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Supplementary Note 1: Device Fabrication 

The hexagonal boron nitride (hBN) encapsulated graphene heterostructures were assembled using a 
peel and stack deterministic dry transfer method.  Graphene and hBN flakes were first exfoliated onto 
O2/Ar plasma cleaned SiO2/Si substrates. The appropriate flakes were then identified by long exposure 
dark field optical imaging. For the hBN encapsulation layers, we used flakes that were 25 – 100 nm 
thick. The selected flakes were then assembled using a polypropyl carbonate (PPC) coated 
Polydimethylsiloxane (PDMS) stamp placed on a glass slide attached to a high precision XYZ 
micromanipulator1.  First, the top hBN encapsulation layer was picked up using the PPC/PDMS stamp. 
This was done at a fixed substrate temperature ~ 500 C.  The hBN flake attached to the stamp was then 
used to pick up the graphene flake. During this process, the substrate temperature was fixed at 65o C 
whilst smoothly contacting hBN to graphene by fine Z adjustments of the micromanipulator. Once 
fully contacted at 50o C the resultant hBN/graphene stack was peeled off from the substrate onto the 
PPC/PDMS stamp.  The stack was then placed down on the bottom hBN flake (substrate temperature 
at 65o) to fully encapsulate the graphene layer.  

Once the heterostructure was prepared, we performed standard electron beam lithography 
techniques to create the Hall bar geometry. First, we patterned a polymethyl methacrylate (PMMA) 
mask on the stack to define contact regions leading up to the device channel. The regions unprotected 
by the mask were etched away using CHF3 + O2 reactive ion etching (RIE), forming narrow trenches. 
Metal contacts (5 nm Cr/70 nm Au) were then evaporated into the trenches which form high-quality 
contacts to the graphene edge2,3. Next, the same lithography and RIE etching procedures were used 
to pattern the Hall bar mesa. For one of our devices, we also patterned a metallic top gate above the 
heterostructure (Supplementary Figure 1) which allowed us to achieve higher doping levels. 

 

Supplementary Note 2: Magnetic Focussing in wide graphene Hall bars 

At low temperature, the charge carriers in our graphene/hBN devices propagate ballistically for 
several micrometres before scattering. For certain measurement geometries, the 4-probe resistance 
is governed by direct transmission of charge carriers between current and voltage probes. An example 
is illustrated in Supplementary Figure 2a which describes the measurement scheme for a transverse 
magnetic focussing experiment. In the presence of a perpendicular magnetic field (B), ballistic carriers 
injected from the current source follow curved trajectories and the measured 4-probe resistance 
(RTMF) exhibits maxima for particular values of B when the carriers are focussed directly into the 
collector voltage probe (coloured arrows in Supplementary Figure 2a). This occurs when the cyclotron 
radius (Rc  ħkF/eB) becomes commensurate with the distance (L) between the current injector and 
voltage collector. The resonance condition is given by 

                                                                                𝐵 =  
ଶℏ௞ూ௦

௘௅
                                  Supplementary Equation (1) 

where kF is the Fermi wave-number and (s-1) is an integer number that describes the number of 
reflections at the device edge. For example, s = 2 describes the trajectories traced by the red arrows 
in Supplementary Figure 2a. Supplementary Figure 2b shows RTMF (B) at fixed n measured in the 
geometry illustrated in Supplementary Figure 2a. For negative values of B, we find a set of maxima 
that are equally spaced with a period B = 2ħkF/eL. No resonances are observed for positive B because 



the Lorentz force acts in the opposite direction and bends trajectories away from the voltage collector. 
Supplementary Figure 2c plots maps of RTMF (B,n) for different hole doping. We find the resonances 
are shifted to higher B for higher n, in agreement with Supplementary Equation 1 and the fact that the 
cyclotron radius is larger for higher n. Notably, all the resonances can be described by Supplementary 
Equation 1 with L = 7.4 m (dashed lines in Supplementary Figure 2c). This value corresponds to the 
distance between the current injector and voltage collector (labelled in Supplementary Figure 2c) and 
validates the dependence of the oscillatory features given by Supplementary Equation 1. 

Magnetic focussing resonances can also appear in a standard longitudinal resistance measurement 
(Rxx) if the voltage probes are located too close to the current contacts (see main text). This occurs if 
they are closer than the width of the channel and is typically the case in our wider samples 
(Supplementary Figure 2d) because of the limited size of exfoliated flakes and clean areas available 
for patterning devices4,5. Supplementary Figure 2e plots Rxx (B) for a fixed n and T in non-quantizing B 
fields. We find a set of resonances that are periodic in B and occur at higher B for higher n 
(Supplementary Figure 2f). This behaviour resembles that of magnetic focussing although these curves 
are distinct from a typical measurement (Supplementary Figures 2a-c). First, the current injectors are 
rather wide (15 m). Second, the oscillations are slightly phase shifted; whereas resonances are 
equally spaced with a period B, the first (labelled 1 in Supplementary Figure 2e) occurs at a value 
approximately B/2. To understand the origin of those resonances, we used Supplementary Equation 
1 to extract L from the oscillation period B = 2ħkF/eL.  We carried out this analysis for several different 
doping levels (Supplementary Figure 2f) and found approximately the same L ≈ 5.6 m. This 
corresponds roughly to the distance between current and voltage probes and suggests that the 
dominant contribution to the measurement originates from magnetic focussing where carriers are 
injected from the corners of the device (yellow arrows in Supplementary Figure 2d). Further work is 
required to understand the details of these magnetic focussing resonances. 

 

Supplementary Note 3: Quasi-ballistic device channels 

Figure. 1f of the main text shows that magnetophonon oscillations in graphene appear only in samples 
in which the channel has a sufficiently large width (W). We argue that the size is the important variable 
because all our devices exhibit similar electronic quality in the bulk; their conducting channels  are 
relatively free from defects/impurities so that low-temperature mobility is limited only by scattering 
at the edges6. To prove this, we performed magnetic focussing experiments (described in 
Supplementary Section 2) on all our devices. The observation of magnetic focussing resonances 
requires carriers that propagate ballistically without scattering, thus proving there are no scattering 
centres along the path between the current injector and voltage collector. Here we present data taken 
from transverse magnetic focussing experiments performed in our narrowest (W = 1.5 m) and widest 
(W = 15 m) samples. The measurement geometries for each device are sketched in the 
Supplementary Figures 3a-b. Supplementary Figure 3c plots RTMF (n,B) measured in the narrowest 
device in which injector and collector probes are separated by L = 1.5 m. We find pronounced 
magnetic focussing resonances up to the fourth order (s = 4). We note that similar resonances also 
appear between any pairs of contacts located in different regions of the device, thus providing further 
confirmation of the quality and ballistic nature of our channels. Even in our widest samples 



(Supplementary Figure 3b) we detect ballistic electrons focused at voltage probes 20 m away from 
current injector (Supplementary Figure 3d).  

 

Supplementary Note 4: Semiclassical model of magnetophonon resonance in monolayer graphene 

The magnetoresistivity of the device is given by the approximation 

                                                                              𝜌௬௬  ≈  
ఙೣೣ

ఙೣ೤
మ  ≈ 𝜌௫௫,                   Supplementary Equation (2) 

since the Hall component of the conductance tensor, xy >> xx for these experimental conditions. The 
longitudinal conductance tensor component, xx, is determined by the rate of drift of a carrier’s 
cyclotron orbit centre. This process is illustrated semiclassically in Fig. 1b of the main text which shows 
the shift caused by an inelastic scattering-induced figure–of-eight transition in k-space. The energy 
absorbed (or emitted) by the carrier undergoing an inter-Landau level (LL) transition is given by the 
energy difference between its initial (N) and final (N + p) states, where N is the LL index and p is a 
positive integer. The quantised energy spectrum of monolayer graphene is given by 

                                                                     𝐸ே = sgn(𝑁)ඥ2|𝑁|
ℏ௩ూ

௟ಳ
 ,                 Supplementary Equation (3) 

where 𝑣ி  is the Fermi velocity of graphene and 𝑙஻ =  ඥℏ/𝑒𝐵 is the quantum magnetic length. For a 
figure-of-8 transition, an electron in a LL with index 𝑁 and orbit radius in k-space given by 𝜅ୡ =

 √2𝑁/𝑙஻  makes an inelastic transition to a level with index 𝑁ᇱ = 𝑁 ± 𝑝 by absorbing or emitting a 
phonon with wave vector, 𝑞, so that its final radius 𝜅ୡ

ᇱ = 𝑞 − 𝜅ୡ. In real space, the corresponding 
classical orbits have radii 𝑅ୡ = 𝑙஻

ଶ 𝜅ୡ. The wavevector, 𝑞 induces a shift in real space of the orbit centre 
Δ𝑋 = 𝑙஻

ଶ 𝑞 and hence provides a contribution to the current. An excellent fit to the measured period 
of the magnetophonon oscillations is obtained by considering scattering by linearly dispersed acoustic 
phonons with energy ℏ𝜔௤ =  ℏ𝑣ୱ𝑞 = ℏ𝑣ୱ(𝜅ୡ

ᇱ + 𝜅ୡ), where 𝑣ୱ refers to velocity of either longitudinal 
acoustic (LA) or transverse acoustic (TA) phonons. The resonant conditions for absorption or emission 
processes are given by  

       ℏ𝜔௤ =  
ℏ௩౩

௟ಳ
 ൫ඥ2(𝑁 ± 𝑝) +  √2𝑁൯ =  ± 

ℏ௩ూ

௟ಳ
 (ඥ2(𝑁 ± 𝑝) −  √2𝑁),  Supplementary Equation  (4) 

where p is the change in LL index.  This can be expressed in the following form 

     𝑁 =
௣௩౩

ସ௩ూ
ቀ

௩ూ

௩౩
− 1ቁ

ଶ
≈

௣௩ూ

ସ௩౩
.             Supplementary Equation (5) 

The approximation holds since 𝑣ୱ ≪ 𝑣୊. Only electrons within the energy range ~(𝐸୊ ± 2𝑘୆𝑇), can 
scatter between filled and empty states by emitting or absorbing a phonon. The Fermi energy 𝐸୊ ≫

2𝑘୆𝑇 over the temperature range of our measurements.  The LL index, N, of the carriers undergoing 
MPR transitions around the Fermi energy is proportional to the carrier density, 𝑛 = 4𝑒𝐵𝑁/ℎ, where 
the factor 4 corresponds to the two-fold valley and spin degeneracies.  Combining this relation with 
(S5) we obtain the magnetic field position Bp of the pth resonant peak:  

                                                                     𝐵௣ =
௡௛௩ూ

௣௘௩౩
ቀ

௩ూ

௩౩
− 1ቁ

−2

≈
௡௛௩౩

௣௘ ూ
 .            Supplementary Equation (6)   



Therefore, the magnetophonon resonance oscillations are periodic in 1/B with a frequency  
BF = pBp, as discussed in the main text. 

 

Supplementary Note 5: Fermi velocity of charge carriers in graphene encapsulated with hexagonal 
boron nitride 

Figure. 3 of the main text demonstrates that the position of maxima in the resistance caused by 
magnetophonon resonance can be described by Supplementary Equation 6 with the only fitting 
parameter being the ratio of the phonon speed to the Fermi velocity in graphene 𝑣ୱ/𝑣୊. Knowing the 
Fermi velocity of graphene we are able to measure the speed of the phonons responsible for the 
observed effect. It can be obtained by studying temperature dependence of Shubnikov de Haas (SdH) 
oscillations7 and its measurement allows us to extract 𝑣ୱ without any fitting parameters. 
Supplementary Figure S4a plots the temperature dependence of the magnetoresistivity 𝜌௫௫(B) for one 
of our graphene devices encapsulated with hBN. We observe pronounced 1/B-periodic SdH 
oscillations that are almost completely damped at 50 K (red curve in Supplementary Figure S4a). The 
inset of Supplementary Figure S4a plots the amplitude of one of the oscillations (indicated by black 
arrow in the main panel) as a function of T. It shows that the data can be fitted precisely by the Lifshitz-
Kosevich formula (solid red line) which allows us to extract the effective mass m*. We repeated such 
measurement and analysis of SdH oscillations in different devices and for a range of n between  
1 and 4 x 1012 cm-2. These density dependent measurements reveal a linear dependence of m* as 
function of the Fermi wavevector kF = (n0.5 (Supplementary Figure S4b), as previously observed for 
graphene on dielectric substrates7,8. Fitting the experimental data with the standard equation for m* 
= ℏkF/vF in graphene9 allows us to extract vF = 1.06 + 0.05 x 106 ms-1. This value is in good agreement 
with previous measurements7,8 and that which is typically expected for graphene9 at these relatively 
high n where velocity renormalisation due to e-e interactions10 is negligible. 

 

Supplementary Note 6: Summary of quantum transport calculations 

We use the Kubo approach11 to determine the linear response of the oscillatory longitudinal 
magnetoresistivity, xx, of monolayer graphene due to the resonant absorption and emission of LA 
and TA acoustic phonons by the charge carriers in a magnetic field, B = (0,0,-B), applied perpendicular 
to the graphene sheet. The model corresponds to ohmic conditions with the carriers in thermal 
equilibrium with the lattice vibrations. The electronic spectrum becomes quantised into a series of 
unevenly spaced Landau levels (LLs) with index N given by Supplementary Equation 3. It is convenient 
to use the Landau gauge where A = (0, -Bx, 0). The carrier wave function in the 𝐾ା valley and the 
conduction band is then given by the pseudospinor 

                                                     𝜓ே
௄శ

=  
ଵ

√ଶ
 ൬

థ|ಿ|(௫ି௑)

ିୱ୥୬(ே)୧థ|ಿ|షభ(௫ି௑)
൰ ,                  Supplementary Equation (7) 

where 𝜙 are simple harmonic oscillator states along x and plane waves along y given by  

                                              𝜙ே(𝑥) = 𝐴ே𝐻ே ቀ
௫

௟ಳ
ቁ exp ቀ

௫మ

ଶ௟ಳ
మ ቁ exp൫i𝑘௬𝑦൯,         Supplementary Equation (8) 



Here 𝐴ே = 1/ට𝐿௬𝑙஻2ே𝑁! √𝜋is a normalisation constant and 𝐻ே are the Hermite polynomials12,9,13. A 

similar relation applies for the valence band and the 𝐾ି valley. In the Kubo approach, the contribution 
of the TA and LA acoustic phonon scattering to the magnetoconductance xx is given by 

∆𝜎௫௫
୲,୪ =  

௚౬௚౩గ௘మ

ௌమ௞ా்ℏ
∑ ൫𝑙஻

ଶ 𝑞௬൯
ଶ

𝐪 |𝐶 (𝑞)|ଶ𝑁௤൫𝑁௤ + 1൯ ∑ ∑ ൣ𝑓൫𝐸ே −  ℏ𝜔௤
୲,୪൯ − 𝑓(𝐸ே)൧𝛿 (𝐸ே −௞೤,௞೤ᇲே,ேᇲ

 ℏ𝜔௤
୲,୪ − 𝐸ேᇲ) ቚ𝐼

ே,ேᇲ
୲,୪ (𝑘௬, 𝑘௬

ᇱ , 𝐪)ቚ
ଶ
 .                                                                       Supplementary Equation (9)  

Here the subscripts/superscripts t  and l refer to contributions corresponding to the TA or LA phonons 
respectively, 𝑔୴ = 2 and 𝑔ୱ = 2  are the valley and spin degeneracies, S = LxLy is the area of the device, 

𝑘୆ is the Boltzmann constant, T is the lattice temperature, ห𝐶୲,୪(𝑞)ห
ଶ

=  ℏ𝑞/(2𝜌𝑣୲,୪) are the Fourier 
components of the scattering potential,  𝜌 = 7.6 x 10-8 g cm-2 is the mass density of graphene, 𝑁௤ =

(exp (ℏ𝜔௤
୲,୪/𝑘୆𝑇) − 1)ିଵ is the Bose-Einstein distribution function for the phonons and 𝑓(𝐸) =

(exp ((𝐸 − 𝜇)/𝑘୆𝑇)  + 1)ିଵ is the Fermi-Dirac distribution of the carriers with chemical potential, 𝜇. 

The matrix elements 𝐼
ே,ேᇲ
୲,୪ (q), are given by  

                                           𝐼
ே,ேᇲ
୲,୪ ൫𝑘௬,𝑘௬

ᇱ , 𝐪൯ =  ∫ 𝑑𝑆𝜓௞೤
ᇲ , ேᇲ

∗ 𝑉𝐪
୲,୪𝜓௞೤,ಿ

.              Supplementary Equation (10) 

𝑉𝐪
୲,୪ describes the charge-carrier phonon coupling for the TA and LA phonons respectively14,15,16,17 and 

has the form 

                                                                𝑉𝐪
୲ = 𝑒୧𝐪.𝐫 ቆ

0 −𝑔୥e௜ଶఝ

𝑔୥eି௜ଶఝ 0
ቇ      Supplementary Equation (11) 

and 

                                                                  𝑉𝐪
୪ = i𝑒୧𝐪.𝐫 ቆ

𝑔ୢ(𝑞) 𝑔୥e୧ଶఝ

𝑔୥eି୧ଶఝ 𝑔ୢ(𝑞)
ቇ,     Supplementary Equation (12)         

where 𝜑 is the angle between the phonon wave-vector and the x axis, which in our model is defined 
to be along the zigzag edge of the graphene layer. Here, 𝑔୥ and 𝑔ୢ(𝑞) are the carrier-phonon coupling 
matrix elements corresponding to the gauge and deformation distortions of the graphene lattice. The 
off-diagonal matrix elements involving 𝑔୥ arise from pure shear-like distortions of the lattice which 
give rise to a “synthetic” gauge field in the Dirac equation. This is unaffected by screening and has 
been estimated using density functional theory to have a value in the range 𝑔୥ = 1.5 – 4.5 eV14,15,16,17,18. 
We obtain a good fit to the data with 𝑔୥ = 4 eV. The on-diagonal terms correspond to strain-induced 
distortions of the unit cells that change their areas, resulting in local redistributions in the carrier 
density, n, which screen the deformation potential terms 𝑔ୢ(𝑞). Therefore we write 

                                                                                   𝑔ୢ(𝑞) =
௚෤ ౚ

ఌ(௤)
,                     Supplementary Equation (13) 

where 𝑔෤ୢ is the unscreened “bare” deformation potential coefficient and 𝜀(𝑞) is the phonon wave 
vector-dependent dielectric function. We use the Thomas-Fermi approximation for 𝜀(𝑞) which gives   

                                                                        𝜀(𝑞) =  𝜀୰ ቀ1 +
௤౪౜

௤
 ቁ,                   Supplementary Equation (14) 



where 𝑞୲୤ = 4𝑒ଶ√𝑛𝜋/(4𝜋ℏ𝑣୊𝜀୰𝜀଴) is the inverse Thomas-Fermi screening radius. This takes into 
account screening by the dielectric environment of the graphene layer, with the dielectric constant 𝜀୰ 
and by the free carriers in the graphene layer18,19. For free-standing graphene and 𝜀୰ = 1, 𝑞୲୤~ 8𝑘୊. For 
the case of magnetophonon resonance at high LL index, 𝑞 ~ 2𝑘୊ and 𝜀(𝑞)~ 5 and thus the 
deformation potential is strongly suppressed18. In our experiments, the graphene layer is fully 
encapsulated by hBN and therefore we set 𝜀୰ = 3.5 so that 𝜀(𝑞)~ 7.5 and 𝑔ୢ(𝑞) is reduced further.  
However, we find that the resistivity is not very sensitive to 𝜀୰ since the deformation potential is very 
effectively screened by the carriers in the graphene layer.  We set 𝑔෤ୢ to be 25 eV. We find that in the 
range from 𝑔෤ ୢ = 20 − 30 eV the resistivity is not sensitive to this parameter due to the strong 
screening effect.  

To model LL broadening, we replace the delta function in Supplementary Equation 9 by  

                                                         𝛿(𝐸)  →  
ଵ

୻√ଶగ
exp ቀ − 

ாమ

ଶ୻మቁ    ,                 Supplementary Equation (15) 

where 𝐸 = 𝐸ே − 𝐸ேᇲ − 𝑞ℏ𝑣୲,୪. We use a Gaussian function to aid convergence of our calculation at 
high LL indicies. In the case of short-range scattering, for example by charged impurities, the 
broadening of the LLs depends on the square root of magnetic field12,20,21,22. Therefore, we set the 

broadening parameter Γ =  γ√𝐵 . We obtain a good fit to the data with γ = 0.5 meV T-1/2 (see Fig. 4b 
of the main text).  

In the Hall regime, the longitudinal magnetoresistivity is given by 𝜌௬௬ =  𝜎௫௫/(𝜎௫௫𝜎௬௬ + 𝜎௫௬
ଶ  ), where 

the component 𝜎௫௬ =  𝑛𝑒/𝐵. Since 𝜎௫௫ =  𝜎௬௬ ≪  𝜎௫௬ the oscillatory part of 𝜌௫௫  due to TA and LA 
phonon scattering is given by 

                                                             ∆𝜌௫௫ = ቀ
஻

௡௘
ቁ

ଶ
൫𝜎௫௫

୪ +  𝜎௫௫
୲ ൯                   Supplementary Equation (16) 

to a good approximation. Supplementary Figure 5 shows ∆𝜌௫௫ calculated for three representative 
carrier densities, 6, 7.5 and 9 x 1012 cm-2. We find that ∆𝜌௫௫(𝐵) has a form and amplitude which agrees 
well with oscillations observed in the measurements shown in the main text. The magnetic field values 
of the position of the peaks correspond closely to the classical resonance condition for two touching 
cyclotron orbits, see Equation 1 of the main text and Supplementary Equation 5. The slight difference 
between the classical and quantum models arises from the form of overlap integral between the 
corresponding Landau-quantised wavefunctions. The peaks are periodic in 1/B with a frequency, BF, 
that has a linear dependence on 𝑛 (Supplementary Equation 6). The plot shows that the contribution 
from the LA phonons to the total resistivity is relatively small and appears only as the p = 1 peak in 
∆𝜌௫௫ (labelled by the blue arrow in Supplementary Figure 5). This is due to two main factors: first, the 
suppression of the deformation part of the electron-phonon coupling matrix due to free carrier 
screening (see Supplementary Equation 12); second, the energy of the LA phonon is larger than that 
of the TA phonon when the condition for magnetophonon resonance is satisfied. Therefore, at a given 
temperature, there is a lower population of LA phonons than TA phonons for carriers to absorb and 
similarly there are fewer carriers at high enough energy to emit an LA phonon compared to those that 
can emit a TA phonon. If the deformation part of the electron-phonon were not screened, 𝜌௫௫(𝐵) 
would be dominated by the contribution from the LA phonons, highlighting the importance of the 
strong screening of LA phonon scattering in graphene. 



Supplementary Figures 

 

 

 

 

Supplementary Figure 1: Wide graphene Hall bars.  Optical image of our wide top-gated device (W = 
13.8 µm). White scale bar is 10 m.  

 

 

 

 



 

Supplementary Figure 2: Magnetic Focussing. a, Measurement scheme for a typical transverse 
magnetic focussing experiment performed in a graphene device with W = 15 um. Yellow and red lines 
trace trajectories of electrons under the resonance condition (1) for s = 1 and 2 respectively. b, RTMF 
(B) for fixed n and T. c, Magnetic focussing maps, RTMF (B, n), for the configuration specified in a. 
Dashed lines are fits to Supplementary Equation 1 with L = 7.4 m and different s. d Measurement 
scheme for Rxx geometry; the yellow arrows depict trajectories of charge carriers in both negative and 
positive B-fields. e, Rxx (B) for a fixed n and T. f, maps Rxx (B, n). 

 

 

 

 

 



 

Supplementary Figure 3: Quasi-ballistic graphene devices. a,b, Measurement scheme for a magnetic 
focussing experiment performed in our narrowest (a) and widest (b) Hall bar devices (the mesa are 
contoured in white). The yellow, red and blue curved arrows indicate electron trajectories 
corresponding to resonances predicted by Supplementary Equation 1 with s = 1, 2 and 3 respectively. 
c,d Transverse magnetic focussing maps, RTMF (n, B) measured at 5 K in the configurations shown in a 
and b respectively.  

 

 



 

Supplementary Figure 4: Temperature dependence of Shubnikov de Hass oscillations. a, 
Magnetoresistance 𝜌௫௫(B) measured at a fixed hole density n = - 2.8 x 1012 cm.-2 for different T in 5 K 
steps. We subtract the smooth background and analyse the amplitude of SdH oscillations (indicated 
by black arrow). Inset: T dependence of the normalised amplitude ∆𝜌(T) for the peak that is indicated 
by the black arrow in a. Open circles are experimental data points and solid red line is the standard 
fitting with the Lifshitz-Kosevich formula. m0 represents the free electron mass b, measurements of 
m*/m0 for different n of holes in two different graphene devices; the black circles represent data 
obtained in one of our widest devices W = 15 m (Fig. 1c of the main text). The error bars represent 
the error in fitting the Lifshitz-Kosevich formula. Red dashed line is a linear fit to the equation m* = 
ℏkF/vF with a constant vF = 1.06 x 106 ms-1. 

 

 

 

 

 

 

 

 

 

 

 



 

Supplementary Figure 5: Quantum transport calculations: Calculated 𝛥𝜌௫௫(𝐵) for three different n 
and T = 70 K, using 𝑣୲ = 13.6 kms-1 and 𝑣୪ = 21.4 kms-1 see ref. 17 and the parameters specified in the 
text. The integers 𝑝 correspond to resonant inter-LL scattering around the Fermi energy, with 𝑝 =

 |𝑁 − 𝑁ᇱ|. The curves are offset for clarity.  
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