Development of the Self Optimising Kohonen Index Network (SKiNET) for Raman Spectroscopy Based Detection of Anatomical Eye Tissue

 $\begin{array}{ccc} {\rm Carl \ Banbury^1 \quad Richard \ Mason^2 \quad Iain \ Styles^3 \quad Neil \ Eisenstein^1} \\ {\rm Michael \ Clancy^1 \quad Antonio \ Belli^4 \quad Ann \ Logan^4} \end{array}$

[†]Pola Goldberg Oppenheimer¹

¹Chemical Engineering, University of Birmingham ²Physics and Astronomy, University of Birmingham ³Computer Science, University of Birmingham ⁴Institute of Inflammation and Ageing, University of Birmingham

Supplementary Information

Figure S1: Paired examples of bright field optical microscope images (left) and PCA scores across map scan (right) for each tissue type: \mathbf{a} , cornea, \mathbf{b} , lens, \mathbf{c} , vitreous humour, \mathbf{d} , retina and \mathbf{e} , optic nerve.

Figure S2: **a**, Scores plot for the first two principal components showing poor spatial separation of classes. **b**, Loadings for PC1 and PC2.

	Cornea	Lens	Vitreous Humour	Retina	Optic Nerve
Cornea	88.0	2.1	4.7	3.3	2.8
Lens	0.5	99.8	0.5	0	0.1
Vitreous Humour	1.0	0.1	96.5	2.7	0.5
Retina	1.0	0.2	2.3	95.7	1.7
Optic Nerve	4.6	0.71	0.8	2.2	92.5

Table S1: Confusion matrix showing average percentage for each class from the 1210 test spectra.

Figure S3: Comparison of classification accuracy for different approaches to SOM based classification. SOM-H referrs to using the hit count for class identification, SOM-S uses supervised SOMs as described here [16]