consider 
discussing the limitations of inherently incomplete databases and potential pathways to resolving 
discrepancies that result from varying database completeness. 

We thank the reviewer for the remarks. We clarified the limitations of inherently incomplete databases 
in the discussion section. In addition, we emphasized our invitation to the community to contribute to 
the ARGOS database by sample or genome submission, or crowd sourcing existing high-quality genomes 
for inclusion based on provided quality criteria. 

The challenges of species and subspecies calling, generating a complete microbial tree of life database 
and species-specific variant databases are out of scope for this manuscript. However, there are several 



FDA-ARGOS collaborative efforts that focus on generating quasi-species reference genome data to 
support vaccine and therapeutics development (e.g. Ebola 7U vs 8U detection).  

The goal of ARGOS is to generate high-quality subsets of near finished reference genomes for valuable 
diagnostic microbial species. The FDA-ARGOS genome subset contains quality-controlled reference 
genomes for diagnostic use with minimum metadata, high quality assemblies, high depth of raw 
sequence coverage from two independent sequencing platforms, orthogonal validation and de-novo 
sequence-based taxonomy verified by NCBI ANI. 

We revised use case 1 and demonstrated that genome quality matters. Selection of diverse isolates from 
microbial species to generate representative near finished genomes is generally sufficient for most 
genus and species reference-based ID NGS alignment applications. 

We agree with the reviewer that reference genome generation is an ongoing process. 

Clearly, scalability of efforts required to create curated and comprehensive databases is a concern. The 
authors briefly discuss how scalability of the FDA-ARGOS database could be increased (lines 589-592). 
Could the authors expand on the strategy and timeline for including existing genomic data into a 
regulatory-grade database? What quality control metrics could be implemented to include existing 
(rather than newly-generated) genome data into the FDA-ARGOS database? 

We thank the reviewer for the comments and opportunity to clarify expansion efforts for FDA-ARGOS. 

We agree that scalability and sustainability are important factors for this effort. We expanded the 
scalability of ARGOS section with more specific information on proposed quality metrics that will be 
used for external genome qualification: genome quality (e.g. coverage, ANI, GC content, assembly size), 
genome continuity (e.g. N50, L50, number of contigs), taxonomy and metadata (e.g.  species name, 
isolation source, submitter, orthogonal reference method). The introduction and detailed description of 
the open-source qualification tool will be covered in another manuscript and is out of scope for this 
paper. 

We also added the option that the community can contact us at FDAARGOS@fda.hhs.gov for latest 
updates on tool development and submit requests to add existing genome data to FDA-ARGOS. 
Currently, there is a unique opportunity to submit samples for FDA-ARGOS genome generation and 
automatic inclusion.  

2) Lines 368-369: “An initial collection criterion focused on sequencing at least 5 diverse isolates per 
species” 

The authors may want to discuss how intra-species diversity may affect completeness of genetic 
representation by 5 isolates. This number may be too small for some taxa, especially bacteria with high 
genetic diversity and viruses. 

We agree with the reviewer and revised our discussion section to address the ‘at least 5 representative 
genome’ metric.  



3) Use Case 1 

This contrived sample contained ~4000 sequencing reads of E. avium, representing approximately 10-
15% of the bacterial genome. Do the authors consider this a sufficient representation for a positive 
result? This reviewer does not necessarily disagree with a positive interpretation. Given the intended 
use of the FDA ARGOS database, it would be valuable to the audience to learn more about how the 
authors think about defining true positive results. 

We revised use case 1 to address the goal of this manuscript to show impact of reference database 
quality on result calling.  The number of mapped E. avium reads for the isolate and metagenome 
samples are an estimation from subsampling 1Mio reads. The percent mapped reads reflect sample 
composition better.  

The threshold determination for positivity calling is expected to be ID NGS application dependent. Use 
case 1 showed the challenges with E. avium calling, especially for the metagenome sample. We clarified 
the determination for positive calls for the Ebola use case 2 in the methods section. 

As mentioned previously, the challenge of species and subspecies calling for reference-based ID NGS 
applications is outside the scope of this paper. 

Minor Comments 

• Lines 297-298, 312-313: “For this study, the taxon associated with the first reported alignment was 
used as the taxonomic label for each read...” 

Albeit easy to implement, this approach oversimplifies the complexity of the classification problem. 
For example, ‘assigning the taxonomic label for each read to the first reported alignment’ is highly 
dependent on the accuracy of reference sequence annotations, which are frequently incorrect or 
incomplete in the NCBI nt database. In addition, sequencing reads may map equally well to 
reference sequences with different taxonomic annotations. In this case, simply assigning the 
sequencing read to the ‘first reported alignment’ (presumably sorted by max alignment score). 

We agree with the reviewer that sophisticated algorithms and curated databases are needed for 
diagnostic purposes. In addition, subject matter expertise may be needed to interpret reference-
based ID NGS alignment output. Not everyone has access to these tools and expertise. Therefore, 
we selected publicly available tools, MegaBLAST and Kraken, to demonstrate the impact of 
reference genome quality on mapped reads output.  

We revised our method description to include this limitation. We clarified that the taxon associated 
with the first reported alignment, sorted by max alignment score, was used as the taxonomic label 
for each read. Original MegaBLAST results were summarized to report the number of reads 
associated with each unique NCBI taxonomy ID called. 

• Lines 249-250: “...paired end reads were trimmed utilizing a quality of 0.05 and reads below 50bp in 
length were removed...“ 



Please provide additional details for quality trimming. 

We would like to thank the reviewer for the opportunity to clarify our trimming methods.   
 
Sequencing reads are trimmed on CLC using a modified-Mott trimming algorithm.  Quality scores in 
CLC are on a Phred scale and Phred quality scores (Q) are defined as Q=-10log10(P) where P is base 
calling error probability.  The first step in the process converts the quality score to error probability 
using p(error)=10(Q/-10) and then calculates new values for each base using the equation Limit-
p(error).  This limit can be adjusted depending on stringency with high numbers represent less 
stringent cutoffs.   CLC Workbench then calculates the running sum of this value across the length of 
the sequence.  If the sum drops below zero, it is set to zero and the region ending at the highest 
value of the running sum starting at the last zero will not be trimmed.   
 
Qiagen. (2019) CLC bio manuals.  Retrieved from 
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/803/index.php?manua
l=Quality_trimming.html 

  
• Lines 250-253: “Trimmed reads were then mapped to E. avium assembly GCF_000407245.1 and H. 

sapiens assembly GCA_000001405.27. Mapping parameters were as follows: mismatch costs=2, 
insertions costs=3, deletion costs=3, length and similarity fraction = 0.8.” 

What mapping tool was used for this analysis? 

We used the CLC genomics workbench v 10.1.1 mapping function for our analysis.  This analysis was 
done with a local alignment of the reads to the reference.   

 
• Line 262: “The threshold for positive calls was determined by the no template control (NTC).” 

This sentence is not entirely clear. Was the number of reads obtained with the NTC defined as the 
threshold for a positive call? If so, the use of an NTC for this purpose may provide a false sense of 
security as higher read counts may be obtained in samples positive for related viruses (causing false-
positive results). 

We would like to thank the reviewer for their comments.   
 
For highly multiplexed sequencing, small indices were attached to each sample so that each 
sequencing read captured can later be attributed to its source.  Sequencing errors of these indices 
can result in sequencing reads being mis-binned during deconvolution.  Unfortunately, there is no 
method which deals with these issues 100% effectively.  
 
To counteract this mis-binning we devoted sequencing space on each run to three non-template 
control samples.  A cutoff is calculated for each reference organism, using these non-template 
controls, as the average plus three times the standard deviation.  This method defines a background 
level of sequencing read “bleed” caused by the sequencing platform and was used for MIPS analysis 



in a previously published paper (Koehler, Hall et al. 2014). We have clarified how we defined this 
cutoff in the paper.   
 
Samples which have large numbers of reads attributed to related viruses are more likely to result 
from low stringency read mapping settings and should be followed up with a secondary analysis 
such as de novo assembly and reference-based mapping.   

 

• Lines 360-362: “FDA, DOD, NCBI and other agencies using scientific literature, a phylogenetic data 
mining approach, and FDA microbial species-specific guidance documents identified more than 1000 
gaps in public microbial genomic repositories. We prioritized these gaps and selected biothreat 
microorganisms, common clinical pathogens and closely related species (See Supplemental 
Materials for the organism gap list).” 
 
Which supplemental file are the authors referring to? 

Supplemental Materials Word Document under Additional Files (FDA-ARGOS Wanted Organism 
List). We added this information to the manuscript. 

• Lines 449-451 “For frame-of-reference, we would need over 30,000 reads to de novo assemble an 
entire genome of approximately 5 Mb at 1X coverage, assuming a read size of 150 bp and perfect 
quality of each generated read at all positions” 
 
The authors may want to choose a more realistic example. De novo assembly of a bacterial genome 
is not possible with 1X coverage. 

We updated the hypothetical example using 20X coverage for a more realistic illustration. 

• Lines 465-467 “Interestingly, while E. avium genomes were available in the NCBI nt database and 
part of the read classification for MegaBLAST analyses, positive ID-NGS identification required the 
addition of quality-controlled FDA-ARGOS reference genomes” 
 
Did the authors assess whether the E. avium genomes were available in the NCBI nt database were 
complete? Were they correctly identified? What was the average nucleotide identity of 
SAMN04327393 with the E. avium genomes contained in the NCBI nt database? Please provide 
additional information for the difference in results. 

We significantly revised use case 1 for a more fair comparison. Information on NCBI Nt and FDA-
ARGOS E. avium genome statistics is available in supplemental tables 1 and 3. We utilized the 4 E. 
avium genome assemblies from Supplemental Table 3 for subset NCBI Nt simulations to match the 4 
E.avium genome assemblies in FDA-ARGOS. These genomes stay fixed for all simulations with 
MegaBLAST and Kraken to ensure consistency. SAMN04327393 is an E. avium genome contained 
within FDA-ARGOS. This isolate was used to generate the isolate and metagenome use case data. 



Hence, we excluded it from the FDA-ARGOS database for use case 1 simulations to avoid self-
referencing. 

• Lines 488-489 “These top hits were potentially database contaminants and illustrate the risk of using 
non-curated databases in ID-NGS diagnostics” 
In addition, the authors may want to consider discussing the potential impact of different 
classification algorithms or criteria. 
 
Here we showed performance of two classification algorithms (MegaBLAST, Kraken) and 200 NCBI 
Nt and FDA-ARGOS database instances. The goal of use case 1 was to show the impact of reference 
genome quality on classification algorithm output. A direct method comparison study is outside the 
scope for this paper. We added information regarding the impact of different classification 
algorithms and criteria to the discussion section.  

 
• Lines 614-615 “Experiments and data presented here support the latter of these two arguments.” 

 
This reviewer does not disagree with this conclusion for the given examples. However, this was in 
part because the FDA ARGOS database included reference genomes for the studied examples. The 
authors should discuss how results may differ in cases where a high-quality genome is not available 
for a pathogen contained in a given sample. 
 
We thank the reviewer for the comment.  
 
We revised our use case 1 to address the impact of genome quality on performance of classification 
algorithms. We believe that these new simulations provide a more fair comparison. Our results 
clearly demonstrated that genome quality critically impacts final call performance. 
 
For example, the varied quality of NCBI Nt reference genomes significantly impacted the 
classification results, burying E. avium reads for the metagenome sample cases (Supplemental Table 
4, 4a, 4b). 



Reviewers' Comments:  
 
Reviewer #1:  
Remarks to the Author:  
In this revised manuscript, Sichtig and colleagues address many of the points that I and the other 
reviewer raised in the initial review. However, I still have a few concerns, particularly about 
revised use case 1. In my opinion, it is critical to precisely define the comparisons being made, as 
the main conclusions of the paper depend on this.  
 
1. I agree with and appreciate the additional work put into generating the 200 randomized 
database instances using for each instance “the identical species composition and number of 
assemblies per species”. I carefully reviewed the results, including Supplemental Tables 4, 4a, 4b, 
5, 5a, and 5b, and the new updated Figure 4 heat map.  
 
a. The results are confusing. The metagenomic data that you show in Supplemental Table 4 look 
“too bad”. For instance, I find it hard to believe that there are an average of 34,879 reads to Vibrio 
vulnificus and 17,108 reads to E. coli using the normalized NCBI nt database with MegaBLAST but 
0 reads to these 2 organisms using the normalized FDA-ARGOS database with MetaBLAST using 
the same parameters and cutoffs (and assuming that the normalized FDA-ARGOS database has 
the same level of genome representation of V. vulnificus and E. coli, as implied by your description 
of the database construction). Actually, I note that there is sometimes 1 read mapping to E. 
colii/V. vulnificus with the FDA-ARGOS database, but I am making the assumption that this was 
averaged to ero. An explanation needs to be given on why we see 34,879 reads to V. vulnificus 
and 17,108 reads to E. coli in the metagenomic dataset with the normalized NCBI nt database but 
0 and 0 reads with the normalized FDA-ARGOS dataset. Also, some of the bacteria that I see in 
the normalized NCBI list correspond to well-known metagenomic sequencing contamionants, such 
as Pseudomonas protegens/putida and Bacillus sp. (see Salter, et al., 
https://bmcbiol.biomedcentral.com/articles/10.1196/s12915-014-0087-z). In short, the 
metagenomic analysis done using the normalized NCBI nt database using raw MegaBLAST 
alignment (importantly) without any post-processing taxonomic classification of filtering looks far 
more believable to me than the FDA-ARGOS results. I can postulate some potential explanations 
as follows: (1) are the reads aligning to other bacteria aligning to plasmid sequences that are not 
part of the core genome, (2) are different stringency thresholds being applied in MegaBLAST for 
the normalized NCBI nt and FDA-ARGOS databases, (3) does this represent a failure of alignment 
and/or classification (for KRAKEN), (4) are these reads repeat and/or low-quality sequences in the 
human genome. In summary, whether or not the V. vulnificus, E. coli, P. putida/protegens, 
Bacillus, etc. reads identified using the annotated NCBI nt database are “real” needs to be 
determined and described in detail. In my opinion, this discrepancy in results is so vast that it 
cannot be explained by just minor differences in sequencing quality.  
 
2. One possibility is that these additional hits to bacteria are due to “human” or other 
contamination of the genome sequences in NCBI nt. For this, I note that metagenomic analysis 
typically involves a “human host computational subtraction” step in which reads to background 
human sequences are removed by alignment to hg38. Was this done for this analysis? This may 
help clean up the data. Either way, an explanation needs to be given on why there only ~’60 reads 
to Enterococcus avium when using FDA-ARGOS and 34,870 reads to V. vulnificus, 17,108 reads to 
E. coli, etc. The discrepancy is worrisome especially since the base metagenome data are 
identical.  
 
3. Is the E. avium metagenome that was generated a DNA only metagenome or a combined 
DNA/cDNA (with reverse transcription) metagenome? If the latter, there may be many more hits 
to extraneous bacteria because of the preponderance of highly conserved bacterial 16S ribosomal 
RNA (rRNA) sequences.  
 
4. One additional critique in the method used is that although there were “the same number of 



randomly chosen E. avium, E. faecium, etc. reference genomes, the vast additional sequences 
available in NCBI nt were presumably retained. The results from “2,400 simulations” appear to 
result in more “precise” species-specific calls simply because there is less coverage of bacterial 
genomes overall in the FDA-ARGOS database related to NCBI nt. With large databases, more 
stringent filtering and taxonomic classification criteria, and/or host subtraction methods needs to 
be applied. A fairer composition would have been for the 2,400 simulation to choose an identical 
number of genomes in total for the normalized NCBI Nt and FDA-ARGOS database rather than 
choose the same number of Enterococcus genomes only.  
 
5. I note that E. avium had slightly higher average read number with the normalized NCBI nt 
database rather than FDA-ARGOS. Thus, E. avium detection was more sensitive. An explanation 
needs to be provided for why 20% of total reads mapped to other microbial species. I would agree 
that this would be a dilemma for species identification applications. The number of 20% is 
staggeringly high; all metagenomic pipelines that I am aware of that use the NCBI nt database get 
much lower hits to other microbial species and – if proper filtering, taxonomic classification, and 
host subtraction are performed -- they almost always represent known contaminants in the 
database such as Pseudomonas protegens, Bradyrhizobium sp., Ralstonia sp., Delftia sp., etc. 
rather than pathogens such as V. vulnificus.  
 
6. An explanation is not given as to why some simulations with the normalized NCBI Nt database 
showed Enterococcus hirae as the top hit. This should be investigated – is this due to a 
misassignment of one or more Enterococcus avium genomes as Enterococcus hirae in GenBank nt 
(a database issue) or another problem?  
 
7. The authors should comment on the viability and practical aspects of using both FDA-ARGOS 
and NCBI Nt simultaneously in the manuscript. Expansion of FDA-ARGOS for completeness (i.e. 
viruses, fungi, and parasites) may take years, especially for eukaryotic genomes, which are 
extremely large in size.  
 
8. With regards to the EBOV genomes, I would like to re-iterate the point that having a large 
number (>10,000) of viral genomes that capture the diversity of RNA viruses is preferable to a few 
limited number of genomes, as in the FDA-ARGOS database. True, these genomes are presumably 
of lower quality but there are vastly more of them. This needs to be discussed. I do not see the 
need for metagenomic identification purposes of having a viral FDA-ARGOS database, for instance, 
whereas your data does appear to show that higher quality may result in a more precise 
identification with genomes that are closely related (i.e Enterococcus avium versus Enterococcus 
hirae). Nevertheless, for viruses, capturing sequence diversity with more genomes appears to be 
important. A relevant example would be the identification of Ekpoma virus 
(https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0003631), a novel rhabdovirus 
virus in African individuals, which would not had been possible had the genome of Bas-Congo 
rhabdovirus (https://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1002924) 
not been already in the database. In short, diversity, size, and completeness appear to trump 
accuracy, at least for viral databases. I am wondering if the authors can comment on this.  
 
 
 
Reviewer #2:  
Remarks to the Author:  
This reviewer thanks the authors for addressing their comments and concerns.  



Reviewer’s comments: 

Note: We highlighted all edits in response to reviewer comments throughout the paper. 

Reviewer #1 (Remarks to the Author): 

In this revised manuscript, Sichtig and colleagues address many of the points that I and the other 
reviewer raised in the initial review. However, I still have a few concerns, particularly about revised use 
case 1. In my opinion, it is critical to precisely define the comparisons being made, as the main 
conclusions of the paper depend on this. 
 
I agree with and appreciate the additional work put into generating the 200 randomized database 
instances using for each instance “the identical species composition and number of assemblies per 
species”. I carefully reviewed the results, including Supplemental Tables 4, 4a, 4b, 5, 5a, and 5b, and the 
new updated Figure 4 heat map.  

We thank the reviewer for the remarks and the opportunity to address additional concerns about 
revised use case 1. 
 
1. The results are confusing. The metagenomic data that you show in Supplemental Table 4 look “too 
bad”. For instance, I find it hard to believe that there are an average of 34,879 reads to Vibrio vulnificus 
and 17,108 reads to E. coli using the normalized NCBI nt database with MegaBLAST but 0 reads to these 
2 organisms using the normalized FDA-ARGOS database with MetaBLAST using the same parameters 
and cutoffs (and assuming that the normalized FDA-ARGOS database has the same level of genome 
representation of V. vulnificus and E. coli, as implied by your description of the database construction). 
Actually, I note that there is sometimes 1 read mapping to E. colii/V. vulnificus with the FDA-ARGOS 
database, but I am making the assumption that this was averaged to ero. An explanation needs to be 
given on why we see 34,879 reads to V. vulnificus and 17,108 reads to E. coli in the metagenomic 
dataset with the normalized NCBI nt database but 0 and 0 reads with the normalized 
FDA-ARGOS dataset. Also, some of the bacteria that I see in the normalized NCBI list correspond to well-
known metagenomic sequencing contamionants, such as Pseudomonas protegens/putida and Bacillus 
sp. (see Salter, et al., https://bmcbiol.biomedcentral.com/articles/10.1196/s12915-014-0087-z). In 
short, the metagenomic analysis done using the normalized NCBI nt database using raw MegaBLAST 
alignment (importantly) without any post-processing taxonomic classification of filtering looks far more 
believable to me than the FDA-ARGOS results. I can postulate some potential explanations as follows: (1) 
are the reads aligning to other bacteria aligning to plasmid sequences that are not part of the core 
genome, (2) are different stringency thresholds being applied in MegaBLAST for the normalized NCBI nt 
and FDA-ARGOS databases, (3) does this represent a failure of alignment and/or classification (for 
KRAKEN), (4) are these reads repeat and/or low-quality sequences in the human genome. In 
summary, whether or not the V. vulnificus, E. coli, P. putida/protegens, Bacillus, etc. reads identified 
using the annotated NCBI nt database are “real” needs to be determined and described in detail. In my 
opinion, this discrepancy in results is so vast that it cannot be explained by just minor differences in 
sequencing quality. 



We further analyzed the results from Supplemental Table 4. Specifically, we investigated the top species 
mapped reads from the normalized NCBI Nt database instance runs with the MegaBLAST tool (Table 4b 
contains the raw data for all runs). We confirm that the MegaBLAST tool was used with the same 
parameters, cutoffs and an identical number of randomly selected representative species assemblies 
from NCBI Nt and FDA-ARGOS. We clarified that an identical number of assemblies per species were 
used in the methods section describing the database construction. Line 456 already stated that an 
identical number of assemblies per species were used.  

In summary, results showed mislabeling due to human contaminants in randomly selected microbial 
genomes from NCBI Nt database instances. Therefore, we see Vibrio vulnificus at an average 34,879 
mapped reads and E.coli at an average 17,108 mapped reads. FDA-ARGOS genomes for these species did 
not show human contamination.  

For the additional analysis, we selected all unique read hits from 5 randomly selected NCBI Nt database 
instances for each of the top 5 microbial species hits from Supplemental Table 4, including Vibrio 
vulnificus and E. coli. The table below shows NCBI Nt database instance selected, total unique read hits 
for that species, number of all accessions and number of all accessions that hit to human.   

 
SPECIES NAME DATABASE 

INSTANCE 
TOTAL UNIQUE 
READ HITS 

#ACCESSIONS #ACCESSIONS  
HIT TO HUMAN 

Vibrio vulnificus NCBI_13 228,734 19 16 
NCBI_22 239,570 19 16 
NCBI_87 193,245 7 6 
NCBI_84 275,470 24 22 
NCBI_74 116,930 6 6 

Edwardsiella tarda NCBI_9 82,382 9 8 
NCBI_10 112,074 9 8 
NCBI_20 119,576 9 8 
NCBI_40 117,541 9 8 
NCBI_43 105,282 9 8 

Escherichia coli NCBI_0 78,978 9 8 
NCBI_3 11,594 2 2 
NCBI_5 57,021 2 1 
NCBI_7 36,805 2 2 
NCBI_8 73,966 6 2 

Enterococcus faecium NCBI_1 54,848 13 9 
NCBI_3 12,186 3 2 
NCBI_4 43,175 3 1 
NCBI_5 46,443 2 1 
NCBI_21 24,178 1 1 

Klebsiella aerogenes NCBI_3 179,373 3 3 
NCBI_11 59,750 6 4 
NCBI_23 84,381 3 3 
NCBI_25 190,812 3 3 
NCBI_28 84,438 3 3 



 
We clarified this in the manuscript. 
 
 
2. One possibility is that these additional hits to bacteria are due to “human” or other contamination of 
the genome sequences in NCBI nt. For this, I note that metagenomic analysis typically involves a “human 
host computational subtraction” step in which reads to background human sequences are removed by 
alignment to hg38. Was this done for this analysis? This may help clean up the data. Either way, an 
explanation needs to be given on why there only ~’60 reads to Enterococcus avium when using FDA-
ARGOS and 34,870 reads to V. vulnificus, 17,108 reads to E. coli, etc. The discrepancy is worrisome 
especially since the base metagenome data are identical. 

See above. We agree that this is worrisome. Recommendations for rigorous quality control, including 
human and lab contaminant screening was added to the manuscript. 

Human host computational subtraction was not performed for our metagenome analysis with NCBI Nt 
database instances and the MegaBLAST or Kraken tool as this database is not design to benefit just 
tailored applications.  Not all bioinformatic pipelines include a de-hosting step.  
 
3. Is the E. avium metagenome that was generated a DNA only metagenome or a combined DNA/cDNA 
(with reverse transcription) metagenome? If the latter, there may be many more hits to extraneous 
bacteria because of the preponderance of highly conserved bacterial 16S ribosomal RNA (rRNA) 
sequences. 

DNA only. We clarified this in the manuscript. 
 
4. One additional critique in the method used is that although there were “the same number of 
randomly chosen E. avium, E. faecium, etc. reference genomes, the vast additional sequences available 
in NCBI nt were presumably retained. The results from “2,400 simulations” appear to result in more 
“precise” species-specific calls simply because there is less coverage of bacterial genomes overall in the 
FDA-ARGOS database related to NCBI nt. With large databases, more stringent filtering and taxonomic 
classification criteria, and/or host subtraction methods needs to be applied. A fairer composition would 
have been for the 2,400 simulation to choose an identical number of genomes in total for the 
normalized NCBI Nt and FDA-ARGOS database rather than choose the same number of Enterococcus 
genomes only. 

See 1. above. All instances of normalized NCBI nt and FDA-ARGOS contain an identical number of 
genomes. Additional sequences were not retained in the normalized NCBI Nt database instances. 
 
5. I note that E. avium had slightly higher average read number with the normalized NCBI nt database 
rather than FDA-ARGOS. Thus, E. avium detection was more sensitive. An explanation needs to be 
provided for why 20% of total reads mapped to other microbial species. I would agree that this would be 
a dilemma for species identification applications. The number of 20% is staggeringly high; all 



metagenomic pipelines that I am aware of that use the NCBI nt database get much lower hits to other 
microbial species and – if proper filtering, taxonomic classification, and host subtraction are performed -
- they almost always represent known contaminants in the database such as Pseudomonas protegens, 
Bradyrhizobium sp., Ralstonia sp., Delftia sp., etc. rather than pathogens such as V. vulnificus. 

See 1. above. We agree that quality control of microbial reference databases is necessary, especially for 
diagnostic use. Use case 1 demonstrated that lack of quality-controlled reference genomes challenged 
the accuracy of reference-based ID-NGS alignment applications. This is about a diagnostic answer not 
about a researcher or expert user interpreting results and suggesting which of the top hits are possible 
contaminants and which are potential pathogens.  
 
6. An explanation is not given as to why some simulations with the normalized NCBI Nt database showed 
Enterococcus hirae as the top hit. This should be investigated – is this due to a misassignment of one or 
more Enterococcus avium genomes as Enterococcus hirae in GenBank nt (a database issue) or another 
problem? 
 
We thank the reviewer for this insightful comment.  

Additional analysis of results revealed that whenever SAMN03198084 (Enterococcus hirae) was 
randomly selected as part of the normalized NCBI Nt database, Enterococcus hirae was shown as the top 
hit. We performed pairwise ANI calculations on Enterococcus hirae and Enterococcus avium genomes 
contained within the normalized NCBI NT database instances using the OrthoANI algorithm 
(https://www.ncbi.nlm.nih.gov/pubmed/26585518).  The calculated ANI score for SAMN03198084 
showed higher correlation to the Enterococcus avium genomes than the remaining Enterococcus hirae 
genomes. Therefore, Enterococcus hirae is the top hit for several simulations. We clarified this database 
issue in the manuscript. 
 
7. The authors should comment on the viability and practical aspects of using both FDA-ARGOS and NCBI 
Nt simultaneously in the manuscript. Expansion of FDA-ARGOS for completeness (i.e. viruses, fungi, and 
parasites) may take years, especially for eukaryotic genomes, which are extremely large in size.  

We created the normalized NCBI Nt database instances with identical coverage of reference genomes 
for fair comparison. See 1 above. The entire NCBI Nt database has more coverage but also contains even 
more varying levels of quality genomes. Practical use of both databases depends on specific application 
and use (in silico validation tool vs reference database). This paper focused on reference genomes for 
diagnostic use.  

The revised manuscript discussion section states that the FDA-ARGOS reference genome resource is a 
constantly evolving public database intended to mature over time with community support and genomic 
technology advancements.  The authors agree, as stated in the manuscript, continued population and 
expansion of the FDA-ARGOS database resource will be required to cover the panoply of infectious 
microorganisms. We believe further population and curation of the database will support the success of 
FDA-ARGOS and promote adoption by the NGS community. 



Furthermore, we fully support the use of NCBI Nt as a reference database, but with appropriate controls 
to mitigate the issues addressed in this manuscript.  Again, the dichotomy of application between 
pathogen discovery and diagnostics appears to be the root of this comment. The establishment of FDA-
ARGOS within NCBI provides an additional resource specifically tailored for diagnostic purposes whereas 
the use of NCBI Nt is more relevant for use when searching for completely novel pathogens.  
 
8. With regards to the EBOV genomes, I would like to re-iterate the point that having a large number 
(>10,000) of viral genomes that capture the diversity of RNA viruses is preferable to a few limited 
number of genomes, as in the FDA-ARGOS database. True, these genomes are presumably of lower 
quality but there are vastly more of them. This needs to be discussed. I do not see the need for 
metagenomic identification purposes of having a viral FDA-ARGOS database, for instance, whereas your 
data does appear to show that higher quality may result in a more precise identification with genomes 
that are closely related (i.e Enterococcus avium versus Enterococcus hirae). Nevertheless, for viruses, 
capturing sequence diversity with more genomes appears to be important. A relevant example would be 
the identification of Ekpoma virus 
(https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0003631), a novel rhabdovirus virus 
in African individuals, which would not had been 
possible had the genome of Bas-Congo rhabdovirus 
(https://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1002924) not been already in 
the database. In short, diversity, size, and completeness appear to trump accuracy, at least for viral 
databases. I am wondering if the authors can comment on this. 
 

We thank the reviewer for the remarks.  

We agree that diversity, size and completeness are important factors for pathogen discovery 
applications. The more ‘data hints’ available the better. In these research cases, the entire NCBI Nt 
database would be a better resource; however, for diagnostics, accuracy trumps diversity with poor 
accuracy. An anecdotal example from authors capturing this difference in application stems from the 
2014 West African outbreak for EBOV Makona where samples for this database originated.  In the 
outbreak, patients were triaged into the EVD ward versus the non-EVD based on one diagnostic real-
time PCR test.  Multiple different platforms were available for use including sequencing using NCBI Nt as 
a reference database; however only the real time PCR was used.  The reason for this was the magnitude 
of the diagnostic answer. Positive for EBOV led to the patient being housed in the EVD ward while a 
negative led to the non.  Minimizing false positives (putting non-EVD patients in with EVD patients) and 
false negatives (contaminating the EVD ward) was more important than catching perhaps 1 in 1 million 
chance there is a novel pathogen causing similar symptoms in these patients. 

The focus of our manuscript are quality-controlled reference genomes for diagnostic and regulatory 
science use. We demonstrated in the manuscript that quality of genomes impacts accuracy of reference-
based ID-NGS alignment for queryable microbial pathogens, including viruses.  



Furthermore, accuracy played an important role for FDA-ARGOS EBOV genomes generated from Public 
Health Agency Canada and Public Health England challenge materials. Specific positional coverage was 
important for frequency calculation of the 7U versus 8U content, potentially revealing impact of Ebola 
virus adaptation. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC39657/ 

https://www.ncbi.nlm.nih.gov/pubmed/25214632 

In addition, coverage of each position of the genome and accuracy are expected to be critical factors for 
CRIPR-Cas9 applications.  
 

Reviewer #2 (Remarks to the Author): 

This reviewer thanks the authors for addressing their comments and concerns. 



Reviewers' Comments:  
 
Reviewer #1:  
Remarks to the Author:  
In this revised manuscript, Sichtig and colleagues have addressed in detail the remaining concerns 
that I have raised regarding the high number of spurious hits to V. vulnificus and E. coli, 
Enterococcus hirae finding, and importance of Ebola virus accuracy, and have also made 
appropriate edits to the manuscript. I thank the authors for addressing these comments, and 
believe that this work will be an important contribution to the field of metagenomic-based 
diagnostics.  
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