Supplementary Data 2. Visualisation of the compiled time-series of extent and/or density of seagrass sites in Europe, with time-windows from 1869 to 2016.

Elements in each figure are (see example below):

- 1. Code of the assessment (site ID_metric), as in Supplementary Data 1.
- 2. Code of the source, as in Supplementary Data 1.
- 3. Name of the site (country region) Species code (if known, depth in m).
- Overall analysis: Net rate of change (units depend on the metric), specific rate of change (% yr-1), and percentage of change (%) for the overall time period (from first to last observation) > trajectory for the overall time period (decrease, increase, no change).
- 5. Decadal analysis: Whether the time-series is included or not in the decadal analysis (YES or NO). Time window is given between brackets (in years). Next lines shows: decade, trajectory for that decade using the observations at the decade boundaries, evolution of the trajectory (from previous decade), specific rate of change for that decade (% yr-1), and time window available for that decade.
- 6. Dark blue dots are observed values, light blue dots are interpolated values, purple circles show values used for the decadal calculations, red crosses indicate absence of seagrasses for that year (either based on observation or interpolations).
- 7. Grey dashed lines separate decades.

Area (ha)

Cochón and Sánchez 2005

()

7_lowerlimit Whelan 1986 (in Hily et al. 2003) SITE: Ventry Bay (Ireland – Atlantic) – Zm (–13 m) OVERALL: Net = –3 m; Rate = –13.12 % yr–1; Perc Final = 77 % > decrease DECADAL: NO (2 yr)

Arconada et al. 2013

SITE: Águilas (desalination plant) (Spain - Mediterranean) - Po (? m) OVERALL: Net = -25.86 ha; Rate = -3.77 % yr-1; Perc Final = 77 % > decrease DECADAL: NO (7 yr)

9 area

11_lowerlimit

Ardizzone et al. 2006

SITE: Cape Circeo and Sperlonga (Italy – Mediterranean) – Po (? m)

OVERALL: Net = -10.63 m; Rate = -0.78 % yr-1; Perc Final = 70 % > decrease

11_upperlimitArdizzone et al. 2006SITE: Cape Circeo and Sperlonga (Italy – Mediterranean) – Po (? m)OVERALL: Net = -2.33 m; Rate = -0.33 % yr-1; Perc Final = 86 % > decrease

12_coverMarbà etSITE: Agua Amarga (POS_08) (Spain – Mediterranean) – Po (–13 m)OVERALL: Net = -10.5 %; Rate = -12.2 % yr-1; Perc Final = 78 % > no changeDECADAL: NO (2 yr)

Cover (%)

13_densityMarbà et al. 2015SITE: Carnaje (POS_10) (Spain – Mediterranean) – Po (–13 m)OVERALL: Net = 43.97 shoot m–2; Rate = 4.21 % yr–1; Perc Final = 109 % > no changeDECADAL: NO (2 yr)

14_density

SITE: Las Negras (POS_09) (Spain – Mediterranean) – Po (-11 m) OVERALL: Net = -33.92 shoot m-2; Rate = -2.49 % yr-1; Perc Final = 95 % > no change DECADAL: NO (2 yr)

15_coverMarbà et al. 2015SITE: Los Escullos (POS_11) (Spain – Mediterranean) – Po (–12 m)OVERALL: Net = 0 %; Rate = 0 % yr–1; Perc Final = 100 % > no changeDECADAL: NO (2 yr)

15_density

SITE: Los Escullos (POS_11) (Spain – Mediterranean) – Po (-12 m) OVERALL: Net = -166.48 shoot m-2; Rate = -17.32 % yr-1; Perc Final = 71 % > decrease DECADAL: NO (2 yr)

16_coverMarbà et al. 2015SITE: Bajos de Roquetas (POS_12) (Spain – Mediterranean) – Po (-11.5 m)OVERALL: Net = 2.53 %; Rate = 1.72 % yr-1; Perc Final = 103 % > no changeDECADAL: NO (2 yr)

Shoot density (shoot m^{-2})

Cover (%)

16_density Marbà et al. 2015 SITE: Bajos de Roquetas (POS_12) (Spain - Mediterranean) - Po (-11.5 m) OVERALL: Net = -60.56 shoot m-2; Rate = -7 % yr-1; Perc Final = 87 % > no change DECADAL: NO (2 yr)

Shoot density (shoot m^{-2})

17_density

SITE: Punta Entinas (POS_14) (Spain – Mediterranean) – Po (-11 m) OVERALL: Net = 79.49 shoot m-2; Rate = 9.87 % yr-1; Perc Final = 122 % > no change DECADAL: NO (2 yr)

SITE: Isla de Terreros (POS_02) (Spain – Mediterranean) – Po (–11 m) OVERALL: Net = 16 %; Rate = 12.57 % yr–1; Perc Final = 129 % > increase DECADAL: NO (2 yr)

Cover (%)

19_cover

20_density

SITE: Pozo de Esparto (POS_03) (Spain – Mediterranean) – Po (-12.5 m) OVERALL: Net = -337.04 shoot m-2; Rate = -21.3 % yr-1; Perc Final = 53 % > decrease DECADAL: NO (3 yr)

 $21_density$ Marbà et al. 2015SITE: El Calón (POS_04) (Spain – Mediterranean) – Po (-12 m)OVERALL: Net = -59.37 shoot m-2; Rate = -3.47 % yr-1; Perc Final = 90 % > no changeDECADAL: NO (3 yr)

22_coverMarbà et al. 2015SITE: Loza del Payo (POS_05) (Spain – Mediterranean) – Po (-13 m)OVERALL: Net = -11.07 %; Rate = -4.79 % yr-1; Perc Final = 87 % > no changeDECADAL: NO (3 yr)

22_densityMarbà et al. 2015SITE: Loza del Payo (POS_05) (Spain – Mediterranean) – Po (-13 m)OVERALL: Net = 76.79 shoot m-2;Rate = 4.76 % yr-1;Perc Final = 115 % > no change

DECADAL: NO (3 yr)

23_cover Marbà et al. 2015 SITE: Deretil (POS_06) (Spain – Mediterranean) – Po (–12 m) OVERALL: Net = 0.74 %; Rate = 1.37 % yr–1; Perc Final = 103 % > no change DECADAL: NO (2 yr)

 23_density
 Marbà et al. 2015

 SITE: Deretil (POS_06) (Spain – Mediterranean) – Po (–12 m)
 OVERALL: Net = –95.59 shoot m–2; Rate = –18.95 % yr–1; Perc Final = 68 % > decrease

 DECADAL: NO (2 yr)
 DECADAL: NO (2 yr)

24_density

SITE: Isla de San Andrés (POS_07) (Spain – Mediterranean) – Po (-12 m) OVERALL: Net = -226.03 shoot m-2; Rate = -16.8 % yr-1; Perc Final = 71 % > decrease DECADAL: NO (2 yr)

25_biomass Boström et al. 2002 SITE: Hangö Peninsula (dense) (Finland – Baltic) – Zm (–4 m)

Total biomass (g dw m^{-2})

26_biomass

Boström et al. 2002

OVERALL: Net = 2.8 g dw m-2; Rate = 3.75 % yr-1; Perc Final = 256 % > increase DECADAL: YES (25 yr)

26_density

Total biomass (g dw m^{-2})

Shoot density (shoot m^{-2})

OVERALL: Net = -27 shoot m-2; Rate = -1.24 % yr-1; Perc Final = 85 % > no change DECADAL: YES (13 yr)

Bull et al. 2012

31_density

Shoot density (shoot m^{-2})

0.65 0.60 0.55

1995

Burton et al. 2010

2010

35_areaRismondo and Mion 2008SITE: Venice Lagoon (Italy – Mediterranean) – Zm (–1 m)OVERALL: Net = -840 ha;Rate = -37.43 % yr–1;Perc Final = 47 % > decreaseDECADAL: NO (2 yr)

2000

2005

34_density

45_density Plus et al. 2003 SITE: Thau Lagoon (France – Mediterranean) – Zm (–4.2 m) OVERALL: Net = 107.41 shoot m–2; Rate = NA % yr–1; Perc Final = NA % > increase DECADAL: NO (2 yr)

Rismondo and Mion 2008

47_area SITE: Venice Lagoon (Italy – Mediterranean) – Cn (? m) OVERALL: Net = -82 ha; Rate = -41.68 % yr-1; Perc Final = 43 % > decrease DECADAL: NO (2 yr)

48_lowerlimitCharpentier et al. 2005SITE: Vaccarès Lagoon (France – Mediterranean) – Zn (? m)OVERALL: Net = 0.14 m; Rate = 1.17 % yr–1; Perc Final = 109 % > no changeDECADAL: NO (7 yr)

Area (ha)

Martínez-Samper et al. 2011

SITE: Franja Las Palmas de Gran Canaria (Spain – Atlantic) – Cn (–16 m) OVERALL: Net = –11.89 ha; Rate = NA % yr–1; Perc Final = NA % > decrease DECADAL: NO (5 yr)

Area (ha)

56_area

Martínez-Samper et al. 2011

l

2020

Area (ha)

58 area

60_area

Martínez-Samper et al. 2011

SITE: Playa del Cabrón (Spain – Atlantic) – Cn (–9 m)

2000

Area (ha)

1980

1990

2020

Area (ha)

Area (ha)

64_area

Martínez-Samper et al. 2011

Area (ha)

Area (ha)

SITE: Franja Marina de Mogán (Spain – Atlantic) – Cn (-5.5 m)

Martínez-Samper et al. 2011

67_area Boudouresque et al. 2006 SITE: Mourillion (France – Mediterranean) – Po (? m) OVERALL: Net = -69 ha; Rate = -4.22 % yr-1; Perc Final = 53 % > decrease DECADAL: YES (15 yr) 1960s 1970s decrease decrease unknown -4.22%yr-1 worsen -4.22%yr-1 (9 yr) (6 yr) 160 \bigcirc Area (ha) 140 1 1 120 100 80 1960 1965 1970 1975 1980

Area (ha)

66_area

Area (ha)

Area (ha)

79_cover Cook (unpublished) SITE: Conwy Estuary (United Kingdom – Atlantic) – Zn (? m) OVERALL: Net = 40 %; Rate = 14.69 % yr–1; Perc Final = 180 % > increase DECADAL: NO (4 yr)

80_cover Cook (unpublished) SITE: Exe Estuary (United Kingdom – Atlantic) – Zn (? m) OVERALL: Net = 15.46 %; Rate = 7.26 % yr–1; Perc Final = 124 % > no change DECADAL: NO (3 yr)

Cover (%)

Cover (%)

Cook (unpublished)

SITE: Milford Haven (coastal) (United Kingdom – Atlantic) – Zn (? m) OVERALL: Net = -13.18 %; Rate = -13.73 % yr-1; Perc Final = 76 % > no change DECADAL: NO (2 yr)

83_cover

Cook (unpublished)

85_cover Cook (un SITE: Portsmouth Harbour (coastal) (United Kingdom – Atlantic) – Zn (? m) OVERALL: Net = -20.6 %; Rate = -23.7 % yr-1; Perc Final = 62 % > decrease DECADAL: NO (2 yr)

 86_cover Cook (unpublished)SITE: Solent (United Kingdom – Atlantic) – Zn (? m)OVERALL: Net = -15.17 %; Rate = -11.79 % yr-1; Perc Final = 79 % > no changeDECADAL: NO (2 yr)

Cover (%)

87_cover Cook (unpublished) SITE: Solent (United Kingdom – Atlantic) – Zm (? m) OVERALL: Net = -9.62 %; Rate = -57.18 % yr-1; Perc Final = 32 % > decrease DECADAL: NO (2 yr)

88_cover Cook (unpublished) SITE: Thames Estuary (United Kingdom – Atlantic) – Zn (? m) OVERALL: Net = -41.45 %; Rate = -13.65 % yr-1; Perc Final = 58 % > decrease DECADAL: NO (4 yr)

Cover (%)

Cover (%)

89_cover Cook (unpublished) SITE: Thames Estuary (United Kingdom – Atlantic) – Zm (? m) OVERALL: Net = 9.42 %; Rate = 26.96 % yr–1; Perc Final = 171 % > increase DECADAL: NO (2 yr)

92 biomass

92_density Milchakova and Phillips 2003 SITE: Kazachaya Bay (Ukraine – Mediterranean) – Zm (–1 m)

Milchakova and Phillips 2003

Milchakova and Phillips 2003

93 biomass

94_biomass

Milchakova and Phillips 2003

95 biomass

Milchakova and Phillips 2003

Cook (unpublished)

SITE: Portsmouth Harbour (coastal) (United Kingdom - Atlantic) - Zm (? m) OVERALL: Net = -15.88 %; Rate = -20.03 % yr-1; Perc Final = 67 % > decrease DECADAL: NO (2 yr)

Cover (%)

96_cover

101_areade Jong (unpublished)SITE: Eastern Scheldt (The Netherlands – Atlantic) – Zn (0.4 m)OVERALL: Net = -924.3 ha;Rate = -11.94 % yr-1;Perc Final = 2 % > decrease

de Jong (unpublished)

101_upperlimit

Area (ha)

103_areade Jong (unpublished)SITE: Eastern Scheldt Roggenplaat (The Netherlands – Atlantic) – Zm (–0.1 m)OVERALL: Net = –1 ha;Rate = NA % yr–1;Perc Final = NA % > decreaseDECADAL: XES (22 yr)

de Jong (unpublished)

106 lowerlimit

106_upperlimit de Jong (unpublished) SITE: Lake Veere (The Netherlands - Atlantic) - Zm (-2 m) OVERALL: Net = NA m; Rate = NA % yr-1; Perc Final = NA % > decrease DECADAL: YES (18 yr) 1980s 1990s 2000s no change no change decrease unknown 0%yr–1 (3 yr) steady 0%yr-1 worsen NA%yr-1 (5 yr) (10 yr) -1.50 I -1.48

Area (ha)

108_areade Jong (unpublished)SITE: Voolhok (The Netherlands – Atlantic) – Zm (0 m)OVERALL: Net = 4.1 ha; Rate = 36.09 % yr–1; Perc Final = 295 % > increaseDECADAL: NO (3 yr)

108_lowerlimitde Jong (unpublished)SITE: Voolhok (The Netherlands – Atlantic) – Zm (0 m)OVERALL: Net = 0 m; Rate = 0 % yr-1; Perc Final = 100 % > no changeDECADAL: NO (3 yr)

SITE: Lake Grevelingen (The Netherlands – Atlantic) – Zm (–2 m) OVERALL: Net = -23.97 g dw m–2; Rate = -9.04 % yr–1; Perc Final = 16 % > decrease

Nienhuis et al. 1996, Herman et al. 1996, de Jong (unpublished)

109 abiomass

AG biomass (g dw m^{-2})

Nienhuis et al. 1996, Herman et al. 1996, de Jong (unpublished)

109 lowerlimit

-1.02 -1.00

Valle et al. 2013

Area (ha)

110_area

SITE: Hond Paap (The Netherlands – Atlantic) – Zm (0 m)

Valle et al. 2013

110_upperlimit

Area (ha)

SITE: Terschelling Haven (The Netherlands - Atlantic) - Zm (-0.3 m) OVERALL: Net = NA m; Rate = NA % yr-1; Perc Final = NA % > decrease

van Katwijk et al. 2010

111_lowerlimit

SITE: Terschelling Hoorn (The Netherlands – Atlantic) – Zn (0.1 m)

Polderman and den Hartog 1975, Braster and Carrière 1976, de Jong (unpublished)

112 area

 112_lowerlimit
 Polderman and den Hartog 1975, Braster and Carrière 1976, de Jong (unpublished)

 SITE: Terschelling Hoorn (The Netherlands – Atlantic) – Zn (0.1 m)

 OVERALL: Net = 0 m; Rate = 0 % yr–1; Perc Final = 100 % > no change

SITE: Terschelling Hoorn (The Netherlands – Atlantic) – Zn (0.1 m) OVERALL: Net = 0 m; Rate = 0 % yr–1; Perc Final = 100 % > no change DECADAL: YES (34 yr)

Polderman and den Hartog 1975, Braster and Carrière 1976, de Jong (unpublished)

112 upperlimit

de Jong (unpublished)

114_areade JonSITE: Terschelling Keeg Ans (The Netherlands – Atlantic) – Zn (0.1 m)OVERALL: Net = -2.7 ha; Rate = NA % yr-1; Perc Final = NA % > decreaseDECADAL: NO (5 yr)

114_upperlimitSITE: Terschelling Keeg Ans (The Netherlands – Atlantic) – Zn (0.1 m)OVERALL: Net = NA m; Rate = NA % yr-1; Perc Final = NA % > decreaseDECADAL: NO (5 yr)

116_biomassPeralta et al. (unpublished)SITE: Santibañez (Spain – Atlantic) – Cn (-0.1 m)OVERALL: Net = 0.73 g dw m–2; Rate = 0.03 % yr–1; Perc Final = 100 % > no changeDECADAL: NO (7 yr)

 116_density
 Peralta et al. (unpublished)

 SITE: Santibañez (Spain – Atlantic) – Cn (–0.1 m)
 Peralta et al. (unpublished)

OVERALL: Net = 537.5 shoot m-2; Rate = 9.76 % yr-1; Perc Final = 180 % > increase DECADAL: NO (6 yr)

117_densityPeralta et al. (unpublished)SITE: Santibañez (Spain – Atlantic) – Cn (-0.5 m)OVERALL: Net = -168.75 shoot m-2; Rate = -6.19 % yr-1; Perc Final = 69 % > decreaseDECADAL: NO (6 yr)

Total biomass (g dw m^{-2})

Shoot density (shoot m^{-2})

 118_density
 Peralta et al. (unpublished)

 SITE: Santibañez (Spain – Atlantic) – Cn (0.4 m)
 Peralta et al. (unpublished)

OVERALL: Net = 1289.58 shoot m-2; Rate = 13.75 % yr-1; Perc Final = 228 % > increase DECADAL: NO (6 yr)

 $\label{eq:loss} \begin{array}{l} \mbox{tel Rei 2009} \\ \mbox{SITE: Inner Cádiz Bay (Spain – Atlantic) – Zn (? m)} \\ \mbox{OVERALL: Net = 38.1 ha; Rate = 3.58 % yr-1; Perc Final = 107 % > no change } \\ \mbox{DECADAL: NO (2 yr)} \end{array}$

Muñoz-Ramos and Seglar (unpublished)

121_area

Cover (%)

123_coverMuñoz-Ramos and Seglar 2015SITE: Estació Mataró III (Spain – Mediterranean) – Po (–17 m)OVERALL: Net = 13.01 %; Rate = 8.44 % yr–1; Perc Final = 152 % > increaseDECADAL: NO (5 yr)

123_densityMuñoz-Ramos and Seglar 2015SITE: Estació Mataró III (Spain – Mediterranean) – Po (–17 m)OVERALL: Net = 10.79 shoot m–2; Rate = 0.77 % yr–1; Perc Final = 104 % > no changeDECADAL: NO (5 yr)

Cover (%)

124_density

125_densityRoca et al. 2014SITE: Marimurtra (control) (Spain – Mediterranean) – Po (-13 m)OVERALL: Net = 10.42 shoot m-2; Rate = 1.64 % yr-1; Perc Final = 103 % > no changeDECADAL: NO (2 yr)

Muñoz-Ramos and Seglar 2015

126_densityRoca et al. 2014SITE: Port Blanes (impacted) (Spain – Mediterranean) – Po (-14 m)OVERALL: Net = -152.09 shoot m-2; Rate = -26.79 % yr-1; Perc Final = 59 % > decreaseDECADAL: NO (2 yr)

Mascaró 2011

129_biomassRomero et al. 2010 (b)SITE: Alfacs (eutrophic) (Spain – Mediterranean) – Cn (–1 m)OVERALL: Net = 20.5 g dw m–2; Rate = 2.1 % yr–1; Perc Final = 111 % > no changeDECADAL: NO (5 yr)

Area (ha)

128_area

130_biomassRomero et al. 2010 (b)SITE: Alfacs (marine) (Spain – Mediterranean) – Cn (–1 m)OVERALL: Net = -26 g dw m–2; Rate = -2.8 % yr–1; Perc Final = 87 % > no changeDECADAL: NO (5 yr)

130_densityRomero et al. 2010 (b)SITE: Alfacs (marine) (Spain – Mediterranean) – Cn (–1 m)OVERALL: Net = -1763.32 shoot m–2; Rate = -14.18 % yr–1; Perc Final = 49 % > decreaseDECADAL: NO (5 yr)

131_biomassRomero et al. 2010 (b)SITE: Fangar (eutrophic) (Spain – Mediterranean) – Cn (–1 m)OVERALL: Net = 112.17 g dw m–2; Rate = 9.34 % yr–1; Perc Final = 160 % > increaseDECADAL: NO (5 yr)

132_biomassRomero et al. 2010 (b)SITE: Fangar (marine) (Spain – Mediterranean) – Cn (–1 m)OVERALL: Net = 159.5 g dw m–2; Rate = 11.86 % yr–1; Perc Final = 181 % > increaseDECADAL: NO (5 yr)

SITE: Islas Medas (station) (Spain – Mediterranean) – Po (-14 m) OVERALL: Net = -94 shoot m-2; Rate = -1.16 % yr-1; Perc Final = 72 % > decrease

Romero et al. 2012

2000

2010

2020

Shoot density (shoot m^{-2})

133_density

Cover (%)

1980

1990

134_densityRomero et al. 2012SITE: Islas Medas (station) (Spain – Mediterranean) – Po (–5 m)OVERALL: Net = -44 shoot m-2;Rate = -0.26 % yr-1;Perc Final = 93 % > no change

Shoot density (shoot m^{-2})

Cover (%)

Romero et al. 2012

136_cover Romero et al. 2012 SITE: Islas Medas (station) (Spain – Mediterranean) – Po (-8.5 m) OVERALL: Net = 6 %; Rate = 0.45 % yr-1; Perc Final = 113 % > no change DECADAL: YES (28 yr) 1980s 1990s 2000s 2010s no change no change increase no change unknown -3.26%yr-1 steady 1.96%yr-1 improve 2.24%yr-1 (10 yr) steady -4.96%yr-1 (6 yr) (10 yr) (2 yr) 60 50 40 30 1980 1990 2000 2010 2020

Cover (%)

135_density

Romero et al. 2012

136_density

137_coverRomero et al. 2010 (a)SITE: Balís (Spain – Mediterranean) – Po (-15 m)OVERALL: Net = -7.22 %; Rate = -3.18 % yr-1; Perc Final = 80 % > no changeDECADAL: NO (7 yr)

137_densityRomero et al. 2010 (a)SITE: Balís (Spain – Mediterranean) – Po (-15 m)OVERALL: Net = 10.94 shoot m-2;Rate = 0.69 % yr-1;Perc Final = 105 % > no changeDECADAL: NO (7 yr)

138_coverRomero et al. 2010 (a)SITE: Calafat (Spain – Mediterranean) – Po (-15 m)OVERALL: Net = -2.41 %; Rate = -1.33 % yr-1; Perc Final = 91 % > no changeDECADAL: NO (7 yr)

Shoot density (shoot m^{-2})

138_densityRomero et al. 2010 (a)SITE: Calafat (Spain – Mediterranean) – Po (-15 m)OVERALL: Net = -144.27 shoot m-2; Rate = -9.1 % yr-1; Perc Final = 53 % > decreaseDECADAL: NO (7 yr)

139_coverRomero et al. 2010 (a), Gera et al. 2014SITE: Canyelles (Spain – Mediterranean) – Po (-15 m)OVERALL: Net = -5.79 %; Rate = -2.46 % yr–1; Perc Final = 86 % > no changeDECADAL: NO (6 yr)

Shoot density (shoot m^{-2})

139_densityRomero et al. 2010 (a), Gera et al. 2014SITE: Canyelles (Spain – Mediterranean) – Po (-15 m)OVERALL: Net = 127.6 shoot m-2; Rate = 9.95 % yr-1; Perc Final = 182 % > increaseDECADAL: NO (6 yr)

 140_cover
 Romero et al. 2010 (a)

 SITE: Cap Roig (Spain – Mediterranean) – Po (–9 m)
 OVERALL: Net = 9.01 %; Rate = 9.62 % yr–1; Perc Final = 178 % > increase

 DECADAL: NO (6 yr)
 DECADAL: NO (6 yr)

140_density Romero et al. 2010 (a) SITE: Cap Roig (Spain – Mediterranean) – Po (–9 m) OVERALL: Net = 1.57 shoot m-2; Rate = 0.11 % yr-1; Perc Final = 101 % > no change DECADAL: NO (6 yr)

Shoot density (shoot m⁻²)

141_density

Romero et al. 2010 (a)

SITE: Coma-ruga (Spain – Mediterranean) – Po (-15 m) OVERALL: Net = 110.07 shoot m-2; Rate = 10.07 % yr-1; Perc Final = 224 % > increase DECADAL: YES (8 yr)

142_coverRomero et al. 2010 (a)SITE: Culip (Spain – Mediterranean) – Po (-15 m)OVERALL: Net = -0.56 %; Rate = -0.36 % yr-1; Perc Final = 98 % > no changeDECADAL: NO (7 yr)

142_density Romero et al. 2010 (a) SITE: Culip (Spain – Mediterranean) – Po (–15 m) OVERALL: Net = -3.13 shoot m-2; Rate = -0.24 % yr-1; Perc Final = 98 % > no change DECADAL: NO (7 yr)

143_density

Cover (%)

SITE: Fenals (Spain – Mediterranean) – Po (–16.2 m)

Romero et al. 2010 (a), Gera et al. 2014

OVERALL: Net = 39.58 shoot m-2; Rate = 2.2 % yr-1; Perc Final = 119 % > no change DECADAL: YES (8 yr)

OVERALL: Net = 23.96 shoot m-2; Rate = 2.1 % yr-1; Perc Final = 118 % > no change DECADAL: YES (8 yr)

145_densityRomero et al. 2010 (a)SITE: L'Ametlla de Mar (Spain – Mediterranean) – Po (-14.8 m)OVERALL: Net = -109.89 shoot m-2; Rate = -6.14 % yr-1; Perc Final = 65 % > decreaseDECADAL: NO (7 yr)

 146_cover
 Romero et al. 2010 (a)

 SITE: L'Hospitalet (Spain – Mediterranean) – Po (–15 m)
 OVERALL: Net = 2.67 %; Rate = 2.88 % yr–1; Perc Final = 122 % > no change

 DECADAL: NO (7 yr)
 DECADAL: NO (7 yr)

146_densityRomero et al. 2010 (a)SITE: L'Hospitalet (Spain – Mediterranean) – Po (-15 m)OVERALL: Net = -61.98 shoot m-2; Rate = -4.94 % yr-1; Perc Final = 71 % > decreaseDECADAL: NO (7 yr)

147_coverRomero et al. 2010 (a)SITE: Llafranc (Spain – Mediterranean) – Po (-15.5 m)OVERALL: Net = 6.6 %; Rate = 3.46 % yr-1; Perc Final = 127 % > increaseDECADAL: NO (7 yr)

Shoot density (shoot m^{-2})

147_densityRomero et al. 2010 (a)SITE: Llafranc (Spain – Mediterranean) – Po (-15.5 m)OVERALL: Net = -76.04 shoot m-2; Rate = -4.7 % yr-1; Perc Final = 72 % > decreaseDECADAL: NO (7 yr)

152_coverRomero et al. 2010 (a), Gera et al. 2014SITE: Palamós (Spain – Mediterranean) – Po (-14.2 m)OVERALL: Net = -10.14 %; Rate = -5.49 % yr-1; Perc Final = 68 % > decreaseDECADAL: NO (7 yr)

152_densityRomero et al. 2010 (a), Gera et al. 2014SITE: Palamós (Spain – Mediterranean) – Po (-14.2 m)OVERALL: Net = -45.83 shoot m-2; Rate = -3.81 % yr-1; Perc Final = 77 % > no changeDECADAL: NO (7 yr)

153_coverRomero et al. 2010 (a)SITE: Port de la Selva (Spain – Mediterranean) – Po (-14 m)OVERALL: Net = -16.62 %; Rate = -15.61 % yr-1; Perc Final = 63 % > decreaseDECADAL: NO (3 yr)

153_densityRomero et al. 2010 (a)SITE: Port de la Selva (Spain – Mediterranean) – Po (-14 m)OVERALL: Net = 16.67 shoot m-2;Rate = 1.73 % yr-1;Perc Final = 107 % > no changeDECADAL: NO (4 yr)

Cover (%)
SITE: Roses (near port) (Spain – Mediterranean) – Po (–13 m) OVERALL: Net = 10.72 %; Rate = 11.55 % yr–1; Perc Final = 225 % > increase DECADAL: NO (7 yr)

Cover (%)

154_cover

155_cover SITE: Roses (Playa Almadraba) (Spain – Mediterranean) – Po (-13 m) OVERALL: Net = -12.8 %; Rate = -13.69 % yr-1; Perc Final = 66 % > decrease DECADAL: NO (3 yr)

156_coverRomero et al. 2010 (a)SITE: Rovellada (Spain – Mediterranean) – Po (-14 m)OVERALL: Net = -21.39 %; Rate = -10.61 % yr-1; Perc Final = 53 % > decreaseDECADAL: NO (6 yr)

 157_cover
 Romero et al. 2010 (a)

 SITE: Sa Tuna (Spain – Mediterranean) – Po (-14 m)
 OVERALL: Net = 22.66 %; Rate = 13.56 % yr-1; Perc Final = 258 % > increase

 DECADAL: NO (7 yr)
 DECADAL: NO (7 yr)

158_coverRomeroSITE: Salou (Spain – Mediterranean) – Po (-14.5 m)OVERALL: Net = 3.22 %; Rate = 6.85 % yr-1; Perc Final = 162 % > increaseDECADAL: NO (7 yr)

159_coverRomero etSITE: Sant Feliu (Spain – Mediterranean) – Po (-14.5 m)OVERALL: Net = 1.14 %; Rate = 0.44 % yr-1; Perc Final = 103 % > no changeDECADAL: NO (7 yr)

 160_density
 Romero et al. 2010 (a)

 SITE: Sitges (Spain – Mediterranean) – Po (-16.5 m)
 OVERALL: Net = 139.07 shoot m-2; Rate = 15.24 % yr-1; Perc Final = 338 % > increase

Cover (%)

Shoot density (shoot m^{-2})

161_cover SITE: Tamariua (Spain – Mediterranean) – Po (–15 m) OVERALL: Net = 0.55 %; Rate = 0.27 % yr-1; Perc Final = 102 % > no change DECADAL: NO (6 yr)

 162_cover
 Romero et al. 2010 (a)

 SITE: Torredembarra (Spain – Mediterranean) – Po (-15 m)
 OVERALL: Net = 19.63 %; Rate = 20.71 % yr-1; Perc Final = 426 % > increase

 DECADAL: NO (7 yr)
 DECADAL: NO (7 yr)

163_coverRomero eSITE: Tossa de Mar (Spain – Mediterranean) – Po (-14 m)OVERALL: Net = 19.65 %; Rate = 9.71 % yr-1; Perc Final = 197 % > increaseDECADAL: NO (7 yr)

164_coverRomeroSITE: Vilanova (Spain – Mediterranean) – Po (-17.5 m)OVERALL: Net = 8.96 %; Rate = 5.88 % yr-1; Perc Final = 142 % > increaseDECADAL: NO (6 yr)

165_coverRomero ofSITE: Cadaqués (Spain – Mediterranean) – Po (-13.8 m)OVERALL: Net = 0.71 %; Rate = 1.4 % yr-1; Perc Final = 103 % > no changeDECADAL: NO (2 yr)

 165_density
 Romero et al. 2010 (a)

 SITE: Cadaqués (Spain – Mediterranean) – Po (-13.8 m)
 OVERALL: Net = 93.23 shoot m-2; Rate = 34.11 % yr-1; Perc Final = 198 % > increase

 DECADAL: NO (2 yr)
 DECADAL: NO (2 yr)

OVERALL: Net = -7190 ha; Rate = NA % yr-1; Perc Final = NA % > decrease

167_cover Ruiz et al. 2013 SITE: Cala Túnez (Spain – Mediterranean) – Po (-7 m) OVERALL: Net = 1.06 %; Rate = 0.27 % yr-1; Perc Final = 102 % > no change DECADAL: YES (9 yr) 2000s 2010s no change no change unknown 2.05%yr–1 (6 yr) steady -3.3%yr-1 (3 yr) 55 50 45 \bigcirc 40 35 30

2010

2015

2020

2005

166_area den Hartog an SITE: Western Dutch Wadden Sea (The Netherlands – Atlantic) – Zm (–2 m)

den Hartog and Polderman 1975

Cover (%)

2000

Ruiz et al. 2013

168_density

Shoot (

177_densityRuiz et al. 2013SITE: Isla Grosa (Spain – Mediterranean) – Po (-4 m)OVERALL: Net = 6.74 shoot m–2; Rate = 2.44 % yr–1; Perc Final = 119 % > no changeDECADAL: NO (7 yr)

 178_cover
 Ruiz et al. 2013

 SITE: Isla Grosa (Spain – Mediterranean) – Po (–12 m)
 OVERALL: Net = 9.08 %; Rate = 4.57 % yr–1; Perc Final = 132 % > increase

 DECADAL: NO (6 yr)
 DECADAL: NO (6 yr)

178_densityRuiz et al. 2013SITE: Isla Grosa (Spain – Mediterranean) – Po (-12 m)OVERALL: Net = -1.67 shoot m-2; Rate = -1.06 % yr-1; Perc Final = 94 % > no changeDECADAL: NO (6 yr)

OVERALL: Net = 8.68 shoot m-2; Rate = 2.73 % yr-1; Perc Final = 124 % > no change DECADAL: YES (8 yr)

180_densityRuiz et al. 2013SITE: Isla de las Palomas (Spain – Mediterranean) – Po (-17 m)OVERALL: Net = -2.53 shoot m-2; Rate = -1.8 % yr-1; Perc Final = 88 % > no changeDECADAL: NO (7 yr)

 181_cover
 Buiz et al. 2013

 SITE: Cala Reona (Spain – Mediterranean) – Po (–6 m)
 OVERALL: Net = 0.09 %; Rate = 0.04 % yr–1; Perc Final = 100 % > no change

 DECADAL: NO (7 yr)
 DECADAL: NO (7 yr)

181_densityRuiz et al. 2013SITE: Cala Reona (Spain – Mediterranean) – Po (-6 m)OVERALL: Net = 0.87 shoot m-2; Rate = 0.29 % yr-1; Perc Final = 102 % > no changeDECADAL: NO (7 yr)

 182_cover
 Ruiz et al. 2013

 SITE: Calblanque (Spain – Mediterranean) – Po (–26 m)
 OVERALL: Net = 7.34 %; Rate = 11.48 % yr–1; Perc Final = 199 % > increase

 DECADAL: NO (6 yr)
 DECADAL: NO (6 yr)

183_densityRuiz et al. 2013SITE: El Muellecico (Cabo Tiñoso) (Spain – Mediterranean) – Po (-22 m)OVERALL: Net = 4.57 shoot m-2;Rate = 4.28 % yr-1;Perc Final = 129 % > increaseDECADAL: NO (6 yr)

Shoot density (shoot m⁻²)

Shoot density (shoot m⁻²)

Duarte and Marbà (unpublished)

Shoot density (shoot m^{-2})

189_density

192_densityDuarte and Marbà (unpublished)SITE: Es Cargol (Spain – Mediterranean) – Po (-6 m)OVERALL: Net = 49.71 shoot m-2; Rate = 0.8 % yr-1; Perc Final = 105 % > no changeDECADAL: NO (6 yr)

193_density

194_densityDuarte and Marbà (unpublished)SITE: Cala d'Or (Spain – Mediterranean) – Po (–7 m)OVERALL: Net = 15.34 shoot m–2; Rate = 0.54 % yr–1; Perc Final = 104 % > no changeDECADAL: YES (8 yr)

Duarte and Marbà (unpublished)

González-Correa et al. 2015

198_density

González-Correa et al. 2015

199_density

200_cover González-Correa et al. 2015 SITE: Isla de Tabarca (Spain - Mediterranean) - Po (-20 m) OVERALL: Net = 20 %; Rate = 1.5 % yr-1; Perc Final = 139 % > increase DECADAL: YES (22 yr) 1980s 1990s 2000s no change no change no change unknown 4.54%yr–1 (2 yr) steady 2.11%yr-1 (10 yr) steady 0.29%yr-1 (10 yr) 75 ۲ 70 65 60 55 50 1990 1995 2005 1980 1985 2000 2010

González-Correa et al. 2015

Shoot density (shoot m^{-2})

200_density

Guillén et al. 2013

Shoot density (shoot m^{-2})

201_density

Shoot density (shoot m^{-2})

 207_cover
 Guillén et al. 2013

 SITE: Cala Mina (Spain – Mediterranean) – Po (–10 m)
 OVERALL: Net = 24.98 %; Rate = 4.87 % yr–1; Perc Final = 141 % > increase

 DECADAL: NO (7 yr)
 DECADAL: NO (7 yr)

208_density Guillén et al. 2013 SITE: Cala Mina (Spain – Mediterranean) – Po (-5 m) OVERALL: Net = 20 shoot m-2; Rate = 1.22 % yr-1; Perc Final = 109 % > no change DECADAL: NO (7 yr)

 \bigcirc

2015

2020

2010

90

80

70 60

2000

 \bigcirc

2005

Guillén et al. 2013

Shoot density (shoot m^{-2})

210_density

<u>у</u>

Guillén et al. 2013

211_density

 215_cover
 Guillén et al. 2013

 SITE: Denia (Spain – Mediterranean) – Po (–13 m)
 OVERALL: Net = 15.9 %; Rate = 5.07 % yr–1; Perc Final = 143 % > increase

 DECADAL: NO (7 yr)
 DECADAL: NO (7 yr)

Shoot density (shoot m^{-2})

215_density Guillén et al. 2013 SITE: Denia (Spain – Mediterranean) – Po (-13 m) OVERALL: Net = 33.46 shoot m-2; Rate = 1.84 % yr-1; Perc Final = 114 % > no change DECADAL: NO (7 yr)

216_cover Guillén et al. 2013 SITE: Denia (Spain – Mediterranean) – Po (–5 m) OVERALL: Net = 10.19 %; Rate = 2.27 % yr-1; Perc Final = 117 % > no change DECADAL: NO (7 yr)

Shoot density (shoot m⁻²)

216_densityGuillén et al. 2013SITE: Denia (Spain – Mediterranean) – Po (–5 m)OVERALL: Net = 78.84 shoot m–2; Rate = 4.01 % yr–1; Perc Final = 132 % > increaseDECADAL: NO (7 yr)

Shoot density (shoot m^{-2})

218_densityGuillén et al. 2013SITE: Moraira (Spain – Mediterranean) – Po (-7 m)OVERALL: Net = 33.1 shoot m-2;Rate = 1.84 % yr-1;Perc Final = 114 % > no changeDECADAL: NO (7 yr)

219_coverGuillén et al. 2013SITE: Racó Conill (Spain – Mediterranean) – Po (–10 m)OVERALL: Net = 6.27 %; Rate = 1.62 % yr–1; Perc Final = 112 % > no changeDECADAL: NO (7 yr)

 220_cover
 Guillén et al. 2013

 SITE: Racó Conill (Spain – Mediterranean) – Po (–5 m)
 OVERALL: Net = 3.62 %; Rate = 0.69 % yr–1; Perc Final = 105 % > no change

 DECADAL: NO (7 yr)
 DECADAL: NO (7 yr)

OVERALL: Net = 50.12 shoot m-2; Rate = 2.06 % yr-1; Perc Final = 120 % > no change DECADAL: YES (9 yr)

225_density Guillén et al. 2013 SITE: Tabarca La Nao (Spain – Mediterranean) – Po (–6 m)

Guillén et al. 2013

226_cover SITE: Torrevieja (Spain – Mediterranean) – Po (-11 m) OVERALL: Net = 26.4 %; Rate = 5.39 % yr-1; Perc Final = 146 % > increase DECADAL: NO (7 yr)

227_coverGuillén et al. 2013SITE: Torrevieja (Spain – Mediterranean) – Po (–6 m)OVERALL: Net = 37.15 %; Rate = 8.01 % yr–1; Perc Final = 162 % > increaseDECADAL: NO (6 yr)

Eamos-Esplá et al. 2006, 2007SITE: Cabo Roig (Spain – Mediterranean) – Po (-13.8 m)OVERALL: Net = -3.44 %; Rate = -1.97 % yr–1; Perc Final = 96 % > no changeDECADAL: NO (2 yr)

 232_cover
 Ramos-Esplá et al. 2006, 2007, 2008, 2009, 2010, 2011

 SITE: Alicante (Spain – Mediterranean) – Po (–16.8 m)
 OVERALL: Net = –17.11 %; Rate = –9.39 % yr–1; Perc Final = 57 % > decrease

 DECADAL: NO (6 yr)
 DECADAL: NO (6 yr)

Shoot density (shoot m^{-2})

 232_density
 Ramos-Esplá et al. 2006, 2007, 2008, 2009, 2010, 2011

 SITE: Alicante (Spain – Mediterranean) – Po (–16.8 m)
 OVERALL: Net = –97.92 shoot m–2; Rate = –18.39 % yr–1; Perc Final = 33 % > decrease

 DECADAL: NO (6 yr)
 DECADAL: NO (6 yr)

Shoot density (shoot m^{-2})

235_cover Ramos-Esplá et al. 2006, 2007, 2008 SITE: Benidorm (Spain – Mediterranean) – Po (-14 m) OVERALL: Net = -9.45 %; Rate = -3.35 % yr-1; Perc Final = 90 % > no change DECADAL: NO (3 yr)

235_density Ramos-Esplá et al. 2006, 2007, 2008 SITE: Benidorm (Spain – Mediterranean) – Po (–14 m) OVERALL: Net = 13.19 shoot m-2; Rate = 2.14 % yr-1; Perc Final = 107 % > no change DECADAL: NO (3 yr)

236_cover Ramos-Esplá et al. 2006, 2007, 2008, 2009, 2010, 2011 SITE: Altea (Spain – Mediterranean) – Po (-15 m) OVERALL: Net = -1.56 %; Rate = -0.27 % yr-1; Perc Final = 98 % > no change DECADAL: NO (6 yr)

Shoot density (shoot m⁻²)

 236_density
 Ramos-Esplá et al. 2006, 2007, 2008, 2009, 2010, 2011

 SITE: Altea (Spain – Mediterranean) – Po (-15 m)
 OVERALL: Net = -102.08 shoot m-2; Rate = -8.02 % yr-1; Perc Final = 62 % > decrease

 DECADAL: NO (6 yr)
 DECADAL: NO (6 yr)

237_cover SITE: Calpe (Spain – Mediterranean) – Po (-14 m) OVERALL: Net = 10.28 %; Rate = 2.23 % yr-1; Perc Final = 112 % > no change DECADAL: NO (5 yr)

Shoot density (shoot m^{-2})

237_density Ramos-Esplá et al. 2006, 2007, 2008, 2009, 2010 SITE: Calpe (Spain – Mediterranean) – Po (-14 m) OVERALL: Net = -95.83 shoot m-2; Rate = -6.71 % yr-1; Perc Final = 71 % > decrease DECADAL: NO (5 yr)

Shoot density (shoot m^{-2})

 240_density
 Ramos-Esplá et al. 2006, 2007, 2008, 2009, 2010

 SITE: Castellón (Spain – Mediterranean) – Po (–15.5 m)
 OVERALL: Net = –24.3 shoot m–2; Rate = –6.9 % yr–1; Perc Final = 71 % > decrease

 241_cover
 Ramos-Esplá et al. 2006, 2007, 2008, 2009, 2010, 2011

 SITE: Benicassim (Spain – Mediterranean) – Po (–15 m)
 OVERALL: Net = 10 %; Rate = 11.83 % yr–1; Perc Final = 203 % > increase

 DECADAL: NO (6 yr)
 DECADAL: NO (6 yr)

DECADAL: NO (5 yr)

241_density Ramos-Esplá et al. 2006, 2007, 2008, 2009, 2010, 2011 SITE: Benicassim (Spain - Mediterranean) - Po (-15 m) OVERALL: Net = -43.75 shoot m-2; Rate = -5.62 % yr-1; Perc Final = 71 % > decrease DECADAL: NO (6 yr)

Shoot density (shoot m⁻²)

242_density Ramos-Esplá et al. 2006, 2007, 2008, 2009, 2010, 2011

SITE: Oropesa (Spain – Mediterranean) – Po (–15 m) OVERALL: Net = –89.58 shoot m–2; Rate = –8.11 % yr–1; Perc Final = 67 % > decrease DECADAL: NO (5 yr)

243_coverSánchez-Lizaso et al. 2013SITE: San Pedro del Pinatar (Spain – Mediterranean) – Po (–28.5 m)OVERALL: Net = 1.3 %; Rate = 0.34 % yr–1; Perc Final = 102 % > no changeDECADAL: NO (7 yr)

243_density Sánchez-Lizaso et al. 2013 SITE: San Pedro del Pinatar (Spain – Mediterranean) – Po (–28.5 m) OVERALL: Net = -75 shoot m-2; Rate = -8.84 % yr-1; Perc Final = 54 % > decrease DECADAL: NO (7 yr)

Area (ha)

247 area

SITE: S'Illot – Cala Millor (Spain – Mediterranean) – Po (–10 m) OVERALL: Net = -26.5 ha; Rate = -0.44 % yr–1; Perc Final = 82 % > decrease

Sánchez-Camacho 2003

250_density Terrados and Medina-Pons 2011 SITE: Magalluf Bay – Sa Porrassa (Spain – Mediterranean) – Po (–8 m) OVERALL: Net = 361.2 shoot m–2; Rate = 19.55 % yr–1; Perc Final = 219 % > increase DECADAL: NO (4 yr)

251_density Terrados and Medina-Pons 2011 SITE: Ses Salines (Spain – Mediterranean) – Po (–8 m) OVERALL: Net = 229.9 shoot m–2; Rate = 7.14 % yr–1; Perc Final = 133 % > increase DECADAL: NO (4 yr)

252_densityDiaz-Almela et al. 2009SITE: Magalluf Bay – Sa Porrassa (Spain – Mediterranean) – Po (–7 m)OVERALL: Net = -174.69 shoot m-2; Rate = -9.29 % yr-1; Perc Final = 69 % > decreaseDECADAL: NO (4 yr)

255_areaGarmendia et al. 2013SITE: Bidasoa Estuary (Spain – Atlantic) – Zn (0 m)OVERALL: Net = 0.13 ha;Rate = 1.71 % yr–1;Perc Final = 107 % > no changeDECADAL: NO (4 yr)

257_areaGarmendia et al. 2013SITE: Oka Estuary (Kanala) (Spain – Atlantic) – Zn (0 m)OVERALL: Net = 0.12 ha;Rate = 3.07 % yr–1;Perc Final = 113 % > increaseDECADAL: NO (4 yr)

259_areaGarmendia et al. 2013SITE: Oka Estuary (San Kristobal) (Spain – Atlantic) – Zn (0 m)OVERALL: Net = -2.3 ha; Rate = -3.44 % yr-1; Perc Final = 87 % > decreaseDECADAL: NO (4 yr)

260_biomass Tuya et al. 2013 SITE: Risco Verde (Spain – Atlantic) – Cn (–10 m)

OVERALL: Net = -413.9 g dw m-2; Rate = -17.89 % yr-1; Perc Final = 6 % > decrease DECADAL: YES (16 yr)

Area (ha)

SITE: Arinaga (Spain - Atlantic) - Cn (-5 m)

Tuya et al. 2013

OVERALL: Net = -3078 shoot m-2; Rate = NA % yr-1; Perc Final = NA % > decrease DECADAL: YES (16 yr)

263_density

Shoot density (shoot m⁻²)

Tuya et al. 2013

Moy (unpublished)

Cover (%)

267 cover

Moy (unpublished)

2000

1980

1960

Cover (%)

269 cover

Cover (%)

40 20

1940

272_cover Wikes et al. 2017 SITE: Ballysadare Estuary (Ireland – Atlantic) – Zn (? m) OVERALL: Net = -7.53 %; Rate = -2.78 % yr–1; Perc Final = 87 % > no change DECADAL: NO (5 yr)

273_cover Wikes et al. 2017 SITE: Colligan Estuary (Ireland – Atlantic) – Zn (? m) OVERALL: Net = 16.42 %; Rate = 4.8 % yr–1; Perc Final = 121 % > no change DECADAL: NO (4 yr)

275_area Wikes et al. 2017 SITE: Dublin Bay (Ireland – Atlantic) – Zn (? m) OVERALL: Net = 0.29 ha; Rate = 3.45 % yr–1; Perc Final = 119 % > increase DECADAL: NO (5 yr)

Cover (%)

Area (ha)

275_cover Wilkes et al. 2017 SITE: Dublin Bay (Ireland – Atlantic) – Zn (? m) OVERALL: Net = -14.68 %; Rate = -4 % yr-1; Perc Final = 82 % > no change DECADAL: NO (5 yr)

276_area Wilkes et al. 2017 SITE: Garavoge Estuary (Ireland – Atlantic) – Zn (? m) OVERALL: Net = 1.08 ha; Rate = 3.69 % yr-1; Perc Final = 120 % > increase DECADAL: NO (5 yr)

277_areaWilkes et al. 2017SITE: Malahide Bay (Ireland – Atlantic) – Zn (? m)OVERALL: Net = 0.03 ha;Rate = 0.29 % yr-1;Perc Final = 101 % > no changeDECADAL: NO (3 yr)

Cover (%)

Area (ha)

277_cover Wikes et al. 2017 SITE: Malahide Bay (Ireland – Atlantic) – Zn (? m) OVERALL: Net = -2.92 %; Rate = -1.58 % yr–1; Perc Final = 95 % > no change DECADAL: NO (3 yr)

278_area Wikes et al. 2017 SITE: Moy Estuary (Ireland – Atlantic) – Zn (? m) OVERALL: Net = 1.67 ha; Rate = 2.41 % yr–1; Perc Final = 108 % > no change DECADAL: NO (3 yr)

 $\label{eq:278_cover} & $$ Wilkes et al. 2017$ SITE: Moy Estuary (Ireland – Atlantic) – Zn (? m) $$ OVERALL: Net = -21.86 %; Rate = -20.3 % yr-1; Perc Final = 54 % > decrease $$ DECADAL: NO (3 yr) $$ Wilkes et al. 2017$ The second s$

279_cover Wikes et al. 2017 SITE: Tramore Back Strand (Ireland – Atlantic) – Zn (? m) OVERALL: Net = 28.73 %; Rate = 12.2 % yr–1; Perc Final = 163 % > increase DECADAL: NO (4 yr)

280_lowerlimit Carstensen and Krause-Jensen 2012 SITE: Aabenraa Fjord (Denmark – Baltic) – Zm (? m)

OVERALL: Net = -0.71 m; Rate = -0.78 % yr-1; Perc Final = 84 % > decrease DECADAL: YES (22 yr)

Carstensen and Krause-Jensen 2012

281 lowerlimit

282_lowerlimitKrause-Jensen and Rasmussen 2009, Carstensen and Krause-Jensen 2012SITE: Århus Bugt (Denmark – Baltic) – Zm (? m)OVERALL: Net = -4.87 m; Rate = -0.6 % yr-1; Perc Final = 49 % > decreaseDECADAL: YES (120 yr)

SITE: Flensborg Fjord (Brunsnæs) (Denmark - Baltic) - Zm (?m)

Vinther (unpublished)

283 area

285_lowerlimit

SITE: Flensborg Fjord (Denmark – Baltic) – Zm (? m)

Carstensen and Krause-Jensen 2012

OVERALL: Net = -6.18 m; Rate = -1.04 % yr-1; Perc Final = 39 % > decrease DECADAL: YES (90 yr)

Lower depth limit (m)

Lower depth limit (m)

287 lowerlimit Krause–Jensen and Rasmussen 2009, Carstensen and Krause–Jensen 2012 SITE: Isefjord (Inderbredning) (Denmark - Baltic) - Zm (? m)

Carstensen and Krause-Jensen 2012

OVERALL: Net = -2.08 m; Rate = -0.21 % yr-1; Perc Final = 78 % > decrease DECADAL: YES (117 yr)

Frederiksen et al. 2004

292_area Frederiksen et al. 2004 SITE: Limfjorden (Holmstange) (Denmark - Baltic) - Zm (?m) OVERALL: Net = 16 ha; Rate = 7.43 % yr-1; Perc Final = 4100 % > increase DECADAL: YES (50 yr) 1940s 1950s 1960s 1970s 1980s 1990s increase increase no change decrease increase increase improve

Area (ha)

296_lowerlimit

Josefson et al. 2009, Carstensen and Krause-Jensen 2012

OVERALL: Net = -3.51 m; Rate = -0.89 % yr-1; Perc Final = 37 % > decrease DECADAL: YES (111 yr)

SITE: Odense Fjord (Denmark - Baltic) - Zm (? m)

298 area

299_abiomassKrause-Jensen et al. 2000SITE: Saltholm (control) (Denmark - Baltic) - Zm (? m)OVERALL: Net = 4 g dw m-2; Rate = 0.78 % yr-1; Perc Final = 106 % > no changeDECADAL: NO (7 yr)

Frederiksen et al. 2004

299_densityKrause-Jensen et al. 2000SITE: Saltholm (control) (Denmark – Baltic) – Zm (? m)OVERALL: Net = 119 shoot m-2; Rate = 5.44 % yr-1; Perc Final = 146 % > increaseDECADAL: NO (7 yr)

300_abiomassKrause-Jensen et al. 2000SITE: Saltholm (impacted) (Denmark - Baltic) - Zm (? m)OVERALL: Net = 0 g dw m-2; Rate = 0 % yr-1; Perc Final = 100 % > no changeDECADAL: NO (7 yr)

302_lowerlimit

SITE: Roskilde Fjord (Denmark – Baltic) – Zm (? m)

OVERALL: Net = -4.64 m; Rate = -0.82 % yr-1; Perc Final = 38 % > decrease DECADAL: YES (118 yr)

Carstensen and Krause-Jensen 2012

Lower depth limit (m)

Carstensen and Krause–Jensen 2012

OVERALL: Net = -3.62 m; Rate = -0.9 % yr-1; Perc Final = 34 % > decrease DECADAL: YES (119 yr)

Lower depth limit (m)

308_lowerlimit

Carstensen and Krause-Jensen 2012

SITE: Isefjord (Yderbredning) (Denmark – Baltic) – Zm (? m) OVERALL: Net = 0.63 m; Rate = 0.12 % yr–1; Perc Final = 116 % > increase DECADAL: YES (118 yr)

315_area Bernard et al. 2007 SITE: Berre Lagoon (Figuerolles) (France – Mediterranean) – Zm (? m)

Area (ha)

 317_area
 Bernard et al. 2007

 SITE: Berre Lagoon (Pointe de Berre) (France – Mediterranean) – Zm (? m)

 OVERAULE Note
 22.000 hou

319_area

SITE: La Ciotat – Les Leques (France – Mediterranean) – Po (? m) OVERALL: Net = –139.56 ha; Rate = –0.71 % yr–1; Perc Final = 84 % > decrease

Astier 1984, Bourcier 1996, 1989, Picard and Bourcier 1976, Picard 1978

321_density Bonhomme et al. 2010 SITE: La Palud Cove (France – Mediterranean) – Po (-34 m) OVERALL: Net = -73.4 shoot m-2; Rate = -15.42 % yr-1; Perc Final = 40 % > decrease DECADAL: NO (6 yr)

Cover (%)

Cover (%)

SITE: Bay de Port-Cros (barrier reef) (France - Mediterranean) - Po (-20 m) OVERALL: Net = -0.31 ha; Rate = -0.66 % yr-1; Perc Final = 48 % > decrease

Astruch et al. 2012

324_area Astier 1972, 1975, 1984, Nodot et al. 1978 SITE: Plages du Mourillon (France – Mediterranean) – Po (? m) OVERALL: Net = -236 ha; Rate = -5.58 % yr-1; Perc Final = 35 % > decrease DECADAL: YES (19 yr) 1950s 1960s 1970s no change decrease decrease unknown -5.58%yr-1 (1 yr) worsen -5.58%yr-1 worsen -5.58%yr-1 (8 yr) (10 yr) 400 350 Area (ha) 300 250

200 150 1950 1955 1960 1965 1970 1975 1980

323 area

Glemarec et al. 1997, Hily et al. 2003

325 area

Leriche et al. 2006

Area (ha)

329 area

SITE: Marseilles (Cortiou – anthropissed) (France – Mediterranean) – Po (? m) OVERALL: Net = 0 m; Rate = 0 % yr–1; Perc Final = 100 % > no change DECADAL: YES (10 yr)

1990

1985

332_density

1

1980

Pergent-Martini et al. 2002

SITE: Marseilles (Riou - reference) (France - Mediterranean) - Po (? m)

I

2000

1995

336 area

Bonacorsi et al. 2013

337_areaBonacorsi et al. 2013SITE: Cap Corse (Saint Florent) (France – Mediterranean) – Cn (? m)OVERALL: Net = –7 ha;Rate = –1.98 % yr–1;Perc Final = 40 % > decreaseDECADAL: YES (46 yr)1960s1970s1980s1990s2000s

342_lowerlimit Gambi et al. 2005 SITE: Maronti Bay (Italy – Mediterranean) – Po (? m) OVERALL: Net = -7 m; Rate = -16.43 % yr-1; Perc Final = 72 % > decrease DECADAL: NO (2 yr)

342_upperlimitGambi et al. 2005SITE: Maronti Bay (Italy – Mediterranean) – Po (? m)OVERALL: Net = 0 m; Rate = 0 % yr-1; Perc Final = 100 % > no changeDECADAL: NO (2 yr)

Badalamenti et al. 2006, 2011

 345_area Badalamenti et al. 2006, 2011SITE: Cabo Feto (Italy – Mediterranean) – Cn (? m)OVERALL: Net = 4.86 ha; Rate = NA % yr-1; Perc Final = NA % > increaseDECADAL: YES (16 yr)1970s1980s1990s

Area (ha)

344_area

Badalamenti et al. 2006, 2011

Area (ha)

Cover (%)

346_area

Peirano et al. 2011

Shoot density (shoot m^{-2})

348_density

350_areaGiovani et al. 2010SITE: Orbetello lagoon (Italy – Mediterranean) – Zn (–1.2 m)OVERALL: Net = 0.36 ha;Rate = 7.63 % yr–1;Perc Final = 158 % > increaseDECADAL: NO (6 yr)

Giovani et al. 2010

351_area SITE: Orbetello lagoon (Italy – Mediterranean) – Cn (-1.2 m) OVERALL: Net = -0.29 ha; Rate = -12.16 % yr-1; Perc Final = 48 % > decrease DECADAL: NO (6 yr)

Area (ha)

354 lowerlimit

357_density

358 lowerlimit

359_density

360 lowerlimit

362_densityPergent et al. 2015SITE: Porto Polo (Corsica) (France – Mediterranean) – Po (-36.5 m)OVERALL: Net = 94.9 shoot m–2;Rate = 3.94 % yr–1; Perc Final = 137 % > increase

364_lowerlimitPergent et al. 2015SITE: Sagone (Corsica) (France – Mediterranean) – Po (-33.2 m)OVERALL: Net = 0 m; Rate = 0 % yr-1; Perc Final = 100 % > no changeDECADAL: NO (6 yr)

 $365_density$ Pergent et al. 2015SITE: Porto (Corsica) (France – Mediterranean) – Po (-36.5 m)OVERALL: Net = -40 shoot m-2; Rate = -2.1 % yr-1; Perc Final = 88 % > no changeDECADAL: NO (6 yr)

 366_cover Pergent et al. 2015SITE: Stareso (Corsica) (France – Mediterranean) – Po (-38.6 m)OVERALL: Net = -8.4 %; Rate = -5.18 % yr-1; Perc Final = 70 % > decreaseDECADAL: NO (7 yr)

366_lowerlimitPergent et al. 2015SITE: Stareso (Corsica) (France – Mediterranean) – Po (-38.6 m)OVERALL: Net = 0 m; Rate = 0 % yr-1; Perc Final = 100 % > no changeDECADAL: NO (7 yr)

368_cover Perge SITE: Canari (Corsica) (France – Mediterranean) – Po (–27.4 m) OVERALL: Net = 10.5 %; Rate = 1.9 % yr–1; Perc Final = 112 % > no change DECADAL: NO (6 yr)

368_lowerlimitPergent et al. 2015SITE: Canari (Corsica) (France – Mediterranean) – Po (-27.4 m)OVERALL: Net = 0 m; Rate = 0 % yr-1; Perc Final = 100 % > no changeDECADAL: NO (6 yr)

SITE: Canal de Ovar (Portugal - Atlantic) - Zn (?m)

da Silva et al. 2004, Cunha et al. 2013, Azevedo et al. 2013

371_area

Area (ha)

376_areaCunha et al. 2013SITE: Costa da Galé (Portugal – Atlantic) – Zm (? m)OVERALL: Net = 0 ha; Rate = NA % yr-1; Perc Final = NA % > decreaseDECADAL: NO (4 yr)

379_areaCunha et al. 2013SITE: Ponta do Adoche (Portugal – Atlantic) – Zm (? m)OVERALL: Net = -1.21 ha; Rate = NA % yr-1; Perc Final = NA % > decreaseDECADAL: NO (1 yr)

Area (ha)

383 biomass

 383_density
 Cabaço et al. 2010, Cabaço and Santos 2014, Cabaço and Santos (unpublished)

 SITE: Ancão Peninsula (meadow C) (Portugal – Atlantic) – Cn (? m)

 OVERALL: Net = 2712.31 shoot m-2;
 Rate = 16.73 % yr-1;
 Perc Final = 533 % > increase

Cabaço et al. 2010, Cabaço and Santos 2014, Cabaço and Santos (unpublished)

SITE: Ramalhete (meadow D) (Portugal - Atlantic) - Cn (? m)

384 biomass

Cabaço et al. 2010, Cabaço and Santos 2014, Cabaço and Santos (unpublished)

385_biomass Cabaço and Santos (unpublished) SITE: Ramalhete (pond outfall) (Portugal - Atlantic) - Cn (? m) OVERALL: Net = 404.56 g dw m-2; Rate = 47.5 % yr-1; Perc Final = 259 % > increase DECADAL: NO (2 yr)

385_density Cabaço and Santos (unpublished) SITE: Ramalhete (pond outfall) (Portugal - Atlantic) - Cn (? m) OVERALL: Net = -277.52 shoot m-2; Rate = -22.56 % yr-1; Perc Final = 64 % > decrease DECADAL: NO (2 yr)

Total biomass (g dw m^{-2})

Shoot density (shoot m⁻²)

386_biomass

Cabaço et al. 2007, 2008, Cabaço and Santos (unpublished)

387_biomassCabaço et al. 2007, 2008SITE: ETAR Faro (Portugal – Atlantic) – Zn (? m)OVERALL: Net = -85.31 g dw m-2; Rate = -13 % yr-1; Perc Final = 59 % > decreaseDECADAL: NO (4 yr)

OVERALL: Net = -4888.28 shoot m-2; Rate = -14.41 % yr-1; Perc Final = 24 % > decrease DECADAL: YES (10 yr)

390_biomassCabaço and Santos (unpublished)SITE: Barra Faro (Portugal – Atlantic) – Zn (? m)OVERALL: Net = -656.26 g dw m-2; Rate = NA % yr-1; Perc Final = NA % > decreaseDECADAL: NO (2 yr)

 390_cover
 Cabaço and Santos (unpublished)

 SITE: Barra Faro (Portugal – Atlantic) – Zn (? m)

 OVERALL: Net = -99.67 %; Rate = NA % yr-1; Perc Final = NA % > decrease

 DECADAL: NO (2 yr)

390_densityCabaço and Santos (unpublished)SITE: Barra Faro (Portugal – Atlantic) – Zn (? m)OVERALL: Net = -17158.46 shoot m-2; Rate = NA % yr-1; Perc Final = NA % > decreaseDECADAL: NO (2 yr)

391_biomassCabaço and Santos (unpublished)SITE: ETAR Tavira (Portugal – Atlantic) – Zn (? m)OVERALL: Net = -206.87 g dw m-2; Rate = NA % yr-1; Perc Final = NA % > decreaseDECADAL: NO (5 yr)

391_densityCabaço and Santos (unpublished)SITE: ETAR Tavira (Portugal – Atlantic) – Zn (? m)OVERALL: Net = -3295.29 shoot m-2; Rate = NA % yr-1; Perc Final = NA % > decreaseDECADAL: NO (5 yr)

392_biomassCabaço and Santos (unpublished)SITE: Albacora Tavira (Portugal – Atlantic) – Zn (? m)OVERALL: Net = -411.23 g dw m-2; Rate = NA % yr-1; Perc Final = NA % > decreaseDECADAL: NO (5 yr)

392_densityCabaço and Santos (unpublished)SITE: Albacora Tavira (Portugal – Atlantic) – Zn (? m)OVERALL: Net = -5949.22 shoot m-2; Rate = NA % yr-1; Perc Final = NA % > decreaseDECADAL: NO (5 yr)

393_biomassCabaço et al. 2007, Cabaço and Santos (unpublished)SITE: ETAR Arade Estuary (Portugal – Atlantic) – Zn (? m)OVERALL: Net = -95.92 g dw m-2; Rate = NA % yr-1; Perc Final = NA % > decreaseDECADAL: NO (4 yr)

393_density Cabaço et al. 2007, Cabaço and Santos (unpublished) SITE: ETAR Arade Estuary (Portugal – Atlantic) – Zn (? m) OVERALL: Net = -3450.11 shoot m-2; Rate = NA % yr-1; Perc Final = NA % > decrease DECADAL: NO (4 yr)

394_biomass Cabaço et al. 2007, Cabaço and Santos (unpublished) SITE: Arade Estuary 2 (Portugal – Atlantic) – Zn (?m) OVERALL: Net = -190.76 g dw m-2; Rate = NA % yr-1; Perc Final = NA % > decrease DECADAL: NO (4 yr)

Shoot density (shoot m⁻²)

394_density

Cabaço et al. 2007, Cabaço and Santos (unpublished)

SITE: Arade Estuary 2 (Portugal – Atlantic) – Zn (? m) OVERALL: Net = -3162.6 shoot m-2; Rate = NA % yr-1; Perc Final = NA % > decrease DECADAL: NO (4 yr)

395_biomassCabaço et al. 2007, Cabaço and Santos (unpublished)SITE: Arade Estuary 3 (Portugal – Atlantic) – Zn (? m)OVERALL: Net = -177.51 g dw m-2; Rate = NA % yr-1; Perc Final = NA % > decreaseDECADAL: NO (4 yr)

 395_density
 Cabaço et al. 2007, Cabaço and Santos (unpublished)

 SITE: Arade Estuary 3 (Portugal – Atlantic) – Zn (? m)

OVERALL: Net = -1636.59 shoot m-2; Rate = NA % yr-1; Perc Final = NA % > decrease DECADAL: NO (4 yr)

396_biomassCabaço et al. 2007, Cabaço and Santos (unpublished)SITE: Arade Moinhos (Portugal – Atlantic) – Zn (? m)OVERALL: Net = -272.64 g dw m-2;Rate = NA % yr-1;Perc Final = NA % > decreaseDECADAL: NO (4 yr)

396_densityCabaço et al. 2007, Cabaço and Santos (unpublished)SITE: Arade Moinhos (Portugal – Atlantic) – Zn (? m)OVERALL: Net = -3715.5 shoot m-2; Rate = NA % yr-1; Perc Final = NA % > decrease

DECADAL: NO (4 yr)

397_biomassCabaço et al. 2007, Cabaço and Santos (unpublished)SITE: Guadiana Estuary (Portugal – Atlantic) – Zn (? m)OVERALL: Net = -97.89 g dw m-2; Rate = -27.5 % yr-1; Perc Final = 33 % > decreaseDECADAL: NO (4 yr)

397_density

Cabaço et al. 2007, Cabaço and Santos (unpublished)

SITE: Guadiana Estuary (Portugal – Atlantic) – Zn (? m) OVERALL: Net = 2441.79 shoot m–2; Rate = 13.25 % yr–1; Perc Final = 170 % > increase DECADAL: NO (4 yr)

 399_area Pergent (unpublished)SITE: Calvi (France - Mediterranean) - Po (-25 m)OVERALL: Net = 0 ha; Rate = 0 % yr-1; Perc Final = 100 % > no changeDECADAL: NO (6 yr)

399_biomassPergent (unpublished)SITE: Calvi (France - Mediterranean) - Po (-25 m)OVERALL: Net = -52 g dw m-2; Rate = -1.99 % yr-1; Perc Final = 89 % > no changeDECADAL: NO (6 yr)

Total biomass (g dw m^{-2})

401_biomass Pergent (unpublished) SITE: Calvi (France – Mediterranean) – Po (–9 m) OVERALL: Net = -64 g dw m-2; Rate = -1.73 % yr-1; Perc Final = 90 % > no change DECADAL: NO (6 yr)

401_cover Pergent (unpublished) SITE: Calvi (France – Mediterranean) – Po (–9 m) OVERALL: Net = 28 %; Rate = 5.68 % yr-1; Perc Final = 141 % > increase DECADAL: NO (6 yr)

Total biomass (g dw m^{-2})

Cover (%)

402_area Bourcier 1989 SITE: Oest de Sanary (France – Mediterranean) – Po (? m) OVERALL: Net = -220 ha; Rate = -12.24 % yr-1; Perc Final = 48 % > decrease DECADAL: NO (6 yr)

Shoot density (shoot m^{-2})

Area (ha)

Zupo et al. 2006

405_density

Cover (%)

407_density SITE: Isla de Tabarca (Spain – Mediterranean) – Po (–19.3 m) OVERALL: Net = 50 shoot m–2; Rate = 59.73 % yr–1; Perc Final = 600 % > increase DECADAL: NO (3 yr)

Shoot density (shoot m^{-2})

416_area Montefalcone et al. 2013 SITE: Ventimiglia (Italy – Mediterranean) – Po (–12.5 m)

Area (ha)

Area (ha)

432_COVEr Vetere and Pessani 1989, Sandulli et al. 1994, Montefalcone et al 2007a, Bianchi et al. 2009, Oprandi et al. 2014 SITE: Bergeggi (Italy – Mediterranean) – Po (? m)

OVERALL: Net = 1.4 %; Rate = 0.08 % yr-1; Perc Final = 102 % > no change DECADAL: YES (20 yr)

Cover (%)

432_lowerlimit Vetere and Pessani 1989, Sandulli et al. 1994, Montefalcone et al 2007a, Bianchi et al. 2009, Oprandi et al. 2014 SITE: Bergeggi (Italy – Mediterranean) – Po (? m) OVERALL: Net = 0.3 m; Rate = 0.06 % yr–1; Perc Final = 102 % > no change

432_upperlimit Vetere and Pessani 1989, Sandulli et al. 1994, Montefalcone et al 2007a, Bianchi et al. 2009, Oprandi et al. 2014 SITE: Bergeggi (Italy – Mediterranean) – Po (? m)

OVERALL: Net = 1.6 m; Rate = 0.89 % yr-1; Perc Final = 125 % > increase

Bianchi and Sandulli 1992, Oprandi et al. 2014

Cover (%)

433 cover

Diviacco 2000, Oprandi et al. 2014, Montefalcone (unpublished)

2015

2020

435 cover

2010

Upper depth limit (m)

-2.5 -2.4

2000

2005

Godet et al. 2008, Auby et al. 2010

SITE: Chausey Archipelago (subtidal) (France - Atlantic) - Zm (-4 m) OVERALL: Net = -256.4 ha; Rate = -0.95 % yr-1; Perc Final = 48 % > decrease DECADAL: YES (78 yr)

446_area Fournier 2003, Nebout et al. 2008SITE: La Canue (France – Atlantic) – Zn (? m)OVERALL: Net = -1.15 ha; Rate = -19.9 % yr-1; Perc Final = 30 % > decreaseDECADAL: NO (6 yr)

Area (ha)

 $449_abiomass$ Plus et al. 2010SITE: Arcachon Bay (France – Atlantic) – Zm (–5 m)OVERALL: Net = 60.3 g dw m–2; Rate = 37.2 % yr–1; Perc Final = 210 % > increaseDECADAL: NO (2 yr)

449_densityPlus et al. 2010SITE: Arcachon Bay (France – Atlantic) – Zm (–5 m)OVERALL: Net = 48 shoot m–2;Rate = 18.39 % yr–1;Perc Final = 144 % > increaseDECADAL: NO (2 yr)

Shoot density (shoot m^{-2})

454_abiomass Auby et al. 2010 SITE: Callot (Baie de Morlaix) (France – Atlantic) – Zm (? m) OVERALL: Net = -56.6 g dw m–2; Rate = -11.93 % yr–1; Perc Final = 55 % > decrease DECADAL: NO (5 yr)

469_abiomass

Auby et al. 2010

SITE: Concarneau (Glenan Archipelago) (France – Atlantic) – Zm (? m) OVERALL: Net = 37.2 g dw m–2; Rate = 23.29 % yr–1; Perc Final = 159 % > increase DECADAL: NO (2 yr)

469_densityAuby et al. 2010SITE: Concarneau (Glenan Archipelago) (France – Atlantic) – Zm (? m)OVERALL: Net = -128 shoot m-2; Rate = -11.6 % yr-1; Perc Final = 79 % > no changeDECADAL: NO (2 yr)

Nebout et al. 2008, Auby et al. 2010

473_cover Nebout et al. 2008, Auby et al. 2010 SITE: Plage de L'Ecluse (France – Atlantic) – Zm (? m) OVERALL: Net = 0 %; Rate = 0 % yr-1; Perc Final = 100 % > no change DECADAL: YES (50 yr) 1950s 1960s 1970s 1980s 1990s 2000s no change no change no change no change no change no change unknown 0%yr–1 (8 yr) steady 0%yr-1 steady 0%yr-1 steady 0%yr-1 (2 yr) steady steady 0%yr-1 (10 yr) 0%yr-1 (10 yr) (10 yr) (10 yr) 108 106 104 102 100 1950 1960 1970 1980 1990 2000 2010

Area (ha)

473 area

Cover (%)

474_area

Nebout et al. 2008, Auby et al. 2010

SITE: Baie du Prieuré (France – Atlantic) – Zm (? m)

Area (ha)

475_abiomass Auby et al. 2010 SITE: Estuaire Bidassoa (France – Atlantic) – Zn (?m) OVERALL: Net = 15.42 g dw m-2; Rate = 19.94 % yr-1; Perc Final = 149 % > increase DECADAL: NO (2 yr)

475_cover Auby et al. 2010 SITE: Estuaire Bidassoa (France – Atlantic) – Zn (?m) OVERALL: Net = 0 %; Rate = 0 % yr-1; Perc Final = 100 % > no change DECADAL: NO (2 yr)

AG biomass (g dw m^{-2})

Cover (%)

Auby et al. 2010

480 area

487_density Auby et al. 2010 SITE: Molène (France - Atlantic) - Zm (? m) OVERALL: Net = -48 shoot m-2; Rate = -5.05 % yr-1; Perc Final = 78 % > no change DECADAL: NO (5 yr)

Shoot density (shoot m⁻²)

506_areaAuby et al. 2010SITE: L'estuaire du Lay (France – Atlantic) – Zn (? m)OVERALL: Net = 17.6 ha; Rate = NA % yr-1; Perc Final = NA % > increaseDECADAL: NO (4 yr)

519_abiomass Auby et al. 2010 SITE: Paimpol (France – Atlantic) – Zm (? m) OVERALL: Net = 11.2 g dw m-2; Rate = 2.74 % yr-1; Perc Final = 115 % > no change DECADAL: NO (5 yr)

AG biomass (g dw m^{-2})

Shoot density (shoot m^{-2})

520_abiomassAuby et al. 2010SITE: Les Sept Îles (France – Atlantic) – Zm (? m)OVERALL: Net = -36.9 g dw m–2; Rate = -15.54 % yr–1; Perc Final = 73 % > decreaseDECADAL: NO (2 yr)

 $520_density$ Auby et al. 2010SITE: Les Sept Îles (France – Atlantic) – Zm (? m)OVERALL: Net = -56 shoot m-2; Rate = -4.03 % yr-1; Perc Final = 92 % > no changeDECADAL: NO (2 yr)

521 area

SITE: Pertuis Breton (France – Atlantic) – Zn (? m)

OVERALL: Net = -504.6 ha; Rate = -2.73 % yr-1; Perc Final = 9 % > decrease DECADAL: YES (90 yr)

Auby et al. 2010

OVERALL: Net = -591.45 ha; Rate = NA % yr-1; Perc Final = NA % > decrease DECADAL: YES (74 yr)

523_abiomass

SITE: Les Doux (Pertuis Charentais) (France – Atlantic) – Zn (? m) OVERALL: Net = 17.1 g dw m–2; Rate = 3.27 % yr–1; Perc Final = 134 % > increase DECADAL: YES (9 yr)

560_upperlimit Aliani et al. 1998, Dando et al. 1995 SITE: Paleochori Bay (Greece – Mediterranean) – Po (? m) OVERALL: Net = 0 m; Rate = 0 % yr-1; Perc Final = 100 % > no change DECADAL: NO (4 yr)

Auby et al. 2010

563 abiomass

Auby et al. 2010

564 abiomass

 568_cover Arroyo et al. 2015SITE: Cala Chinches (Spain – Mediterranean) – Po (? m)OVERALL: Net = -30 %; Rate = -16.18 % yr-1; Perc Final = 62 % > decreaseDECADAL: NO (3 yr)

 $569_density$ Arroyo et al. 2015SITE: Calaburras (Peñón del Fraile) (Spain – Mediterranean) – Po (? m)OVERALL: Net = -30 shoot m-2; Rate = -0.54 % yr-1; Perc Final = 96 % > no changeDECADAL: NO (7 yr)

 570_cover SITE: Cambriles (Spain – Mediterranean) – Po (? m) OVERALL: Net = -33 %; Rate = -12.29 % yr-1; Perc Final = 61 % > decrease DECADAL: NO (4 yr)

Cover (%)

 571_cover SITE: El Lance (Spain – Mediterranean) – Po (? m) OVERALL: Net = -10 %; Rate = -5.34 % yr-1; Perc Final = 81 % > no change DECADAL: NO (4 yr)

Cover (%)

572_cover Arroyo et al. 2015 SITE: Melicena (Spain – Mediterranean) – Po (–7 m) OVERALL: Net = –6 %; Rate = –2.74 % yr–1; Perc Final = 92 % > no change DECADAL: NO (3 yr)

 $\label{eq:starses} \begin{array}{ll} $ 573_density & \mbox{Arroyo et al. 2015} \\ $ SITE: Nerja (Spain - Mediterranean) - Po (? m) \\ $ OVERALL: Net = 436 $ shoot m-2; $ Rate = 8.47 \% yr-1; $ Perc Final = 181 \% > increase \\ $ DECADAL: NO (7 yr) $ \end{array}$

578_area Rueda et al. 2009 SITE: Playa del Cañuelo (Spain – Mediterranean) – Zm (? m) OVERALL: Net = -38.8 ha; Rate = NA % yr-1; Perc Final = NA % > decrease DECADAL: NO (6 yr)

578_biomassRueda et al. 2009SITE: Playa del Cañuelo (Spain – Mediterranean) – Zm (? m)OVERALL: Net = -187.97 g dw m-2;Rate = NA % yr-1;Perc Final = NA % > decreaseDECADAL: NO (3 yr)

Area (ha)

578_density Rueda et al. 2009 SITE: Playa del Cañuelo (Spain - Mediterranean) - Zm (? m) OVERALL: Net = -404 shoot m-2; Rate = NA % yr-1; Perc Final = NA % > decrease DECADAL: NO (3 yr)

Shoot density (shoot m^{-2})

Upper depth limit (m)

597_densityAuby et al. 2010SITE: Roscanavel (France – Atlantic) – Zm (? m)OVERALL: Net = -176 shoot m-2; Rate = -12.91 % yr-1; Perc Final = 52 % > decreaseDECADAL: NO (5 yr)

598_abiomassAuby et al. 2010SITE: Plage de la Charge Neuve (France – Atlantic) – Zn (? m)OVERALL: Net = 6.4 g dw m–2; Rate = 4.55 % yr–1; Perc Final = 120 % > no changeDECADAL: NO (4 yr)

Shoot density (shoot m^{-2})

598_densityAuby et al. 2010SITE: Plage de la Charge Neuve (France – Atlantic) – Zn (? m)OVERALL: Net = -4506 shoot m-2;Rate = -13.25 % yr-1;Perc Final = 59 % > decreaseDECADAL: NO (4 yr)

621_area

SITE: Santander Bay (Spain – Atlantic) – Zn (0.3 m)

Calleja et al. 2017

OVERALL: Net = 7.48 ha; Rate = 2.15 % yr-1; Perc Final = 194 % > increase DECADAL: YES (31 yr)

622_area Calleja et al. 2017 SITE: Santander Bay (Spain – Atlantic) – Zn (0.4 m)

OVERALL: Net = 18.23 ha; Rate = 2.57 % yr-1; Perc Final = 222 % > increase DECADAL: YES (31 yr)

Area (ha)

658_biomass SITE: Puck Bay (Poland – Baltic) – Zm (–3.1 m) OVERALL: Not – 10.0 g durm 0: Data – 1.44.9(vm 1: Data Einel – 50.9(v doctaose

Total biomass (g dw m^{-2})

658 area

Total biomass (g dw m^{-2})

SITE: Puck Bay (Poland – Baltic) – Zm (–3.1 m) OVERALL: Net = -3296.08 ha; Rate = -4.66 % yr–1; Perc Final = 9 % > decrease

Kruk-Dowgiallo 1991, Gic-Grusza et al. 2009, Kruk-Dowgiallo and Szaniawska 2008

 $670_biomass$ Pérez-Ruzafa et al. 2012SITE: Mar Menor (Spain – Mediterranean) – Cn (? m)OVERALL: Net = -46.83 g dw m-2; Rate = -11.6 % yr-1; Perc Final = 5 % > decrease

691_coverSITE: Palmones (Spain – Mediterranean) – Zn (? m)OVERALL: Net = 23.34 %; Rate = 8.9 % yr–1; Perc Final = 186 % > increaseDECADAL: NO (7 yr)

Cover (%)

773_abiomassAuby et al. 2010SITE: Saint Malo (Rance - Fresnaye) (France - Atlantic) - Zm (? m)OVERALL: Net = -4.5 g dw m-2; Rate = -2.93 % yr-1; Perc Final = 86 % > no changeDECADAL: NO (5 yr)

Shoot density (shoot m⁻²)

789_densityConsejeria de Medio Ambiente 2016SITE: Río Piedras (Spain – Atlantic) – Zn (? m)OVERALL: Net = -1883 shoot m-2; Rate = -20.57 % yr-1; Perc Final = 66 % > decreaseDECADAL: NO (2 yr)

798_areaCole 2016SITE: Fishcombe Cove (United Kingdom – Atlantic) – Zm (? m)OVERALL: Net = -0.07 ha; Rate = -7.66 % yr-1; Perc Final = 68 % > decreaseDECADAL: NO (5 yr)

800_cover Cook (unpublished) SITE: Portsmouth Harbour (coastal) (United Kingdom – Atlantic) – Zm (? m) OVERALL: Net = -15.88 %; Rate = -20.03 % yr-1; Perc Final = 67 % > decrease DECADAL: NO (2 yr)

Bolderman and Den Hartog 1975, de Jong (unpublished)SITE: Balgzand (The Netherlands – Atlantic) – Zn (–0.6 m)OVERALL: Net = NA m; Rate = NA % yr–1; Perc Final = NA % > decreaseDECADAL: YES (17 yr)

803_upperlimitPolderman and Den Hartog 1975, de Jong (unpublished)SITE: Balgzand (The Netherlands – Atlantic) – Zn (-0.6 m)OVERALL: Net = NA m; Rate = NA % yr-1; Perc Final = NA % > decreaseDECADAL: YES (17 yr)

807_area

809 area

813 area

815 area

818_density Jakl et al. 2015 SITE: Kobiljak (Croatia – Mediterranean) – Po (? m) OVERALL: Net = 14.62 shoot m-2; Rate = 2.51 % yr-1; Perc Final = 108 % > no change DECADAL: NO (3 yr)

820_densityJakl et al. 2015SITE: Sestrica (Croatia – Mediterranean) – Po (? m)OVERALL: Net = -4.99 shoot m–2; Rate = -0.72 % yr–1; Perc Final = 98 % > no changeDECADAL: NO (3 yr)

821_densityJaki et al. 2015SITE: Garmenjak (Croatia – Mediterranean) – Po (? m)OVERALL: Net = -2.32 shoot m-2; Rate = -0.22 % yr-1; Perc Final = 99 % > no changeDECADAL: NO (3 yr)

Shoot density (shoot m^{-2})

Cover (%)

832_area Bertelli et al. 2017 SITE: Cosheston (United Kingdom – Atlantic) – Zn (? m) OVERALL: Net = 0.45 ha; Rate = 17.6 % yr-1; Perc Final = 288 % > increase DECADAL: NO (6 yr)

835_cover Bertelli et al. 2017 SITE: Pembroke river (United Kingdom – Atlantic) – Zn (? m) OVERALL: Net = 5.99 %; Rate = 1.31 % yr–1; Perc Final = 108 % > no change DECADAL: NO (6 yr)

Cover (%)

857_densityLorenti et al. 2005SITE: Lacco Ameno (Italy – Mediterranean) – Po (-10 m)OVERALL: Net = 5.38 shoot m-2; Rate = 0.86 % yr-1; Perc Final = 102 % > no changeDECADAL: NO (2 yr)

858_density Lorenti et al. 2005 SITE: Lacco Ameno (Italy – Mediterranean) – Po (-30 m) OVERALL: Net = 14.24 shoot m–2; Rate = 7.41 % yr–1; Perc Final = 116 % > no change DECADAL: NO (2 yr)

859_density Lorenti et al. 2005 SITE: Off Scarrupata (Italy – Mediterranean) – Po (–10 m) OVERALL: Net = 28.79 shoot m–2; Rate = 2.88 % yr–1; Perc Final = 106 % > no change DECADAL: NO (2 yr)

