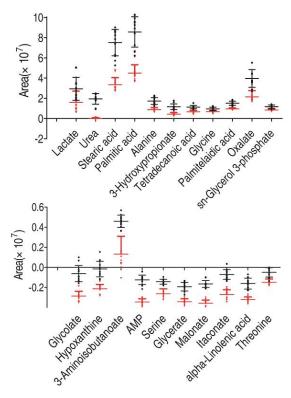
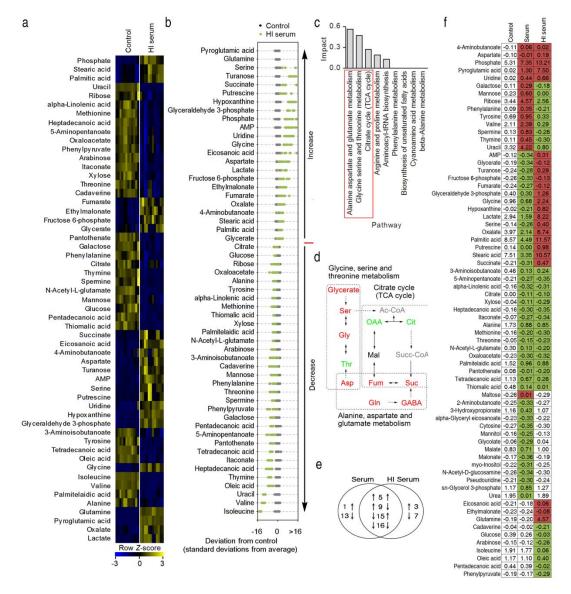
1	
2	
3	
4	Glycine, serine and threonine metabolism confounds efficacy of
5	complement-mediated killing
6	
7	Cheng, et al.,
8	

9 Supplementary Figures

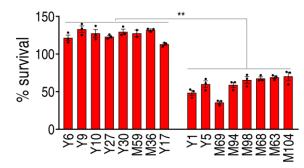

Supplementary Fig. 1 Metabolomic profile for serum-survival bacteria. a, Percent survival of *E. coli* K12 cells exposed to the indicated serum or HI serum at 37 ^oC for

2-h (n = 3). b, Bacterial number in 1 mL with 1.0 of OD600 by plate counting. K12 13 cells were exposed to serum, HI serum or saline. The cells were collected and washed 14 twice using a saline buffer by centrifugation at 8,000 g, 5 min at 4 $^{\circ}$ C. The resulting 15 cells were adjusted to 1.0 of OD600 and washed four times as above. Pellets were 16 diluted for plate counting (n = 3). c, Reproducibility of metabolomic profiling 17 18 platform used in the discovery phase. Metabolite abundances quantified in six independent biological repeats with two technical replicates were shown. Spearman 19 correlation coefficient between technical replicates varied between 0.991 and 0.996. d, 20 Heat map showing the metabolites. Yellow and blue indicated an increase and a 21 decrease of metabolites relative to the median metabolite level, respectively (see color 22 scale). Glycine was highlighted in the red box (n = 6). e. Z-score plot for data from 23 24 serum-treated samples compared to the mean and standard deviation of the control 25 samples with a Z-score range of -9.1 to 35.2. 59 out of the 73 metabolites (80.8%) were significant differential (Wilcoxon p < 0.05), corresponding to false discovery 26 rate (FDR) of 9.1%. Of the 59 differential metabolites, 44 decreased and 15 increased. 27 28 The Z-score plot for data from HI serum-treated cells compared to the mean and 29 standard deviation of the control samples with a Z-score range of -14.7 to 168.9. Out 30 of the 73 metabolites (75.3%), 55 were significantly different in abundance (Wilcoxon P < 0.05), corresponding to a false discovery rate (FDR) of 4.47%. Of the 55 31 32 differential metabolites, 32 decreased and 23 increased. Results (a and b) are displayed as mean \pm SEM, and significant differences are identified (**p < 0.01) as 33 determined by two-tailed Student's t test. 34

35


36 To identify the metabolic signature in response to serum, non-pathogenic E. coli K12 was treated with serum, whose percent survival was decreased with the increased 37 serum concentration, but not in heat-inactivated (HI) serum (Supplementary Fig. 1a). 38 39 A similar number of bacteria was present in serum-survival, HI serum-survival and control (without serum) groups when they were in the same OD (Supplementary Fig. 40 1b). To perform metabolome profiling, six biologically equivalent samples and two 41 technical replicas were prepared for each group, yielding a total of 36 data sets and 42 the abundance of all metabolites was determined and compared. The reproducibility 43 of the GC-MS data is shown in (Supplementary Fig. 1c). A total of 73 metabolites 44 were identified by GC-MS in each of the three groups. Hierarchical clustering for the 45 46 complete data set is shown in (Supplementary Fig. 1d). The statistical significance of differential metabolite abundance in the presence vs. the absence of serum is 47 48 presented as Z-score (Supplementary Fig. 1e).

49

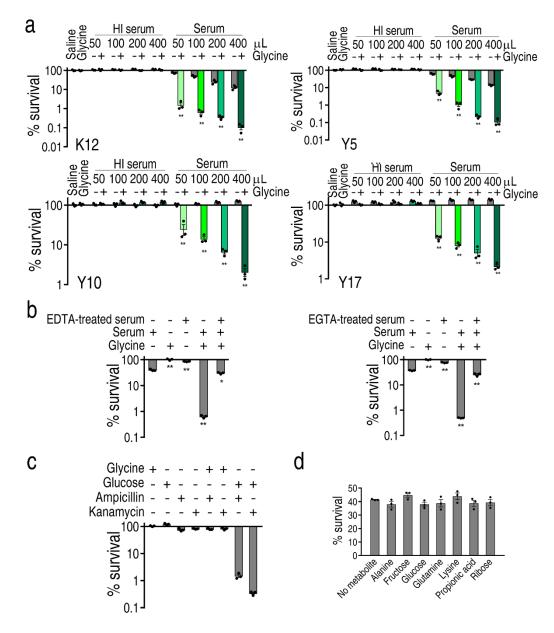


Supplementary Fig. 2 Decreased abundance of metabolites. The data were median centered and inter-quartile range (IQR) scaled per sample in serum-treated samples (red) compared with control (black) from data (Fig. 1e) (n = 6). Results are displayed as mean \pm SEM, and significant differences are identified (**p < 0.01) as determined by two-tailed Student's *t* test.

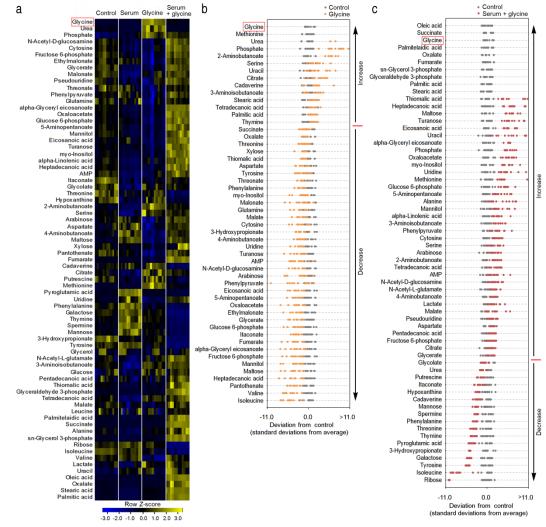
60 Supplementary Fig. 3 Metabolomic profile for HI serum. a, Heat map showing relative abundance of 55 significantly differential metabolites in E. coli K12 in the 61 absence (left) and presence (right) of HI serum as indicated. Heat map scale (blue to 62 yellow; low to high abundance) is shown below data (n = 6). **b.** Z-scores (standard 63 deviation from average) corresponding to data in (a). c, Pathway enrichment analysis 64 of significantly differential metabolites. Red box highlights putative pathway 65 biomarkers. d, Pathway regulation analysis of putative pathway biomarkers. Change 66 in metabolite abundance is indicated as follows: black, no change; red, up-regulation; 67 green, down-regulation; gray, not detected. Thr, threonine; Gly, glycine; Ser, serine; 68 Ac-CoA, acetyl-CoA; Cit, citrate; SuccCoA, succinyl-CoA; Suc, succinate; Fum, 69 fumarate; Mal, malate; OAA, oxaloacetate; Asp, aspartate; Gln, glutamine; GABA, 70 4-aminobutanoate. e, Venn diagram showing the overlapping of differential 71 72 metabolites between serum and HI serum. Increased and decreased metabolites are 73 indicated in an arrow. f, Integrative analysis of these metabolites from data (e). Red and green indicate up-regulation and down-regulation of metabolites, respectively. 74 The number shows the normalized abundance of differential metabolites. 75

79 Supplementary Fig. 4 Identification of serum-resistant and –susceptible E. coli.

80 Percent survival of sixteen clinically isolated pathogenic *E. coli* strains in the presence


of 100 μ L serum. Left, serum-resistant strains, right, serum-susceptible strains (n = 3).

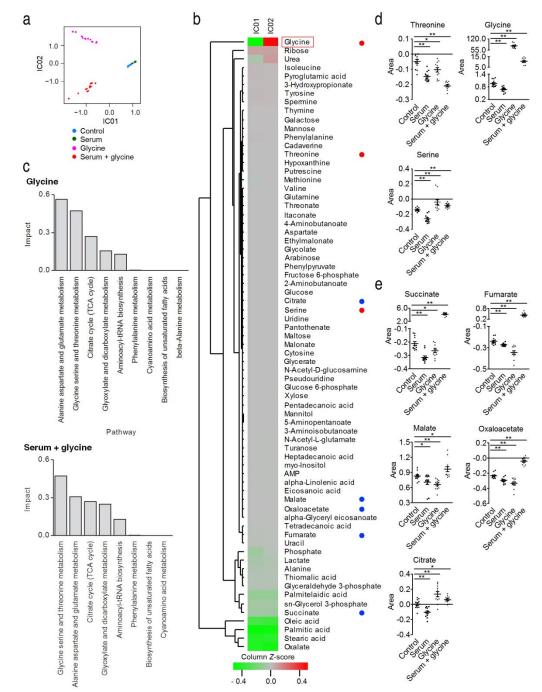
Results are displayed as mean \pm SEM, and significant differences are identified (**p


< 0.01) as determined by two tailed Student's *t* test.

84

76

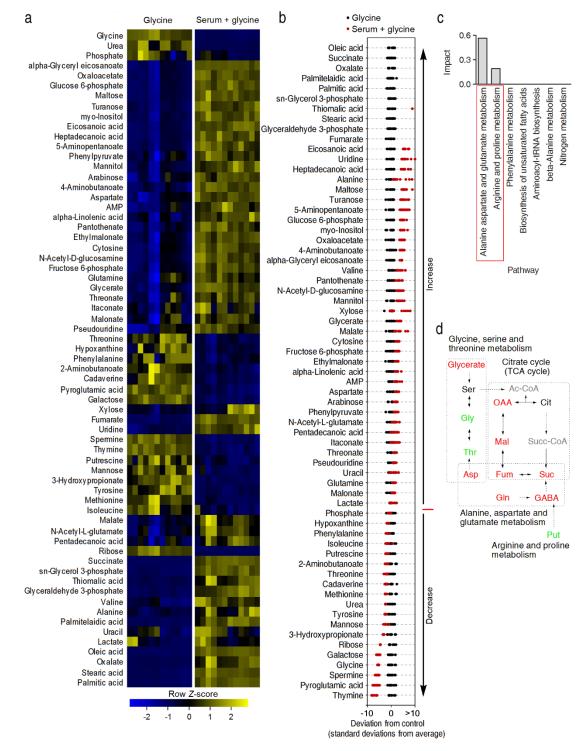
Supplementary Fig. 5 Glycine-enabled killing by serum. a, Percent survival of E. 86 coli K12, Y5, Y10 and Y17 in the presence or absence of the indicated volume of 87 88 serum or HI serum plus 100 mM glycine (n = 3). **b**, Percent survival of *E*. *coli* K12 89 incubated in 100 µL serum, or EDTA-, or EGTA-treated serum in the presence or absence of 100 mM glycine (n = 3). c, Percent survival of E. coli K12 incubated in 90 saline solution and in the indicated metabolites (100 mM glycine or 10 mM glucose) 91 or/and antibiotics (40 µg ampicillin or 2.5 µg gentamicin) for 2 h (n = 3). **d**, Percent 92 survival of E. coli K12 in the presence or absence of the indicated metabolites plus 93 100 μ L serum (n = 3). Results (a-d) are displayed as mean \pm SEM, and significant 94 differences are identified (*p < 0.05; **p < 0.01) as determined by two-tailed 95 Student's t test. 96


Supplementary Fig. 6 Metabolomic profile for glycine and serum plus glycine. a, 99 Heat map representation of unsupervised hierarchical clustering for metabolites in 100 control, serum, glycine, and serum plus glycine. 73 metabolites in cells were 101 102 measured across the four groups with 6 independent biological repeats. Yellow and 103 blue indicate an increase and decrease of metabolites relative to the median metabolite level, respectively (see color scale) (n = 6). **b**, **c**, Z-score plots for the data in treatment 104 groups compared to the mean and standard deviation of the control sample. Further 105 use of Z-scores visualized the change of these metabolites. Significant changes took 106 place in glycine and serum + glycine, relative to the control. Compared with the 107 control, 52 out of the 73 metabolites (71.2%) were significantly differential in glycine, 108 corresponding to false discovery rate (FDR) of 13.0%, in which 14 upregulation and 109 38 downregulation were detected (b). Data showed changes in the Z-scores, which 110 ranged from -10.1 to 622.5 in glycine and from -10.3 to 174.1 in serum + glycine. 63 111 out of 73 metabolites (86.3%) showed a significant difference in serum + glycine, 112 corresponding to FDR of 4.5%, in which 46 upregulation and 17 downregulation were 113 detected (c). Comparison between control and serum is described in Fig. 1a-e and 114 115 Supplementary Fig. 1c-d.

98

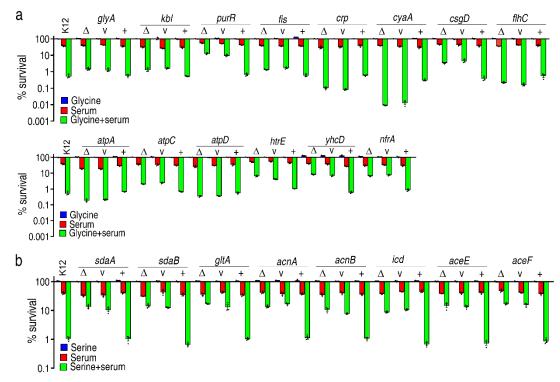
117 Six independent biological replicates with two technical replicates were made for

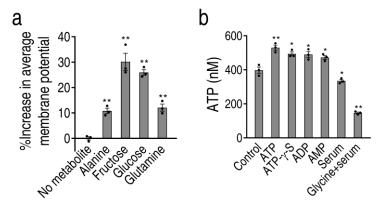
each group. Unsupervised hierarchical clustering of the high and low abundance
metabolites among the four groups is shown in (Supplementary Fig. 6). The critical
metabolites were identified by ICA and Kruskal-Wallis' analysis (Supplementary
Figs. 7a and 7b). Pathway analysis enriched the same first impactful three pathways
in the glycine group and serum plus glycine group (Supplementary Fig. 7c), which is
the same as (Fig. 1c).



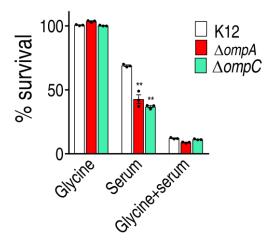
126

Supplementary Fig. 7 Pathway enrichment analysis and ICA. a, Independent 127 component analysis (ICA) directly captures metabolite variation in four groups, 128 according to the treatments set and the classes of data. Each dot in the plot represents 129 the replicate analysis of cell samples. IC01 and IC02 used in this plot explain 98.34% 130 of the total variance which allows confident interpretation of the variation. Positive 131 IC01 differentiated serum from control and negative IC01 differentiated control from 132 glycine and serum plus glycine. IC02 distinguished glycine from serum plus glycine. 133 b, Hierarchical clustering of 71 differential metabolites (multiple comparisons, 134 Kruskal-Wallis, P < 0.05) identified by their weight in different independent 135 components. Red and blue circles indicate the core metabolites in the pathway of 136

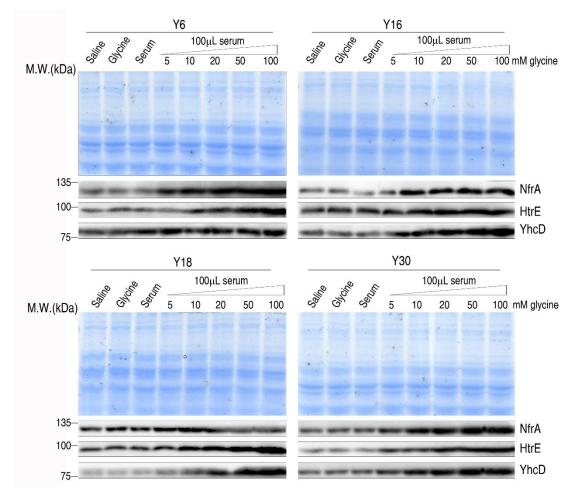

137 glycine, serine and threonine metabolism and TCA cycle, respectively. Red box 138 highlights the biomarker (n = 6). **c**, Pathway enrichment analysis of significantly 139 differential metabolites. **d**, **e**, Scatter plot of eight core metabolites in the pathway of 140 glycine, serine and threonine metabolism (**d**) and the TCA cycle (**e**) (n = 6). Results (**d** 141 and **e**) are displayed as mean \pm SEM, and significant differences are identified (* p < 142 0.05; ** p < 0.01) as determined by Wilcoxon test.


Supplementary Fig. 8 Differential metabolomic profiling. a, Heat map showing the 145 differential metabolites. Yellow and blue indicate an increase and decrease of 146 metabolites relative to the median metabolite level, respectively (see color scale) (n =147 6). b, Z-score plot for data in serum plus glycine-treated samples compared to the 148 mean and standard deviation of glycine-treated samples with a Z-score range of -8.2 149 150 to 118.3. 65 out of the 73 metabolites (89.0%) were significant differential (Wilcoxon P < 0.05), corresponding to false discovery rate of 0.8%. c, Pathway enrichment 151 analysis of significantly differential metabolites. Red box highlights putative pathway 152

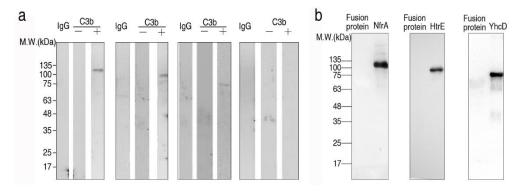
biomarkers. d, Pathway regulation analysis of putative pathway biomarkers. Change
in metabolite abundance is indicated as follows: black, no change; red, up-regulation;
green, down-regulation; gray, not detected. Thr, threonine; Gly, glycine; Ser, serine;
Ac-CoA, acetyl-CoA; Cit, citrate; SuccCoA, succinyl-CoA; Suc, succinate; Fum,
fumarate; Mal, malate; OAA, oxaloacetate; Asp, aspartate; Gln, glutamine; GABA,
4-aminobutanoate; Put, putrescine.


Supplementary Fig. 9 Percent survival of gene-complemented strains. Δ , mutant; 168 V, vector control; +, gene complementation. **a**, 100 µL serum plus 100 mM glycine (*n*

- 169 = 3). **b**, 100 μ L serum plus 50 mM serine (*n* = 3).

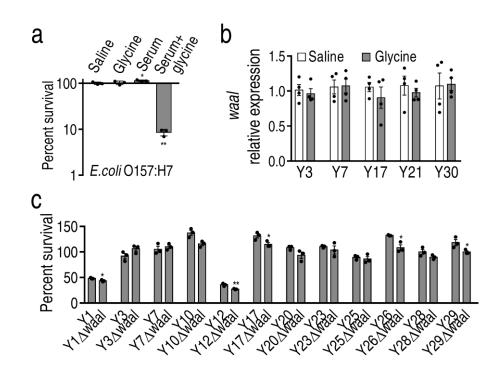


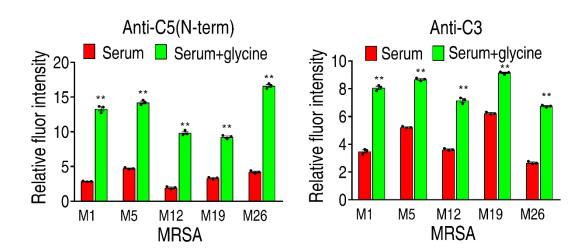
173 **Supplementary Fig. 10 Membrane potential and ATP level. a**, Percent increased 174 membrane potential in the presence of the indicated metabolites (40 mM alanine, 10 175 mM fructose, 10 mM glucose, 20 mM glutamine) (n = 3). **b**, ATP level of *E. coli* K12 176 in the presence of the indicated metabolites or/and serum (2 mM ATP, 2 mM ATP- γ -S, 177 2 mM ADP, 2 mM AMP; 100 μ L serum, 100 mM glycine) (n = 3). Results are 178 displayed as mean \pm SEM, and significant differences are identified (* p < 0.05; ** p 179 < 0.01) as determined by two-tailed Student's *t* test.


184	Supplementary Fig. 11 Effect of loss of ompA, ompC on survival. Percent survival
185	of ompA-, ompC-deficient mutants in the presence of 100 mM glycine, 100 µL serum
186	or both $(n = 3)$. To exclude the possibility that downregulation of outer membrane
187	proteins, including those which are known to interact with complement regulators, e.g.
188	OmpA and OmpC, by exogenous glycine would also increase serum susceptibility, we
189	detected percent survival of ompA- and ompC-deleted mutants, and found that loss of
190	ompA and $ompC$ led to lower percent survival in the presence of serum but not in the
191	presence of serum and glycine. Results are displayed as mean \pm SEM, and significant
192	differences are identified (** $p < 0.01$) as determined by two-tailed Student's <i>t</i> test.

Supplementary Fig. 12 Regulation of NfrA, HtrE and YhcD expression. NfrA,
 HtrE and YhcD expression induced by increasing concentrations of glycine plus

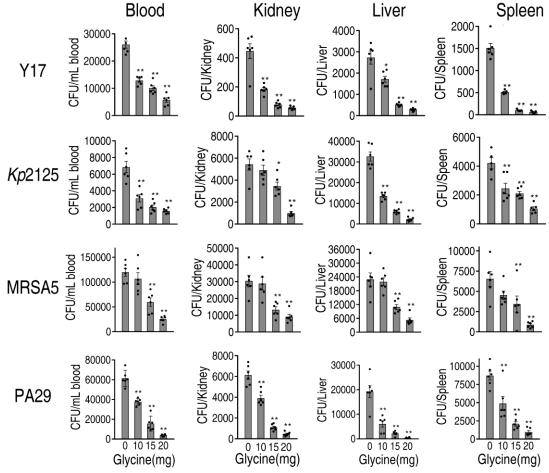
serum in clinically isolated *E. coli* strains Y6, Y16, Y18, and Y30.

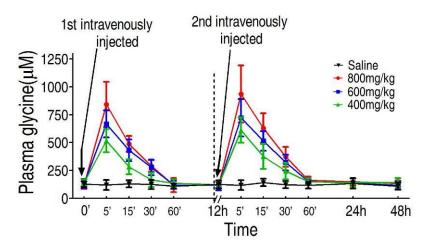

Supplementary Fig. 13 Interaction of C3 with HtrE, NfrA, and YhcD. Far-Western blot and Co-immunoprecipitation (Co-IP) were used for the interaction of C3 with HtrE, NfrA, and YhcD. **a**, Far-Western blot analysis of HtrE, NfrA, and YhcD interacting with complement C3 or IgG. **b**, Co-IP of HtrE, NfrA and YhcD with complement C3. Beads coupled with C3b antibody were incubated with a human serum to capture C3b as a bait protein. The bait protein was reacted with recombinant proteins NfrA, HtrE, and YhcD; blots were probed with anti- HtrE, -NfrA and -YhcD.


214 Supplementary Fig. 14 PCR and sequencing of *waal*. PCR (a) and sequencing (b)

215 of *waal* in *E. coli*, *P. aeruginosa*, and *K. pneumonia* strains.

- 216
- 217
- 218
- 219

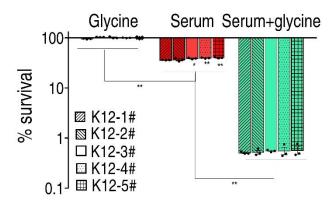

Supplementary Fig. 15 Effect of O-antigens on glycine-mediated serum killing. **a**, Percent survival of *E. coli* O157:H7 with or without 100 µL serum or 100 mM glycine or both (n = 3). **b**, qRT-PCR for detection of *waal* expression in the presence or absence of 100 mM glycine (n = 4). **c**, Percent survival of the indicated *E. coli* strains and their *waal*-deteled mutants in the presence of 100 µL serum (n = 3). Results are displayed as mean ± SEM, and significant differences are identified (*p < 0.05, **p < 0.01) as determined by two-tailed Student's *t* test.


233

Supplementary Fig. 16 Quantification of C3 and C5 on MRSA membrane. Flow cytometry quantification of C3 and C5 on the membrane surface of the indicated MRSA strains (n = 3). Results are displayed as mean \pm SEM, and significant differences are identified (*p < 0.05, **p < 0.01) as determined by two-tailed Student's *t* test.

239

Supplementary Fig. 17 The glycine-enabled killing of clinical strains *in vivo*. The glycine-enabled killing of clinical strains was performed in BALB/c mouse model of bacteremia. Mice were infected by *i*. *p*. injection (see methods) and treated with glycine as described (see text) (n = 6). Results are displayed as mean \pm SEM, and significant differences are identified (*p < 0.05, **p < 0.01) as determined by two-tailed Student's *t* test.

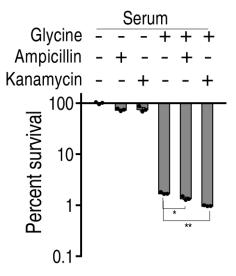


250

251 Supplementary Fig. 18 UPLC/MS quantification of plasma glycine. A total of two

injections were given, where the second injection was performed 12 h after the first

253 injection (n = 10).



Supplementary Fig. 19 Effect of five round serum killing on survival. Percent survival of *E. coli* K12 recovered from serum killing in the presence of glycine, serum or serum plus glycine (n = 3). Results are displayed as mean \pm SEM, and significant differences are identified (*p < 0.05, **p < 0.01) as determined by two-tailed Student's *t* test.

263

264

255

Supplementary Fig. 20 Glycine promotes antibiotics-mediated killing. Percent survival of *E. coli* in M9 and in the presence or absence of the indicated metabolites or/and antibiotics plus serum (n = 3). Results are displayed as mean \pm SEM, and significant differences are identified (*p < 0.05, **p < 0.01) as determined by two-tailed Student's *t* test. Compared with Supplementary 5c, this result suggests ampicillin and gentamicin-mediated killing is related to environments.

272

273

275 Supplementary Tables

- 276 Supplementary Tab. 1 Summary of all compounds which have been detected as
- 277 labeled by the[U-¹³C] glycine

RT	Name	Glycine(¹³ C) fragments
8.51	Glycine	1
12.63		1
12.87	Succinate	3
13.82	Fumarate	2
14.45		1
14.05	Serine	1
14.70	Threonine	1
15.99		1
17.27	Malate	3
17.40		2
17.47		2
24.66	Citrate	3
24.98		1
25.59		2

рт	Nomo	Errog	ъ^ <u>́</u> а	MC)	Ν	[1	N	12	Ν	13	N	14	Ν	15	Ν	16
RT	Name	Frag	K 2	%	SD												
12.63	Glycine	248	1	57.6348	4.6702	1.2722	0.1420	41.0930	4.5506								
14.69	Threonine	73	1	51.0989	1.32204	5.48509	0.217	34.8729	1.27231	3.24037	0.30072	5.3027	0.38699				
		219	0.99	71.1429	1.33104	18.5393	1.3153	8.38118	0.75786	1.55078	0.50995	0.38587	0.1849				
14.05	Serine	73	1	56.1061	2.28012	6.11031	0.4121	34.7337	2.36329	3.04987	0.44212						
		204	1	62.7696	3.45678	20.5192	1.5173	8.91253	0.99291	7.7987	1.57336						
24.66	Citrate	273	0.99	64.70363	0.803664	21.11298	1.005435	9.69548	0.578886	3.466182	0.394317	1.021735	0.156035	0.263781	0.131068	0.146062	0.061967
12.87	Succinate	247	1	66.69215	1.191592	19.13368	0.351637	9.482885	0.560201	3.710366	0.211172	0.980925	0.10835				
13.82	Fumarate	245	1	78.81966	2.348887	12.67219	1.362162	6.126606	0.604203	1.89176	0.29757	0.48979	0.103915				
17.27	Malate	233	1	72.07981	2.268233	16.70214	1.651779	8.036514	1.505461	2.613666	0.76606	0.567878	0.586713				

Supplementary Tab. 2 Summary of all compounds which have been detected as labeled by the[U-¹³C] glycine

The flux was analyzed in Fig. 3f with supplementary tabs 1 and 2 following as: ${}^{13}C_2$ -glycine tracer experiment was carried out in *E. coli* K12 by GC-MS. Since reciprocal transformation occurs between glycine and serine or threonine, higher M2 labeled serine or threonine was detected. The M2 labeled serine was converted to generate M1 labeled acetyl-CoA via pyruvate dehydrogenase. The M1 labeled acetyl-CoA provides an acetyl-group to citrate, succinate, fumarate, malate, and oxaloacetate to produce M1 label in the initial cycle. In the second cycle, the M1 labeled acetyl-CoA provides an acetyl-group to citrate, succinate, fumarate, malate, and oxaloacetate to produce M1 label in the initial cycle. In the second cycle, the M1 labeled acetyl-CoA provides an acetyl-group to citrate, succinate, fumarate, malate, and oxaloacetate to produce M1 label oxaloacetate with M1 labeled acetyl-CoA generate M2 label. In the following cycles, the M2 labeled oxaloacetate with M1 labeled acetyl-CoA produces M3 label, which formed M4 label with M1 labeled acetyl-CoA. Since an equal amount of M1, M2 and M3 were required for generation of M2, M3, and M4, respectively, the relative flux for that metabolite in the TCA cycle (v_{TCA}/v_{GLY}) is defined (M2 + M3 + M4) / (M1 + M2 + M3) ratio, where v_{TCA} refers to the turnover of a particular metabolite pool and v_{GLY} refers to the flux of glycine carbon atoms to the TCA cycle.

Strains	O-antigen	Strains	O-antigen	Strains	O-antigen
Y1	O55:K59	Y11	O29:K?	Y21	O142:K86
Y2	O124:K72	Y12	O152:K?	Y22	O125:K70
Y3	O119:K69	Y13	O6:K15	Y23	
Y4	O127a:K63	Y14		Y24	O144:K?
Y5		Y15	O119:K69	Y25	O112:K66
Y6	O28:K73	Y16	O25:K19	Y26	O20:K17
Y7	O8:K40	Y17	O126:K71	Y27	O152:K?
Y8	O143:K?	Y18	O9:K9	Y28	O128:K67
Y9	O78:K80	Y19	O29:K?	Y29	O26:K60
Y10	O119:K69	Y20	O136:K78	Y30	O7:K1

Supplementary Tab. 3 O-antigen distribution of clinically isolated strains

Note: ? is marked by the Kit, indicating it is not exactly identified.

Supplementary Tab. 4 Primers for validations of mutants

Gene	Primer sequence (5' to 3')	bp	Gene	Primer sequence (5' to 3')	bp
aluA	F: CTGAATTTTGCAGAAGTGTTAACGC	27	c: 4:0 A	F: CGTTATCATCCGAGCGGGTGATATG	27
glyA	R: TAATCAGCAGATCGTTATGCCCGAG	27	atpA	R: GTGTTCTGGACGCTTGCGATCTTAC	27
kbl	F: CCTGAATTTTGCAGAAGTGTTAACG	27	atnC	F: AATACGATCACCTGCCGGAGCAGGC	27
κυι	R: TCAGCAGATCGTTATGCCCGAGTTC	27	atpC	R: ATATCAGCAGGATCTATGTGAACGC	27
purR	F: TTTACCACTTCCCCTTTTCGTCAAGA	25	atpD	F: TATACAACAAAGCTCGTCAGGCCAG	27
pun	R: GGAGAATTCGGTGCCAAACCGCTT	25	upD	R: GTTACCTGGATTTTCTCGACCAGAC	27
purD	F: GTGAAAGGTTCCTCGATGGCTTCTGA	25	sdaA	F: TTCATGTGAATAGTTAAGCCAGTCG	27
purb	R: GTCGAGCGCAAGCCTTTATATAAG	25		R: ACGCCTGACGCAACAGTGGAAGTGT	27
nfrA	F:CGCGTCCTGACAATTCAACGCGAATTAC	30	aceE	F: GCAACTAAACGTAGAACCTGTCTTATTG	30
1911	R:GACTATCTCGGTTTTGTGGTTGCCAGAT	30	uccL	R: TCAACTTTGTCGCCCACTTTGACCAGG	29
htrE	F: AGTGCATTTTTACGCCATTAATGAC	27	aceF	F: TGGCGAAATCGATAAGAAAGTGGTTGC	29
mil	R: ATATCCGTTGCAAATACTGAGGGTG	27	ucci	R: CAAACGGCAACCGATTTGTCTATTCGC	29
yhcD	F: TACGGATACAAAAGTCGAGTTTTAC	27	gltA	F: AGCGGCGAGCCAAATAAAAAACGGG	27
yncD	R: CCATAGTCGATATTTTGTATGCTAC	27		R: AATCAACCCGCCATATGAACGGCGG	27
csgD	F: TTACTACACACAGCAGTGCAACATC	27	acnA	F: ATTTGGGTTGTTATCAAATCGTTACGCG	30
CSgD	R: AGTTAGCAATCCCGGGACTTCTACC	27		R: CAAAGCCGAGAAAATGGGCCATTTGCTG	30
flhC	F: ACGATCTCCAGCAAATTCATACCGG	27	acnB	F: CCGTTGCGGTACTGGGCATTTACCCTAC	30
jine	R: GACAGGATGTTCAGTCGTCAGGCGT	27		R: GAAAAACAGCGGAACGGCGATGGTTTAG	30
crn	F: TGATAGCCCCTTCCCAGGTAGCGGG	27	icd	F: TCTAAAGCATCCGTATCGCAGGACG	27
crp	R: TGTCGAAGTGCATAGTTGATATCGG	27	icu	R: TTTTGATAACCGTTAGCAGCCTAAC	27
fis	F: CGCACATTCAACGCCATTGAGGATG	27	cyaA	F: CGGTTACCTTTGACATACGAAATATCCCG	31
jus	R: ACATCCTGTTCTCATGGTCACTCCC	27	c yur1	R:CTGGGATTTGCTGGAACAGGCGGCGACGC	31

Strain	Original	Strain	Original	Strain	Original
<i>E.coli</i> K12 ¹	KEIO collection	$\Delta sdhD$	KEIO collection	$\Delta sdaA$	KEIO collection
$\Delta n fr A$	KEIO collection	$\Delta frdA$	KEIO collection	$\Delta sdaB$	KEIO collection
$\Delta h tr E$	KEIO collection	$\Delta frdB$	KEIO collection	$\Delta t dc G$	KEIO collection
$\Delta yhcD$	KEIO collection	$\Delta frdB$	KEIO collection	$\Delta trpA$	KEIO collection
$\Delta purR$	KEIO collection	$\Delta frdC$	KEIO collection	$\Delta trpB$	KEIO collection
Δfis	KEIO collection	$\Delta frdD$	KEIO collection	$\Delta tynA$	KEIO collection
Δcrp	KEIO collection	$\Delta m dh$	KEIO collection	$\Delta aecE$	KEIO collection
$\Delta cyaA$	KEIO collection	Δmqo	KEIO collection	$\Delta aecF$	KEIO collection
$\Delta flhC$	KEIO collection	$\Delta purL$	KEIO collection	$\Delta gltA$	KEIO collection
$\Delta csgD$	KEIO collection	$\Delta purK$	KEIO collection	$\Delta acnA$	KEIO collection
$\Delta atpA$	KEIO collection	$\Delta purE$	KEIO collection	$\Delta acn B$	KEIO collection
$\Delta atpC$	KEIO collection	$\Delta purC$	KEIO collection	$\Delta y bh J$	KEIO collection
$\Delta atpD$	KEIO collection	$\Delta purH$	KEIO collection	Δicd	KEIO collection
$\Delta g l y A$	KEIO collection	$\Delta guaA$	KEIO collection	$\Delta sucA$	KEIO collection
Δkbl	KEIO collection	$\Delta guaB$	KEIO collection	$\Delta sucB$	KEIO collection
$\Delta purD$	KEIO collection	$\Delta guaC$	KEIO collection	$\Delta sucC$	KEIO collection
$\Delta ltaE$	KEIO collection	Δndk	KEIO collection	$\Delta sucD$	KEIO collection
$\Delta ilvA$	KEIO collection	$\Delta mazG$	KEIO collection	$\Delta sdhA$	KEIO collection
$\Delta t dc B$	KEIO collection	Δgsk	KEIO collection	$\Delta sdhB$	KEIO collection
$\Delta pepA$	KEIO collection	$\Delta ushA$	KEIO collection	$\Delta sdhC$	KEIO collection
$\Delta pepB$	KEIO collection	$\Delta yibR$	KEIO collection	$\Delta pykA$	KEIO collection
$\Delta pepN$	KEIO collection	$\Delta surE$	KEIO collection	$\Delta pykF$	KEIO collection
$\Delta gcvP$	KEIO collection	$\Delta y j j G$	KEIO collection	$\Delta gshB$	KEIO collection
$\Delta t dh$	KEIO collection	Y3∆glyA	This study	Y17∆waal	This study

Supplementary Tab. 5 Bacterial strains used in the study

$\Delta n fr A \Delta yhc D$	This study	$Y21\Delta glyA$	This study	$Y20\Delta waal$	This study
$\Delta htr E \Delta yhc D$	This study	$Y1\Delta waal$	This study	Y23∆waal	This study
Δ yhcD Δ <i>htrE</i>	This study	Y3∆waal	This study	$Y25\Delta waal$	This study
$\Delta n fr A \Delta yhc D \Delta h tr E$	This study	$Y7\Delta waal$	This study	Y26∆waal	This study
∆htrE∆yhcD∆ <i>nfrA</i>	This study	Y10∆waal	This study	Y28∆waal	This study
∆yhcD∆htrE∆ <i>nfrA</i>	This study	$Y12\Delta waal$	This study	Y29∆waal	This study
Vibro. alginolyticus			The collections of our labor	oratory ²	
Vibro. parahaemolytic	US		The collections of our labor	oratory	
E.coli O157:H7*			The collections of our labor	oratory ³	
30 strains of multidrug <i>aeruginosa</i>	-resistant Pseudomonas	The co	llections of our laboratory, v	which were isola	ted from patients
30 strains of methicillin <i>aureus</i> (MRSA)	n-resistant Staphylococcus	The co	llections of our laboratory, v	which were isola	ted from patients
30 strains of multidrug	-resistant Klebsiella pneumonia	The co	llections of our laboratory, v	which were isola	ted from patients
30 strains of multidrug	-resistant E.coli	The co	llections of our laboratory, v	which were isola	ted from patients

¹ Baba T, *et al.* Construction of *Escherichia coli* K-12 in-frame, single-gene knockout mutants: the Keio collection. *Mol Syst Biol.* **2**, 2006.0008 (2006). ² Xiong XP, Wang C, Ye MZ, Yang TC, Peng XX, Li H. Differentially expressed outer membrane proteins of *Vibrio alginolyticus* in response to six types of antibiotics. Mar Biotechnol, 2010, 12:686-695

³ Li H, Xiong XP, Peng B, Xu CX, Ye MZ, Yang TC, Wang SY, Peng XX. Identification of broad cross-protective immunogens using heterogeneous antiserum-based immunoproteomic approach. J Proteome Res., 2009, 8, 4342–4349

*, The bacterium is with adhesive fimbriae and a cell wall that consists of an outer membrane containing LPS,

Supplementary Tab. 6 Primers for construction of mutants

Primers for ampli	fication of kanamycin cassette (5'-3')
Y3-glyA-KOF	CAGCAAATCACCGTTTCGCTTATGCGTAAACCGGGTAACGTGCG
	CAGATGATTCCGGGGGATCCGTCGACC
Y3-glyA-KOR	TTTATTGTTAGCTGAGTCAGGAGATGCGGATGTTAAAGCGTGAAA
0,	TGAACTGTAGGCTGGAGCTGCTTCG
Y21-glyA-KOF	GGACCGCCTATAAAGGCCAAAAATTTTATTGTTAGCTGAGTCAGG
0.	AGATGATTCCGGGGATCCGTCGACC
Y21-glyA-KOR	ACGAGCACATTGTCAGCAAATCACCGTTTCGCTTATGCGTAAACC
	GGGTATGTAGGCTGGAGCTGCTTCG
ECO-yhcD-KOF	AATAAATATGTCACTGACTTAAAATAACTTTGCCTGGAGCGACAA
·	GGATGATTCCGGGGATCCGTCGACC
ECO-yhcD-KOR	GTTCAGCAGCAGGCATCCTGTTATTATCCGTTTCATTGGCACTCT
-	CCTGT TGTAGGCTGGAGCTGCTTCG
ECO-htrE-KOF	TGCCAGGCTGTAATCAGGCAAGGATATAATTCCGCAGGAAGCAT
	AGCGTGATTCCGGGGGATCCGTCGACC
ECO-htrE-KOR	GCGTTGTTTTTATCATTTGACGTCCCTTGTAGTTACTGAATCTGAC
	ACCG TGTAGGCTGGAGCTGCTTCG
ECO-nfrA-KOF	CAAAGCAGGTTTAAACACAGAACAGGTTGCGCAACTGGAGTCC
	GAAAATG ATTCCGGGGGATCCGTCGACC
ECO-nfrA-KOR	AGTGTCAGCAATACGAAAATGAACTTACGCATTTACCAGTGCAC
	TCCAAT TGTAGGCTGGAGCTGCTTCG
waal-KOF	ACAGTCAAGCAGTTTTGGAAAAGTTATCATCATTATAAAGGTAAAAC
waai-KOI	ATG ATTCCGGGGATCCGTCGACC
waal-KOR	AGTTTTAACTCACTTCTTAAACTTGTTTATTCTTAATTAA
waai-KOK	T TGTAGGCTGGAGCTGCTTCG
Test primers	
Y3-glyA-F	GCCTCCGGAGATTGCAATATATT
Y3-glyA-R	GATTCTTTGTAGACCTGTTATCGCA
Y21-glyA-F	CCGGTAGACCTGTTATCGCAC
Y21-glyA-R	ACCGGAGATTGCAATATATTGAA
ECO-yhcD-F	AAAGATGACAAGAGCAGCAGAG
ECO-yhcD-R	GCTTATTCGCACCTTCCCT
ECO-htrE-F	GCACCTCACTGCCTAAAGACA
ECO-htrE-R	CTCGTCTGTGCTCCAGCGTA
ECO-nfrA-F	ATCAGTGGCTCACGGAACAG
ECO-nfrA-R	GTCGTCAATTTCCGCGCT
waal-F	AGAACGGGCGAAACGACT
waal-R	ACCGGGTTACCGCAAGAT

Gene	Primer sequence (5' to 3')	bp
ah	F: CCCAAGCTTATGTTAAAGCGTGAAATGAACATTG	36
glyA	R: CGCGGATCCTTATGCGTAAACCGGGTAACGTG	34
1-61	F: CCCAAGCTTATGCGTGGAGAATTTTATCAGCAG	35
kbl	R: CGCGGATCCTCAGGCGATAACGCCCAGTTGTTTA	36
C A	F: GACAGCTTATCATCGATAAGCTTATGAAGGAGAATAACCTTAATCG	48
nfrA	R: GATGCGTCCGGCGTAGAGGATCCTTACCAGTGCACTCCAATGGTGAG	49
lE	F: CCCAAGCTTGTGACTATAGAATATACTAAAAATT	36
htrE	R: CGCGGATCCTTACTGAATCTGACACCGAATTCCA	36
uh aD	F: GACAGCTTATCATCGATAAGCTTATGTTAAAAAAAACGTTACTGGC	48
yhcD	R: GATGCGTCCGGCGTAGAGGATCCTCATTGGCACTCTCCTGTTGC	46
D	F: GACAGCTTATCATCGATAAGCTTATGTTTAATGAAGTCCATAGTATTC	50
csgD	R: GATGCGTCCGGCGTAGAGGATCCTTATCGCCTGAGGTTATCGTTTG	48
	F: CCCAAGCTTATGAGTGAAAAAAGCATTGTT	32
flhC	R: CGCGGATCCTTAAACAGCCTGTACTCTCTG	32
	F: CCCAAGCTTATGGTGCTTGGCAAACCGCAAAC	34
crp	R: CGCGGATCCTTAACGAGTGCCGTAAACGACGATG	36
C	F: CCCAAGCTTATGTTCGAACAACGCGTAAATTC	34
fis	R: CGCGGATCCTTAGTTCATGCCGTATTTTTTC	33
	F: CCCAAGCTTATGCAACTGAATTCCACCGAAATCA	36
atpA	R: CGCGGATCCTTACCAGGATTGGGTTGCTTTG	33
	F: CCCAAGCTTATGGCAATGACTTACCACCTG	32
atpC	R: CGCGGATCCTTACATCGCTTTTTTGGTCAAC	33
	F: CCCAAGCTTATGGCTACTGGAAAGATTGTC	32
atpD	R: CGCGGATCCTTAAAGTTTTTTGGCTTTTTCC	33
7 4	F: CCCAAGCTTGTGATTAGTCTATTCGACATG	32
sdaA	R: CGCGGATCCTTAGTCACACTGGACTTTGATTG	34
1.4	F: CCCAAGCTTATGGCTGATACAAAAGCAAAAC	33
gltA	R: CGCGGATCCTTAACGCTTGATATCGCTTTTAAAG	36
	F: GACAGCTTATCATCGATAAGCTTATGTCGTCAACCCTACGAGAAGC	48
acnA	R: GATGCGTCCGGCGTAGAGGATCCTTACTTCAACATATTACGAATGAC	49
D	F: CCCAAGCTTGTGCTAGAAGAATACCGTAAGCACG	36
acnB	R: CGCGGATCCTTAAACCGCAGTCTGGAAAATCACC	36
	F: CCCAAGCTTATGGAAAGTAAAGTAGTTGTTC	33
icd	R: CGCGGATCCTTACATGTTTTCGATGATCGCG	33
	F: GACAGCTTATCATCGATAAGCTTTTGTACCTCTATATTGAGACTC	47
cyaA	R: GATGCGTCCGGCGTAGAGGATCCTCACGAAAAATATTGCTGTAATAGC	50
	F: CCCAAGCTTATGGCAACAATAAAAGATGTAG	33
purR	R: CGCGGATCCTTAACGACGATAGTCGCGGAACG	34
	F: GACAGCTTATCATCGATAAGCTTATGTCAGAACGTTTCCCAAATG	
aceE	R: GATGCGTCCGGCGTAGAGGATCCTTACGCCAGACGCGGGTTAACT	47

Supplementary Tab. 7 Primers for gene complementation

-	F: GACAGCTTATCATCGATAAGCTTATGGCTATCGAAATCAAAGTACCG	49
aceF	R: GATGCGTCCGGCGTAGAGGATCCTTACATCACCAGACGGCGAATG	47
Π	F: CGCGGATCCATGAAAGTATTAGTGATTGG	29
purD	R: CCCAAGCTTTTAGTTCTGCTCGCGTTCGAT	30

Gene	Primer	Primer sequence	Product
Gene			size(bp)
16S	Forward	5'-ACTGAGACACGGTCCAGACTCCTAC-3'	146
rRNA	Reverse	5'-TTAACGTTCACACCTTCCTCCCTAC-3'	140
~h. A	Forward	5'-AGCCCGTTTGTGACCTCC-3'	91
glyA	Reverse	5'-AGCCAGCCAGTTCTTTCG-3'	91
kbl	Forward	5'-TGAATACTGCGATGTGATGGG-3'	146
KDI	Reverse	5'-TGGAGAACAGGTACGGACGAG-3'	140
D	Forward	5'-CAAACAGGGCAATCCGAAGG-3'	191
purD	Reverse	5'-ATCCACCCGCAGCCATCA-3'	191
a.e.e.E	Forward	5'-ACCTCTGGACGCACCACCCT-3'	181
aceE	Reverse	5'-AGTACACGTTCTCCTGCTTCTCA-3'	181
F	Forward	5'-CAGGGCGGCTGCTTCACTA-3'	1 / 1
aceF	Reverse	5'-CGCAAACTCTTTCCCATTCCA-3'	141
~1+A	Forward	5'-TGAGCTGGGTATGAATGACGA-3'	127
gltA	Reverse	5'-CAGTATGATGCCGGAGTAGAAG-3'	127
sda A	Forward	5'-CGGAAATTGGCATGGAAC-3'	111
sdaA	Reverse	5'-CGTTAATCGCCTTCACAGAG-3'	111
adaD	Forward	5'-AGCAAAGAAGAGCTGGAACA-3'	85
sdaB	Reverse	5'-CGCCTTCGGTGGAAATAC-3'	85
tdcG	Forward	5'-CGCCATGAGAACGGAATG-3'	80
	Reverse	5'-CCGCCGACAGAGTAATAGG-3'	80
acnA	Forward	5'- ATTGCCCGTGCGGTAGAA-3'	189
ucnA	Reverse	5'- CACTGGTGCTGGTGTTGC-3'	169
a on D	Forward	5'-TCCCTGTGCATGGGCAACC-3'	194
acnB	Reverse	5'-CCCACCTTCGCCATAAACTGC-3'	194
	Forward	5'-GTGTTTATCAGGGCTTTGTG-3'	156
ybhJ	Reverse	5'-TCAGTTCGTCGGTGGTGG-3'	130
icd	Forward	5'-AAACGCCGAGGATATTTACGC-3'	126
ica	Reverse	5'-ATGCCGCAGTGCTCAGGGA-3'	120
sucA	Forward	5'-ACCTACTGCGGAACCATCGG-3'	119
SUCA	Reverse	5'-TTCTCCTGCGGGGCTAAACG-3'	117
sucB	Forward	5'-TACGCCGATCATCAACCC-3'	169
SUCD	Reverse	5'-CGTTACCAGGAAGCCCAC-3'	107
sucC	Forward	5'-GCCGAACAGTGGCTGGGTA-3'	89
SUCC	Reverse	5'-GTCGCTCCCTCCACCAGAAT-3'	07
sucD	Forward	5'-TGTGGGTTACATCGCTGGTG-3'	87
SUCD	Reverse	5'-CAGGCTGCGAACGGTTTT-3'	07
tdcB	Forward	5'-ACCCGACCATTCGTGTTAT-3'	143
IUCD	Reverse	5'-GGTGCGTGGTTATTTCTCC-3'	143
ilvA	Forward	5'-GCGTATTTGTGCCAGTCGG-3'	98

Supplementary Tab. 8 Primers for qRT-PCR

	Reverse	5'-CGCTTCTACGGCGATCACTT-3'		
tdh ltaE gshB gcvP pepA pepB pepN cycA crp nfrA	Forward	5'-AGGTATTTACGGTCGTGAGATG-3'		
	Reverse	5'-ATAGCGTCAAAGCCCTTCT-3'	132	
1	Forward	5'-AATGACAGGTGGCGGGATG-3'	107	
ltaE	dh Reverse 5'-ATAGCGTCAAAGCCCTTCT-3' taE Forward 5'-AATGACAGGTGGCGGGATG-3' Reverse 5'-AGGCAGCGTTGTCGTGGTC-3' shB Forward 5'-TGACGGAAAGTGACTGGAAA-3' Reverse 5'-AATACAGGTTGGGCTGGTG-3' cvP Forward 5'-GGTGACTTATCCTTCTACCCACG-3' Reverse 5'-AAACCTGACCGCCGAACTG-3' epA Forward 5'-TGGGTGACGAGTATCAGGAA-3' epB Forward 5'-TCCTCTGCTGTGCGGATAA-3' epB Forward 5'-TGAGCAACCCGAACCGTAT-3' epN Forward 5'-TGAGCAACCCGAACCGTAT-3' epN Forward 5'-CGTGGTGATGTTGTATGTGTAA-3' epN Forward 5'-CGTGGTGATGTTGTATGTGTAA-3' everse 5'-AGGTAACCGCTGCCATCTT-3' epN Forward 5'-CGTGGTGATGTTGTATGTGAA-3' everse 5'-AGGTAACCGCTGCCTGTTT-3' epN Forward 5'-CTTCTGATGCGTACGGACCTGTTT-3' epN Forward 5'-CATGTAGCGTTGTTGTTGTCG-3' everse 5'-ATGTAAGCGCTGGTAGCCTGTT-3' frA Forward 5'-CAACATCGTGCGGTAGCCTGTT-3' frA Forward 5'-CAACATCGTGCGGTAGCCTGG	107		
1 D	Forward	5'-TGACGGAAAGTGACTGGAAA-3'	101	
gshB	dhForward5'-AGGTATTTACGGTCGTGAGATG-3' ReversetaEForward5'-ATAGCGTCAAAGCCCTTCT-3'taEForward5'-AATGACAGGTGGCGGGATG-3' ReverseshBForward5'-TGACGGAAAGTGACTGGAAA-3' ReversecvPForward5'-GGTGACTTATCCTTCTACCCACG-3' ReverseepAForward5'-TGGGTGACGAGATACAGGAA-3' ReverseepBForward5'-TCCTCTGCTGTGCGGATAA-3' ReverseepNForward5'-TCCTCTGCTGTGCGGATAA-3' ReversefrAReverse5'-AGGTAACCCGACGCTGTTC-3'epNForward5'-TCCTCTGGCTGTGCGGATAA-3' ReversefrAForward5'-CGTGGTGATGTTGTATGTGAA-3' ReversefrAForward5'-CGTGGTGATGTGTGTGCGGATAA-3' ReversefrAForward5'-CGTGGTGATGTTGTTGTCG-3' ReversefrAForward5'-CACAACGCGGGTAGCCT-3' ReversefrAForward5'-CATCGCAGCAGCAAGCAGAGA-3' ReversefrAForward5'-GTGTTATACGACGGGCGAAAC-3' ReversefrAForward5'-CATCGCAGGATACGAAGCAG-3' ReversefrAForward5'-CATCGCAGGATACGAAGCAG-3' ReversefrAForward5'-CATCGCAGGATACGAAAGA-3' ReversefrAForward5'-CATCGCAGGATACGAAGCAG-3' ReversefrAForward5'-CATCGCCAGGATACGAAGCAG-3' ReversefrAForward5'-CATCGCTGGACATTGGTGC-3' ReversefrAForward5'-CATCGCTGGACGTTATCGTTC-3' ReversefrAForward5'-CATCGCCTGAGCTTGGTGCG-3' ReversefrAForward5'-CATCGC	131		
ъ	Forward	5'-GGTGACTTATCCTTCTACCCACG-3'	07	
gcvP	Reverse	5'-AAACCTGACCGCCGAACTG-3'	80	
pepB pepN	Forward	5'-TGGGTGACGAGTATCAGGAA-3'	111	
	Reverse	5'-GGGTAAAGCGTGACAGGAA-3'	111	
ת ח	Forward	ward 5'-AGGTATTTACGGTCGTGAGATG-3' terse 5'-ATAGCGTCAAAGCCCTTCT-3' ward 5'-AATGACAGGTGGCGGGATG-3' terse 5'-AGGCAGCGTTGTCGTGGTC-3' ward 5'-TGACGGAAAGTGACTGGAAA-3' terse 5'-AATACAGGTTGGGCTGGTG-3' ward 5'-GGTGACTTATCCTTCTACCCACG-3' terse 5'-AAACCTGACCGCCGAACTG-3' ward 5'-TGGGTGACGAGTATCAGGAA-3' terse 5'-GGGTAAAGCGTGACAGGAA-3' ward 5'-TCCTCTGCTGTGCGGATAA-3' terse 5'-CCCTTCGGCATCAGTGTTC-3' ward 5'-TGAGCAACCCGAACCGTAT-3' terse 5'-AGGTAACCGCTGCCATCTT-3' ward 5'-CGTGGTGATGATGTTGTATGTGAA-3' terse 5'-AGGTAACCGCTGCCATCTT-3' ward 5'-CTTCTGATGCGTTTGTCTGC-3' terse 5'-GAGTCATAGCGTCTGGTTGTT-3' ward 5'-CAACATCGTGCGGTAGCCT-3' terse 5'-GAGTCATAGCGTCTGGTGTGT-3' ward 5'-CATCGCAGCAGCAGCAG-3' ward 5'-GTCTTATACGACGGCGAAAC-3' terse 5'-GCTGGCTAAAGTCGGAGGCA-3' ward 5'-CATCGCAGGATACGAAGAAG-3' terse 5'-GCTGGCTAAAGTCGGAGGC-3' ward 5'-CATCGCAGGATACGAAGCAG-3' ward 5'-CGTGCCTGGACATTGGTGC-3' terse 5'-AGGTGGTGATGTTGTCGC-3' terse 5'-AGGCTGGTGATGTCGTGGTGA-3' ward 5'-CATCGCAGGACACTTGGTGC-3' terse 5'-TGGTTGTTAGCCCAAGTGA-3' ward 5'-CATCGCAGGACATTGGTGC-3' terse 5'-TGGTTGTTAGCCCAAGTGA-3' ward 5'-CATCGCAGGATACGAAAGA-3' terse 5'-TGGTTGTTAGCCCAAGTGA-3' ward 5'-CGTGCCTGGACATTGGTGC-3' terse 5'-TGGTCGTCGTTCGTTGTTC-3' ward 5'-GATCGCTCGTTCGTTGTTC-3' ward 5'-GAACATCGTCGTTCGTTGTT-3' ward 5'-GAACATCGTCGTTCGTTGTT-3' ward 5'-GAGCTGGTGAGCCT-3'	110	
рерв	Reverse		110	
N 7	Forward	5'-TGAGCAACCCGAACCGTAT-3'	, 142	
рерм	Forward5'-GGTGACTTATCCTTCTACCCACG-3'Reverse5'-AAACCTGACCGCCGAACTG-3'Forward5'-TGGGTGACGAGTATCAGGAA-3'Reverse5'-GGGTAAAGCGTGACAGGAA-3'Forward5'-TCCTCTGCTGTGCGGATAA-3'Reverse5'-CCCTTCGGCATCAGTGTTC-3'Forward5'-TGAGCAACCCGAACCGTAT-3'Reverse5'-AGGTAACCGCTGCCATCTT-3'Forward5'-CGTGGTGATGTTGTATGTGAA-3'Reverse5'-ATGTAGATGAGGACGCTGTTT-3'Forward5'-TTCTGATGCGTTTGTCTGC-3'Reverse5'-GAGTCATAGCGTCTGGTTGTT-3'Forward5'-CAACATCGTGCGGTAGCCT-3'Reverse5'-TATTGGCAGCAGCAGCAGCAG-3'Forward5'-GTCTTATACGACGGGCGAAAC-3'Reverse5'-GTCTGGCTAAAGTCGGAGGC-3'Forward5'-GTCGCAGGATACGAAAGA-3'	91		
cycA	Forward	5'-CGTGGTGATGTTGTATGTGAA-3'	91 142	
	Reverse	5'-ATGTAGATGAGGACGCTGTTT-3'	142	
	Forward	5'-TTCTGATGCGTTTGTCTGC-3'	1.4.1	
crp	Reverse	5'-GAGTCATAGCGTCTGGTTGTT-3'	141	
C A	Forward	5'-CAACATCGTGCGGTAGCCT-3'	101	
Reverse5'-AGGTAcycAForward5'-CGTGGReverse5'-ATGTAcrpForward5'-TTCTGReverse5'-GAGTCnfrAForward5'-CAACAReverse5'-TATTGhtrEForward5'-GTCTTReverse5'-GCTGGForward5'-GCTGGForward5'-CATCG	5'-TATTGGCAGCAGCAAGCAG-3'	121		
la 4 m E	Forward	5'-GTCTTATACGACGGGCGAAAC-3'	04	
nnE	Reverse	d 5'-AGGTATTTACGGTCGTGAGATG-3' e 5'-ATAGCGTCAAAGCCCTTCT-3' d 5'-AATGACAGGTGGCGGGGATG-3' e 5'-AGGCAGCGTTGTCGTGGTC-3' d 5'-TGACGGAAAGTGACTGGAAA-3' e 5'-AATACAGGTTGGGCTGGTG-3' d 5'-GGTGACTTATCCTTCTACCCACG-3' e 5'-AAACCTGACCGCCGAACTG-3' d 5'-TGGGTGACGAGTATCAGGAA-3' e 5'-GGGTAAAGCGTGACAGGAA-3' e 5'-GGGTAAAGCGTGCGGATAA-3' e 5'-CCCTTCGGCATCAGTGTC-3' d 5'-TCCTCTGGTGTGCGGATAA-3' e 5'-AGGTAACCGCTGCCATCTT-3' d 5'-TGAGCAACCCGAACCGTAT-3' e 5'-AGGTAACCGCTGCCATCTT-3' d 5'-TTCTGATGAGAGGACGCTGTTT-3' d 5'-TTCTGATGCGTTGTTGTCTGC-3' e 5'-GAGTCATAGCGTCTGGTTGTT-3' d 5'-CAACATCGTGCGGTAGCCT-3' e 5'-GAGTCATAGCGTCGGGTAGCCT-3' e 5'-GTCTTATACGACGGGCGAAAC-3' e 5'-GTCGTGGCAGAAGCAGCAG-3' d 5'-CATCGCAGGATACGAAGCAG-3' d 5'-CATCGCAGGATACGAAGCAG-3' d 5'-CATCGCAGGATACGAAGCAG-3' d 5'-CATCGCAGGATACGAAGCAG-3' e 5'-AGGTTGTTAGCCCAAGTGA-3' e 5'-GGTGCTTGAGCGTGGGTA-3' d 5'-CATCGCCTGGACATTGGTGC-3' e 5'-AGGCTGGTGAGCTTCGTTGTC-3' e 5'-AGGCTGGTGAGCTTATCGTTC-3' e 5'-AGGCTGGTGAGCTTATCGTTC-3' e 5'-CGTGCCTGAGGTTATCGTTC-3' e 5'-TCGCCTGAGGTTATCGTTC-3' e 5'-TCGCCTGAGGTTATCGTTC-3'	94	
when	Forward	5'-CATCGCAGGATACGAAAGA-3'	131 86 111 110 91 142 141 121 94 90 99	
yncD	Reverse	5'-TGGTTGTTAGCCCAAGTGA-3'	90	
flhC	Forward	5'-CGTGCCTGGACATTGGTGC-3'	00	
<i>flhC</i> Forward	5'-AGGCTGGTGAGCGTGGGTA-3'	77		
	Forward	5'-GATCGCTCGTTCGTTGTTC-3'	104	
csgD	Reverse	5'-TCGCCTGAGGTTATCGTTT-3'	124	
1	Forward	5'-GGATAGTTAGTGGCGTTGC-3'	02	
waal	Reverse	5'-GGAGTAGGGTTGCTCTGGT-3'	92	

strains				
Strain	Forward/	Primers (5' to 3') GCTTATTGTCACTAATTTTAC CAGACCTTTCAGTGACCCTG GTCACTTAAACCATAGATAA ACTCATAGCGAATATTGGTC ACACTCGAGCAGCTCCTCAA CGGCTGTTTTTTCTCCTGATC	bp	
Strain	Reverse			
E. coli	waal-F	GCTTATTGTCACTAATTTTAC	21	
E. Coll	waal-R	CAGACCTTTCAGTGACCCTG	20	
V	waal-F	GTCACTTAAACCATAGATAA	20	
K. pneumonia	waal-R ACTCATAGCGAATATTGGTC		20	
D	waal-F	ACACTCGAGCAGCTCCTCAA	20	
P. aeruginosa	waal-R	CGGCTGTTTTTTCTCCTGATC	20	

Supplementary Tab. 9 Primers for *waal* PCR in different clinical isolated

Supplementary Discussion

Notably, other metabolites like alanine, fructose, glucose, and glutamine promote the membrane potential, but they fail to reverse serum resistance. This discrepancy is attributed to the dual roles of glycine that not only promotes membrane potential but also up-regulates the expression of complement-binding outer membrane proteins. The proposed mechanism can be applicable in Gram-negative bacteria with outer membrane proteins in addition to *E. coli*, but why this effect is also observed in Gram-positive bacteria requires further investigation as they do not possess the outer membrane proteins for MAC insertion. The increased deposition of complement components on MRSA surface suggests other mechanisms may exist. Nevertheless, that the triple mutations of *htrE, nfrA* and *yhcD* did not completely abrogate glycine-mediated serum killing and loss of *waal* affected the killing potential in several mutants indicates that serum resistance is a multi-factorial event that may include more than membrane potential and outer membrane proteins.

Because complement-dependent killing represents a crucial innate immune response with a rapid but persistent mechanism after bacterial infection¹⁻³, glycine potentiation of complement/serum-dependent cell death has a potential clinical use. Most significantly, glycine could be used to potentiate the innate complement response in human patients who lack a strong acquired immune response, such as AIDS patients, or to protect immune-compromised individuals suffering from cystic fibrosis, healthcare-associated pneumonia, and ventilator-associated pneumonia. The mortality rate from community-acquired bacterial bloodstream infections is as high as 46% in AIDS patients^{4,5} and *P. aeruginosa* cause severe respiratory tract and systemic infections⁶ and are a major cause of mortality and morbidity in immune-compromised individuals in hospital intensive care units⁷. Equally, the approach is also suitable in animal breeding and aquaculture since the glycine-enabled killing of bacterial pathogens by serum is detected in non-mammalian species, and glycine is used as nutrition for these animals. Finally, exogenous glycine potentiates ampicillin to kill serum-susceptible or serum-resistant and multidrug-resistant pathogens, which may be related to that exogenous glycine fuels the TCA cycle since the inhibited TCA cycle has been determined as a characteristic feature of antibiotic-resistant bacteria^{8, 9, 10-17}. However, further mechanisms wait investigation.

Previous studies showed the role of glycine on cell wall composition and the growth of Gram-positive bacteria¹⁸. To exclude the possibility that glycine might alter the integrity of the cell wall of Gram-negative bacteria and thereby made bacteria sensitive to serum, antibiotic attack assay was performed. As shown in (Supplementary Fig. 5c), metabolites or antibiotics alone did not kill the bacteria. More importantly, glycine did not increase the efficacy of antibiotics to kill the bacteria in the same buffer as glycine potentiated serum, indicating the unaffected integrity of the cell wall. The synergistic effect of glucose and antibiotics in killing bacteria was served as a positive control, which was shown previously^{8, 19}. Instead, study indicates that glycine promotes the present the expression of complement-binding proteins and membrane potential, which enabled the bacteria-killing by serum. In addition, since serum-sensitive bacteria are not necessarily killed by the MAC but by other non-complement heat-sensitive factors²⁰, C3-depleted serum and EDTA/EGTA-treated human serum were used to confirm that serum complement system contributes the glycine-enabled killing.

It is clear that multidrug-resistant and serum-resistant pathogens are a serious threat to human health and agriculture^{21, 22}. The US Centers for Disease Control and Prevention has recently warned that drug-resistant bacteria kill at least 23,000 people annually in America and cost the US health-care system 20 billion dollars annually²³. Therefore, it is encouraging that elevation of glycine, serine and threonine catabolic pathway to the TCA cycle potentiates serum-dependent death of multiple strains of Gram-negative and Gram-positive bacteria, via a mechanism that appears to be conserved in humans and other species. We are hopeful that the findings presented in this study will reduce the threat of infection with multidrug-resistant pathogens worldwide and will have broad application in medicine, agriculture and animal husbandry.

To exclude the possibility that downregulation of outer membrane proteins, including those which are known to interact with complement regulators, e.g. OmpA and OmpC, by exogenous glycine would also increase serum susceptibility, we detected percent survival of *ompA*- and *ompC*-deleted mutants, and found that loss of *ompA* and *ompC* led to lower percent survival in the presence of serum but not in the presence of serum

and glycine

In addition, it should be noted that mutants from the KEIO collection may cause phenotypes that are off-targets. And the knockouts may cause a metabolic shift, which is not necessarily related to the observed phenotype, through targeting specific metabolic genes. However, the present study utilizes a large set of mutants as well as other coincided experiments, and thereby ensures the reliability of these findings.

In summary, the present study discloses the regulation of glycine, serine and threonine catabolism to bacterial serum resistance and develops a metabolome-reprogramming strategy to revert serum-resistant metabolome to serum-sensitive metabolome, leading to the elimination of serum resistance. Out of the reprogramming metabolites, glycine and serine are screened. Interestingly, the mechanisms of the regulation not only attribute to metabolic flux, but also depend on substrate activation to enzymes, which lead to disclose of two unknown findings: the GlyA activation caused by high dose of glycine, serine and threonine surpasses over the negative regulation of PurR to *glyA* and *kbl* promoters, and a new metabolic regulation pathway from glycine to ATP synthase. At last, our developed approach highlights the way to control pathogens through reprogramming microbes' sensitivity to host immune defense.

Supplementary References

1. Kolev, M., Kemper, C. Keeping it all going-complement meets metabolism. *Front Immunol.* **8**, 1 (2017).

- 2. Maruvada, R., Blom, A.M., and Prasadarao, N.V. Effects of complement regulators bound to *Escherichia coli* K1 and Group B Streptococcus on the interaction with host cells. *Immunology* **124**, 265-276 (2008).
- Wang, C.Y., Wang, S.W., Huang, W.C., Kim, K.S., Chang, N.S., Wang, Y.H., Wu, M.H., & Teng, C.H. Prc contributes to *Escherichia coli* evasion of classical complement-mediated serum killing. *Infect. Immun.* 80, 3399-3409 (2012).
- Raffatellu, M., Santos, R.L., Verhoeven, D.E., George, M.D., Wilson, R.P., Winter, S.E., Godinez, I., Sankaran, S., Paixao, T.A., and Gordon, M.A. Simian immunodeficiency virus-induced mucosal interleukin-17 deficiency promotes *Salmonella* dissemination from the gut. *Nat. Med.* 14, 421-428 (2008).
- 5. Huson, M.A., Stolp, S.M., van der Poll, T., and Grobusch, M.P. Community-acquired bacterial bloodstream infections in HIV-infected patients: a systematic review. *Clin. Infect. Dis.* 58, 79-92(2014).
- Zhang, Y., Li, X., Carpinteiro, A., Goettel, J.A., Soddemann, M., and Gulbins, E. Kinase suppressor of Ras-1 protects against pulmonary *Pseudomonas aeruginosa* infections. *Nat. Med.* 17, 341-346(2011).
- Dettman, J.R., Rodrigue, N., Aaron, S.D., and Kassen, R. Evolutionary genomics of epidemic and nonepidemic strains of *Pseudomonas aeruginosa*. *Proc. Natl. Acad. Sci.USA* 110, 21065 -21070(2013).
- 8. Peng, B., et al., Exogenous alanine or/and glucose plus kanamycin kills antibiotic-resistant bacteria. *Cell Metab* **21**, 249–261 (2015).
- 9. Su, Y.B., Peng, B., Han, Y., Li, H., & Peng, X.X. Fructose restores susceptibility of multidrug-resistant *Edwardsiella tarda* to kanamycin. *J Proteome Res* 14, 1612-1620 (2015).
- Kohanski, M.A., Dwyer, D.J., Hayete, B., Lawrence, C.A., and Collins, J.J. A common mechanism of cellular death induced by bactericidal antibiotics. *Cell* 130, 797-810(2007).
- 11. Kohanski, M.A., Dwyer. D.J., Wierzbowski, J., Cottarel, G., and Collins, J.J. Mistranslation of membrane proteins and two-component system activation trigger antibiotic-mediated cell death. *Cell* **135**, 679-690 (2008).
- 12. Kohanski, M.A., Dwyer, D.J., and Collins, J.J. How antibiotics kill bacteria: from targets to networks. *Nat. Rev. Microbiol.* **8**, 423-435 (2010).
- 13. Lin, X.M., Kang, L.Q., Li, H., and Peng, X.X. Fluctuation of multiple metabolic pathways is required for *Escherichia coli* in response to chlortetracycline stress. *Mol. Biosyst.* **10**, 901-908 (2014).
- 14. Purohit, H.J., Cheem, S., Lal, S., Raut, C.P., Kalia, V.C. In search of drug targets for *Mycobacterium tuberculosis*. *Infect Disord Drug Targets*. 7, 245-250 (2007).
- Belenky, P., Ye, J.D., Porter, C.B., Cohen, N.R., Lobritz, M.A., Ferrante, T., Jain, S., Korry, B.J., Schwarz, E.G., Walker, G.C., Collins, J.J. Bactericidal antibiotics induce toxic metabolic perturbations that lead to cellular damage. *Cell Rep.* 13,

968-80 (2015).

- 16. Liu, S.R., Peng, X.X., Li, H. Metabolic mechanism of ceftazidime resistance in *Vibrio alginolyticus. Infect Drug Resist.* **12**, 417-429 (2019).
- Cheng, Z.X., Yang, M.J., Peng, B., Peng, X.X., Lin. X.M., Li, H. The depressing central carbon and energy metabolisms mediate levofloxacin resistance in *Vibrio alginolyticus*. *J Proteomics* 181, 83-91 (2018).
- Hammes, W., Schleifer, K.H., & Kandler, O. Mode of action of glycine on the biosynthesis of peptidoglycan. *J Bacteriol.* 116, 1029-1053(1973).
- 19. Allison, K. R., Brynildsen, M. P. & Collins, J. J. Metabolite-enabled eradication of bacterial persisters by aminoglycosides. *Nature* **473**, 216-220 (2011).
- 20. Berends, E.T., Mohan, S., Miellet, W.R., Ruyken, M., Rooijakkers, S.H. Contribution of the complement membrane attack complex to the bactericidal activity of human serum. *Mol Immunol.* **65**, 328-335 (2015).
- 21. Zowawi, H.M., et al. The emerging threat of multidrug-resistant Gram-negative bacteria in urology. *Nat Rev Urol.* **12**, 570-584 (2015).
- 22. Tadesse, D.A., Zhao, S., Tong, E., Ayers, S., Singh, A., Bartholomew, M.J., McDermott, P.F. Antimicrobial drug resistance in *Escherichia coli* from humans and food animals, United States, 1950-2002. *Emerg. Infect. Dis.* **18**, 741-749 (2012).
- 23. McKenna, M. Antibiotic resistance: the last resort. Nature 499, 394-396 (2013).