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Abstract

We describe how the Kirchhoff elastic rod model is generalized to the nonlinear Schrödinger

equation and how the energy function used in the article is a consequence.
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• Solitons

• Discrete Frenet equation and the discretized nonlinear Schrödinger equation

• Soliton model of myoglobin (used in the article)
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I. CONTINUUM CURVES AND GENERALIZED KIRCHHOFF’S ELASTIC ROD

A. The Frenet Equation

The geometry of a class C3 differentiable curve x(s) in R3 is governed by the Frenet

equation, described widely in elementary courses of differential geometry [1]. We parametrize

the curve with its proper length s ∈ [0, L] where L is the length of the curve in R3. We

introduce the unit length tangent vector

t =
dx(s)

ds
≡ xs (1)

the unit length bi-normal vector

b =
xs × xss
||xs × xss||

(2)

and the unit length normal vector,

n = b× t (3)

The three vectors (n,b, t) define the orthonormal, right-handed Frenet frames. We can

introduce this framing at every point along the curve, whenever

xs × xss 6= 0 (4)

The Frenet equation transports the frames along the curve as follows,

d

ds


n

b

t

 =


0 τ −κ

−τ 0 0

κ 0 0



n

b

t

 (5)

Here

κ(s) =
||xs × xss||
||xs||3

(6)

is the curvature and

τ(s) =
(xs × xss) · xsss
||xs × xss||2

(7)

is the torsion. Both κ(s) and τ(s) are extrinsic geometric quantities i.e. they depend only

on the shape of the curve in R3. Conversely, if we know the curvature and torsion we can

construct the curve, by first solving for t(s) from the Frenet equation followed by integration

of (1). The solution is unique, modulo a global translation and rotation.
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B. Frame rotation

We start with the observation that the normal and bi-normal vectors do not appear in

(1). As a consequence a rotation around t(s),n

b

 →

e1

e2

 =

 cos η(s) sin η(s)

− sin η(s) cos η(s)

n

b

 . (8)

has no effect on the curve. For the Frenet equation this rotation gives

d

ds


e1

e2

t

 =


0 (τ + ∂sη) −κ cos η

−(τ + ∂sη) 0 −κ sin η

κ cos η κ sin η 0



e1

e2

t

 . (9)

The form of (9) suggests to combine the two κ dependent contributions into a single complex

quantity [2–4],

κ
η−→ κ(cos η + i sin η) ≡ κeiη (10)

We may then introduce the following notations/conventions when representing curvature

and torsion in arbitrary frame,

κ → κe−iη ≡ φ

τ → τ + ∂sη ≡
√

d
2
Ai

(11)

Here d is a parameter that we introduce for future convenience; for the Frenet equations we

may set d = 2. With these variables, (9) admits the manifestly frame covariant form:

( d
ds
∓ i
√

d
2
A)e± = −φt

d
ds
t = 1

2
(φ e+ + φ̄ e−)

(12)

with

e± = e1 ± ie2 ⇒ e± → e±iηe±

and we remind that t is frame invariant.
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C. The Kirchhoff elastic rod and its generalizations

The curvature and torsion are the only quantities available to construct energy functions

for filamentous, inextensible elastic rods. According to Kirchhoff the energy is [5]

E =

L∫
0

ds{ακ2 + βτ 2} (13)

where α and β are some parameters. The case β = 0 corresponds to Euler’s elastica; in a

biological context this defines the worm like chain (WLC) model that is commonly used to

describe long and flexible linear (bio)polymers [2]

The energy function (13) describes the bending and twisting of a thin rod in the limit

of very small curvature and torsion. But this energy function is not capable of describing

phenomena such a supercoiling, nor structures such as helix-loop-helix that are common in

case of proteins. For this we need to include higher order, non-linear contributions to (13).

To do this systematically, we need a guiding principle: Note that even though framing is

a necessary intermediate step to construct the curve from the knowledge of its curvature

and torsion, the shape of a curve can not depend on the way how it is framed. Indeed,

the Frenet equations can be presented in the frame covariant form (12). Thus, the energy

function should similarly admit a frame covariant form, one that is the same independently

of the framing when expressed in the frame covariant variables (φ,A) in (11). An example

of a frame covariant energy function is [2–4],

H =

L∫
0

ds

{
|(∂s + i

√
d

2
A)φ|2 + λ (|φ|2 −m2)2 − aA+

c

2
A2

}
(14)

The first two terms have the functional form of the Hamiltonian that appears in the

Abelian Higgs model. They remain manifestly intact under a frame rotation (11).

The third term, with parameter a, is the one dimensional Chern-Simons term. It breaks

chirality which ensures that the curves are chiral, either right-handed or left-handed depend-

ing on the sign of parameter a. Note that under a frame rotation this terms transforms by a

derivative; see (11). Thus it remains invariant when there are no end point frame rotations.

The fourth term in (14) is called the Proca mass in the context of the Abelian Higgs

model. It is not covariant under a frame rotation but we included it for completeness since

it yields the second term in (13), in Frenet frames.
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D. Energy and soliton of Nonlinear Schrödinger equation

In term of the geometric curvature and torsion, the energy density of (14) translates to

H = (∂sκ)2 +
d

2
κ2τ 2 + λ (κ2 −m2)2 − a τ +

c

2
τ 2 (15)

We introduce the Hasimoto variable [3, 4, 6], to combine the curvature and torsion into a

single frame invariant complex quantity

ψ(s) = κ(s) exp{i
s∫

0

ds′ τ(s′)} ≡ φ(s) exp{i
√
d

2

s∫
0

ds′A(s′)} (16)

In terms of (16), we find that (15) includes the following,

(∂sκ)2 + e2κ2τ 2 + λκ4 = ψ̄sψs + λ(ψ̄ψ)2 = H3 (17)

This the energy density of the standard nonlinear Schrödinger equation (NLS), the paradigm

integrable model that supports solitons as classical solutions: The non-vanishing Poisson

bracket of the Hasimoto variables is

{ψ(s), ψ̄(s′)} = iδ(s− s′)

and the following quantities are conserved densities in the sense that their Poisson brackets

with H3 vanish [3, 6? ]

H−2 = τ

H−1 = L

H1 = κ2 ∼ ψ̄ψ

H2 = iκ2τ ∼ ψ̄ψs

(18)

The energy (15) is a combination of H−2, H1 and H3, except for its last term, the Proca

mass. From the perspective of the NLS hierarchy, the momentumH2 should also be included

so that at the end we have the energy density

H = (∂sκ)2 +
d

2
κ2τ 2 + λ (κ2 −m2)2 − bκ2τ − aτ +

c

2
τ 2 (19)

The standard NLS equation is the paradigm equation that supports solitons [7, 8]; de-

pending on the sign of λ the soliton is either dark (λ > 0) or bright (λ < 0). In particular,

the torsion independent contribution

(∂sκ)2 + λ (κ2 −m2)2 (20)
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supports the double well topological soliton: When m2 is positive and when κ can take both

positive and negative values, the equation of motion

∂ssκ = 2λκ(κ2 −m2)

is solved by

κ(s) = m tanh
[
m
√
λ(s− s0)

]
(21)

The energy function (19) is quadratic in the torsion. Thus we can eliminate τ using its

equation of motion,

τ [κ] =
a+ bκ2

c+ dκ2
≡ a

c

1 + (b/a)κ2

1 + (d/c)κ2
(22)

and we obtain the following equation of motion for curvature,

κss = Vκ[κ] (23)

where

V [κ] = −
(
bc− ad

d

)
1

c+ dκ2
−
(
b2 + 8λm2

2b

)
κ2 + λκ4 (24)

This shares the same large-κ asymptotics, with the potential in (20). With properly chosen

parameters, we expect that (23), (24) continue to support topological solitons, but we do

not know their explicit profile, in terms of elementary functions.

The curve is the constructed as follows: Once we have the soliton of (23), we evaluate

τ(s) from (22). We substitute the ensuing (κ, τ) profiles in the Frenet equation (5) and solve

for t(s). We then integrate (1) to obtain the curve x(s) that corresponds to the soliton. A

generic soliton curve looks like a helix-loop-helix motif (more generally a regular secondary

structure - a loop - a regular secondary structure), familiar from crystallographic protein

structures.

II. POLYGONS AND GENERALIZED KIRCHHOFF ENERGIES

A. Discrete Frenet equation

Proteins are not alike continuous, differentiable curves. Proteins are like piecewise linear

polygonal chain. Thus, to construct a generalized Kirchhoff model applicable for proteins,

we need to generalise the Frenet frame formalism to the case of a polygonal, piecewise linear

chain [9].
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Let ri with i = 1, ..., N be the vertices of the chain. At each vertex we introduce the unit

tangent vector

ti =
ri+1 − ri
|ri+1 − ri|

(25)

the unit binormal vector

bi =
ti−1 − ti
|ti−1 − ti|

(26)

and the unit normal vector

ni = bi × ti (27)

The orthonormal triplet (ni,bi, ti) defines a discrete version of the Frenet frames (1)-(3) at

each position ri along the chain.

In lieu of the curvature and torsion, we have their discrete analogues, the bond angles

and torsion angles. When we know the vertices we also know the Frenet frames and we can

compute these angles: The bond angles are

θi ≡ θi+1,i = arccos (ti+1 · ti) (28)

and the torsion angles are

ψi ≡ ψi+1,i = sign{bi−1 × bi · ti} · arccos (bi+1 · bi) (29)

Conversely, when the values of the bond and torsion angles are all known, we can use the

discrete version of the Frenet equation (5)
ni+1

bi+1

ti+1

 =


cos θ cosψ cos θ sinψ − sin θ

− sinψ cosψ 0

sin θ cosψ sin θ sinψ cos θ


i+1,i


ni

bi

ti

 (30)

to compute the frame at position i + i from the frame at position i. Once all the frames

have been constructed, the entire string is given by discrete version of (1),

rk =
k−1∑
i=0

|ri+1 − ri| · ti (31)

In the case of a protein, it is sufficient to take |ri+1− ri| = 3.8Å; this is the average distance

between neighboring Cα atoms. The bond oscillations are very fast, and over time intervals

in the scale of microsecond the average values can be used.

In constructing the chain, without any loss of generality we may choose r0 = 0, make t0

to point into the direction of the positive z-axis, and let t1 lie on the y-z plane.
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B. frame rotations

The vectors ni and bi do not appear in (31). Thus, as in the case of continuum curves, a

discrete chain remains intact under frame rotations of the (ni,bi) zweibein around ti. This

local SO(2) rotation acts on the frames as follows [9]
n

b

t


i

→e∆iT
3


n

b

t


i

=


cos ∆i sin ∆i 0

− sin ∆i cos ∆i 0

0 0 1



n

b

t


i

(32)

Here ∆i is the rotation angle at vertex i and T 3 is one of the SO(3) generators

T 1 =


0 0 0

0 0 −1

0 1 0

 T 2 =


0 0 1

0 0 0

−1 0 0

 T 3 =


0 −1 0

1 0 0

0 0 0


that satisfy the Lie algebra

[T a, T b] = εabcT c

Using these matrices we can write the effect of frame rotation on the bond and torsion angles

as follows

θi T
2 → e∆iT

3

(θiT
2) e−∆iT

3

(33)

ψi → ψi + ∆i−1 −∆i (34)

Since the ti remain intact under (32), the gauge transformation of (θi, ψi) has no effect on

the geometry of the discrete string.

A priori, the fundamental range of the bond angle is θi ∈ [0, π] while for the torsion angle

the range is ψi ∈ [−π, π). Thus we identify (θi, ψi) as the canonical latitude and longitude

angles of a two-sphere S2. For practical purposes we find it useful to extend the range of θi

into negative values θi ∈ [−π, π] mod(2π). We compensate for this two-fold covering of S2

by a Z2 symmetry which takes the following form:

θk → − θk for all k ≥ i

ψi → ψi − π
(35)

This is a special case of (33), (34), with

∆k = π for k ≥ i+ 1

∆k = 0 for k < i+ 1
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C. Generalized discrete Kirchhoff energy and solitons

The energy function used in the article is obtained by a direct naive discretization of (19),

and by replacing curvature and torsion by the discrete bond and torsion angles [2, 4, 9] . In

particular, we use

(∂sκ)2 → (θi+1 − θi)2

Thus,

(∂sκ)2 + λ (κ2 −m2)2 +
d

2
κ2τ 2 − bκ2τ − aτ +

c

2
τ 2

becomes
n∑
i=1

{
−2θi+1θi + 2θ2

i + λ (θ2
i −m2)2 +

d

2
θ2
i φ

2
i − b θ2

i φi − a φi +
c

2
φ2
i

}
(36)

which is the (θ, ψ) contribution to the energy function in Eqn. (4) of the article.

The conventional discrete NLS equation is known to support solitons [10]. Thus we expect

that (36) supports soliton solutions as well: We follow (22) to eliminate the torsion angle,

ψi[θ] =
a+ bθ2

i

c+ dθ2
i

= a
1 + (b/a)θ2

i

c+ dθ2
i

(37)

For bond angles we then have

θi+1 = 2θi − θi−1 +
dV [θ]

dθ2
i

θi (i = 1, ..., N) (38)

We set θ0 = θN+1 = 0, and V [θ] is given by (24). To solve this numerically, we use the

iterative equation [2, 11]

θ
(n+1)
i = θ

(n)
i − ε

{
θ

(n)
i V ′[θ

(n)
i ]− (θ

(n)
i+1 − 2θ

(n)
i + θ

(n)
i−1)
}

(39)

where {θ(n)
i }i∈N is the nth iteration of an initial configuration {θ(0)

i }i∈N and ε is some suf-

ficiently small but otherwise arbitrary numerical constant. We choose ε = 0.01, in our

simulations. The fixed point of (39) is independent of the value of ε, and clearly a solution

of (38).

Once the fixed point is found, the corresponding torsion angles are obtained from (37).

The frames are then constructed from (30), and the entire chain is constructed using (31).

We do not know of an analytical expression of the soliton solution to the equation (38).

But an excellent approximative solution can be obtained by discretizing the topological

soliton (21) [2]:

θi ≈
µ1 · eγ1(i−s) − µ2 · e−γ2(i−s)

eγ1(i−s) + e−γ2(i−s) (40)
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Here (γ1, γ2, µ1, µ2, s) are parameters. The µ1 and µ2 specify the asymptotic θi-values of

the soliton. Thus, these parameters are entirely determined by the character of the regular,

constant bond and torsion angle structures that are adjacent to the soliton. In particular,

these parameters are not specific to the soliton per se, but to the adjoining regular structures.

The parameter s defines the location of the soliton along the string. This leaves us with

only two loop specific parameter, the γ1 and γ2. These parameters quantify the length of

the bond angle profile that describes the soliton.

For the torsion angle, (37) involves one parameter (a) that we have factored out as the

overall relative scale between the bond angle and torsion angle contributions to the energy.

This parameter determines the relative flexibility of the torsion angles, with respect to the

bond angles. Then, there are three additional parameters (b/a, c/a, d/a) in the remainder

ψ[θ]. Two of these are again determined by the character of the regular structures that

are adjacent to the soliton. As such, these parameters are not specific to the soliton. The

remaining single parameter specifies the size of the regime where the torsion angle fluctuates.

On the regions adjacent to a soliton, we have constant values of (θi, ψi). In the case of a

protein, these are the regions that correspond to the standard regular secondary structures.

For example, the standard right-handed α-helix is obtained by setting

α− helix :

θ ≈ π
2

ψ ≈ 1
(41)

and for the standard β-strand

β − strand :

 θ ≈ 1

ψ ≈ π
(42)

All the other standard regular secondary structures of proteins such as 3/10 helices, left-

handed helices etc. are similarly modeled by definite constant values of θi and ψi. Protein

loops correspond to solitons, the regions where the values of (θi, ψi) are variable.

The presence of solitons significantly reduces the number of parameters in (36), increasing

the predictive power. In particular, the number of parameters is far smaller than the number

of amino acids, along the protein backbone.
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III. MYOGLOBIN MULTISOLITON

To construct the multisoliton solution of (38), (37) that models the Cα backbone of the

crystallographic myoglobin structure with Protein Data Bank code 1ABS in the article, we

use a combination of the GaugeIT and Propro packages, described at

http : //folding− protein.org/

The analysis starts with the inspection of the bond and torsion angle spectrum with the

help of the Z2 symmetry (35), to identify the individual solitons. In Figure 1 we show the

(θi, πi) spectrum both for 1ABS, and for the multisoliton we have constructed; the Cα RMS

distance between the two is around 0.8 Å. In Table I we show the parameter values that we

have found. There are 92 parameters that describe the 154 different amino acids.

FIG. 1: Color online: Top: The bond (θ) and torsion (ψ) angle spectrum of the PDB

structure 1ABS. Bottom: The bond (θ) and torsion (π) angle spectrum of the multisoliton.

Note that the angles are defined modulo 2π.

Finally, we comment on the various versions of the Gõ model [13]. These approaches have

played a very important rôle, to gain insight to protein folding in particular when the power

11



number start site end site center site d/2 λ1 λ2 a c/2 b m1 m2

1 1 8 4 6.283059e-08 12.078732 3.9176859 -3.107281e-08 4.193225e-08 2.170112e-06 1.01168 1.542089

2 9 22 20 1.00696e-08 3.436446 2.029519 -7.237373e-08 1.250037e-08 -1.080896e-06 1.579765 1.513911

3 23 40 36 1.849663e-09 7.320744 0.814552 -1.01612e-07 2.7051e-10 4.827056e-08 1.506042 1.542905

4 41 49 43 2.877262e-09 2.137929 0.657065 -9.048445e-08 2.550927e-11 1.202453e-06 1.655888 1.602375

5 50 54 52 3.837542e-09 0.885448 5.970876 -2.340973e-07 1.181006e-08 -3.301817e-07 1.363863 1.536391

6 55 78 58 2.436747e-09 8.707656 0.8339 -9.640594e-08 5.113017e-11 4.77647e-07 1.549945 1.536618

7 79 84 80 9.507981e-15 0.973448 2.140467 -7.400912e-09 3.471722e-10 3.834484e-09 1.462046 1.546792

8 85 99 97 2.725827e-14 1.32568 2.911392 -1.375057e-13 1.745762e-14 5.605584e-13 1.477527 1.020112

9 100 106 102 6.128919e-09 10.480469 4.242685 -1.213871e-07 4.957782e-11 1.371842e-06 1.222433 1.653224

10 107 122 120 3.911725e-08 0.800539 1.289546 -2.035177e-07 7.300473e-12 1.135981e-06 1.514903 1.602549

11 123 149 124 3.868921e-09 3.1520826 0.914394 -1.077984e-07 3.749198e-11 1.027845e-06 1.557863 1.551461

12 150 154 151 5.692258e-09 1.012151 1.06336 -1.117553e-07 2.192283e-10 8.620106e-07 1.400077 1.328203

TABLE I: The parameters in the energy function for 1ABS

of computers is insufficient for any kind of serious all-atom folding simulations. In these

models the folded configuration is presumed to be known; the individual atomic coordinates

of the folded protein chain appear as an input. A simple energy function is then introduced,

tailored to ensure that the known folded configuration is a minimum energy ground state;

the energy could be as simple as a square well potential which is centered at the native

conformation.

Since the positions of all the relevant atoms appear as parameters in these models, they

contain more parameters than unknown and thus no predictions can be made. Only a

description is possible. From the point of view of a system of equations, these models are

over-determined. In any predictive energy function the number of adjustable parameters

must remain smaller than the number of independent atomic coordinates.
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