natureresearch

Corresponding author(s): Hui Li

Last updated by author(s): Jun 16, 2019

Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Research policies, see <u>Authors & Referees</u> and the <u>Editorial Policy Checklist</u>.

Statistics

For	all st	atistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
n/a	Cor	firmed
	\square	The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
	\square	A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
		The statistical test(s) used AND whether they are one- or two-sided Only common tests should be described solely by name; describe more complex techniques in the Methods section.
	\square	A description of all covariates tested
	\square	A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
		A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
		For null hypothesis testing, the test statistic (e.g. <i>F</i> , <i>t</i> , <i>r</i>) with confidence intervals, effect sizes, degrees of freedom and <i>P</i> value noted Give <i>P</i> values as exact values whenever suitable.
\boxtimes		For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
	\square	For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
	\square	Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated
		Our web collection on <u>statistics for biologists</u> contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collectionPeaks of total ion chromatograms (TIC) were identified by searching in MSD ChemStation (version E.02.02.1431, Agilent Technologies Inc., USA), and NIST MS Search 2.0 with NIST 2011 library (version 2.0, National Institute of Standards and Technology, Gaithersburg, MD).Data analysisStatistical analysis was performed in the SPSS 23.0. The difference among metabolites was conducted with ManneWhitney test (Wilcoxon rank sum test) and KruskaleWallis (KW) test. A 2-sided P value <0.05 was considered statistically significant. Both tests were non-parametric test which assumed the data was not normal distribution. Manne-Whitney U test judged the significance by the way of comparing the two samples' rank. False discovery rates (FDR) which indicated the proportion of true null hypotheses in the research were determined from q-value". KW test was extension of Manne-Whitney U test. When significant result appeared in KW test, it showed at least one sample was different to others. Multiple testing didn't estimate the FDR. Z-score was used to analyze normalized area of differential metabolites. Z-score analysis scaled each metabolite according to a reference distribution. Samples from control were designated as the reference distribution. The mean and standard deviation of each metabolite were determined in these samples. Then, samples from in- infection standard deviation of each metabolite according to a reference distribution Samples from control were designated as the reference distribution. Samples from in- infection were centered by the pre-infection mean and scaled by the pre-infection standard deviation. Orthogonal partial least square discriminant analysis (OPLS-DA) with software SIMCA 12.0 (Umetrics, Umeå, Sweden) was used to identify patterns associated with infection and minimize influence of the interindividual variation. Data was log transformed prior to data imp			
, conducted with ManneWhitney test (Wilcoxon rank sum test) and KruskaleWallis (KW) test. A 2-sided P value <0.05 was considered statistically significant. Both tests were non-parametric test which assumed the data was not normal distribution. Manne-Whitney U test judged the significance by the way of comparing the two samples' rank. False discovery rates (FDR) which indicated the proportion of true null hypotheses in the research were determined from q-value. The quantity π was another form of FDR and could be implemented in the R package "q-value". KW test was extension of Manne-Whitney U test. When significant result appeared in KW test, it showed at least one sample was different to others. Multiple testing didn't estimate the FDR. Z-score was used to analyze normalized area of differential metabolites. Z-score analysis scaled each metabolite according to a reference distribution. Samples from control were designated as the reference distribution. The mean and standard deviation of each metabolite were determined in these samples. Then, samples from iniffection were centered by the pre-infection mean and scaled by the pre-infection standard deviation. Orthogonal partial least square discriminant analysis (OPLS-DA) with software SIMCA 12.0 (Umetrics, Umeå, Sweden) was used to identify patterns associated with infection and minimize influence of the interindividual variation. Data was log transformed prior to data import. Center (Ctr) scaling was selected before fitting. All variables were mean centered and scaled to standard deviation of each variables.	Data collection	(version E.02.02.1431, Agilent Technologies Inc., USA), and NIST MS Search 2.0 with NIST	
	Data analysis	conducted with ManneWhitney test (Wilcoxon rank sum test) and KruskaleWallis (KW) test. A 2-sided P value <0.05 was considered statistically significant. Both tests were non-parametric test which assumed the data was not normal distribution. Manne-Whitney U test judged the significance by the way of comparing the two samples' rank. False discovery rates (FDR) which indicated the proportion of true null hypotheses in the research were determined from q-value. The quantity π was another form of FDR and could be implemented in the R package "q-value". KW test was extension of Manne-Whitney U test. When significant result appeared in KW test, it showed at least one sample was different to others. Multiple testing didn't estimate the FDR. Z-score was used to analyze normalized area of differential metabolites. Z-score analysis scaled each metabolite according to a reference distribution. Samples from control were determined in these samples. Then, samples from inifection were centered by the pre-infection mean and scaled by the pre-infection standard deviation. Orthogonal partial least square discriminant analysis (OPLS-DA) with software SIMCA 12.0 (Umetrics, Umeå, Sweden) was used to identify patterns associated with infection and minimize influence of the interindividual variation. Individuals with different phenotypes in the same group were termed interindividual variation. Data was log transformed prior to data import. Center (Ctr) scaling was selected before fitting. All variables were mean centered and scaled to standard deviation of each variables.	

http://www.metaboanalyst.ca/) Student's Test was used of SPSS statistics 13.0 software.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A list of figures that have associated raw data
- A description of any restrictions on data availability

Provide your data availability statement here.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Ecological, evolutionary & environmental sciences

K Life sciences

Behavioural & social sciences

For a reference copy of the document with all sections, see <u>nature.com/documents/nr-reporting-summary-flat.pdf</u>

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size	For metabolomics analysis, six biologically equivalent samples and two technical replicas were prepared. Since three biological samples and two technical replicas are generally adopted in GC-MS based metabolomics, the current study increased the samples by twice. For the other experiments, data are representative of three independent biological replicates, which are widely accepted		
Data exclusions	No data were excluded.		
Replication	All attempts at replication were successful.		
Randomization	Samples for biological repeats were randomly selected and grouped. Mice were randomly grouped.		
Blinding	GC-MS based metabolomics and all in vivo studies was blind for data acquisition and analysis.		

Reporting for specific materials, systems and methods

Methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems

n/a	Involved in the study	n/a	Involved in the study
	Antibodies		ChIP-seq
	Eukaryotic cell lines	\boxtimes	Flow cytometry
\boxtimes	Palaeontology		MRI-based neuroimaging
\boxtimes	Animals and other organisms		
	Human research participants		
	Clinical data		

Antibodies

Antibodies used

C9 neoantigen (Catalog number: HM2167F (Human, mAB, aE11)) and C3b/iC3b antibody (Catalog number: HM22286 (Human, mAB, 3E7)) from Hycult Biotech Inc., Nederland. GlyA, Kbl, PurD, Crp, HtrE, YhcD, NfrA rabbit polyclonal antibody from our own preparation, which were validated by mutants. HRP, goat anti-rabbit IgG (Catalog number : 07062301) from C9 neoantigen (Catalog number: HM2167F (Human, mAB, aE11)) and C3b/iC3b antibody (Catalog number: HM22286 (Human, mAB, 3E7)) from Hycult Biotech Inc., Nederland. GlyA, Kbl, PurD, Crp, HtrE, YhcD, NfrA rabbit polyclonal antibody from our own preparation, which were validated by mutants. HRP, goat anti-rabbit IgG (Catalog number : 07062301) from C9 neoantigen (Catalog number: HM2167F (Human, mAB, aE11)) and C3b/iC3b antibody (Catalog number: HM22286 (Human, mAB, 3E7)) from Hycult Biotech Inc., Nederland. GlyA, Kbl, PurD, Crp, HtrE, YhcD, NfrA rabbit polyclonal antibody from our own preparation, which were validated by mutants. HRP, goat anti-rabbit IgG (Catalog number : 07062301) from Xiamen Bosheng Biotech Inc., Xiamen. Diagnostic sera for Entero-toxigenic Escherichia coli (Cat. TR301, TR302 & TR303) were commercially obtained from Ningbo Tianrun Bio-pharmaceutical Co. LTD, Ningbo, China. Anti-C3 Rabbit pAb (Cat. 381678), anti-C5 (N-term) Rabbit pAb (Cat. 616722), and Fluorescein (FITC) affiniPure goat anti-rabbit IgG (Cat.511201) were from Zenbio, China.

Validation

Nederland. GlyA, Kbl, PurD, Crp, HtrE, YhcD, NfrA rabbit polyclonal antibody from our own preparation, which were validated by mutants of these protein genes.

Eukaryotic cell lines

Policy information about <u>cell lines</u>				
Cell line source(s)State the source of each cell line used.				
Authentication	Describe the authentication procedures for each cell line used OR declare that none of the cell lines used were authenticated.			
Mycoplasma contamination	Confirm that all cell lines tested negative for mycoplasma contamination OR describe the results of the testing for mycoplasma contamination OR declare that the cell lines were not tested for mycoplasma contamination.			
Commonly misidentified lines (See <u>ICLAC</u> register)	Name any commonly misidentified cell lines used in the study and provide a rationale for their use.			

Human research participants

Policy information about <u>studies involving human research participants</u>

Population characteristics	The human serum was prepared from normal human adult during annual health examination.
Recruitment	Each individual signed the consent form that informs the use of the serum for research purpose.
Ethics oversight	The project is approved by the Institutional Animal Care and Use Committee of Sun Yat-sen University.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data

Policy information about <u>clinical studies</u>

All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration	Provide the trial registration number from ClinicalTrials.gov or an equivalent agency.
Study protocol	Note where the full trial protocol can be accessed OR if not available, explain why.
Data collection	Describe the settings and locales of data collection, noting the time periods of recruitment and data collection.
Outcomes	Describe how you pre-defined primary and secondary outcome measures and how you assessed these measures.

ChIP-seq

Data deposition

Confirm that both raw and final processed data have been deposited in a public database such as GEO.

Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

 Data access links
 For "Initial submission" or "Revised version" documents, provide reviewer access links. For your "Final submission" document, provide a link to the deposited data.

Files in database submission

Provide a list of all files available in the database submission.

Genome browser session (e.g. <u>UCSC</u>)

Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to enable peer review. Write "no longer applicable" for "Final submission" documents.

Methodology

Replicates	Describe the experimental replicates, specifying number, type and replicate agreement.
Sequencing depth	Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of reads and whether they were paired- or single-end.
Antibodies	Describe the antibodies used for the ChIP-seq experiments; as applicable, provide supplier name, catalog number, clone name, and lot number.
Peak calling parameters	Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and index files used.
Data quality	Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold enrichment.
Software	Describe the software used to collect and analyze the ChIP-seq data. For custom code that has been deposited into a community repository, provide accession details.

Magnetic resonance imaging

Experimental design				
Design type	Indicate task or resting state; event-related or block design. Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial or block (if trials are blocked) and interval between trials.			
Design specifications				
Behavioral performance measures	State number and/or type of variables recorded (e.g. correct button press, response time) and what statistics were used to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across subjects).			
Acquisition				
Imaging type(s)	Specify: functional, structural, diffusion, perfusion.			
Field strength Specify in Tesla				
Sequence & imaging parameters	Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size, slice thickness, orientation and TE/TR/flip angle.			
Area of acquisition	State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined.			
Diffusion MRI Used	Not used			
Preprocessing				
Preprocessing software	Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction, segmentation, smoothing kernel size, etc.).			
Normalization	If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types used for transformation OR indicate that data were not normalized and explain rationale for lack of normalization.			
Normalization template	Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.g. original Talairach, MNI305, ICBM152) OR indicate that the data were not normalized.			
Noise and artifact removal	Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and physiological signals (heart rate, respiration).			
Volume censoring	Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.			

Statistical modeling & inference

Model type and settings	Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first and second levels (e.g. fixed, random or mixed effects; drift or auto-correlation).
Effect(s) tested	Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether ANOVA or factorial designs were used.

Specify type of analysis: Whole brain ROI-based Both				
Statistic type for inference (See <u>Eklund et al. 2016</u>)	Specify vox	el-wise or cluster-wise and report all relevant parameters for cluster-wise methods.		
Correction Des Car		e type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte		
Models & analysis				
n/a Involved in the study Functional and/or effective Graph analysis Multivariate modeling or pr				
Functional and/or effective connectivity Graph analysis		Report the measures of dependence used and the model details (e.g. Pearson correlation, partial correlation, mutual information).		
		Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph, subject- or group-level, and the global and/or node summaries used (e.g. clustering coefficient, efficiency, etc.).		
Multivariate modeling and predic	tive analysis	Specify independent variables, features extraction and dimension reduction, model, training and evaluation metrics.		