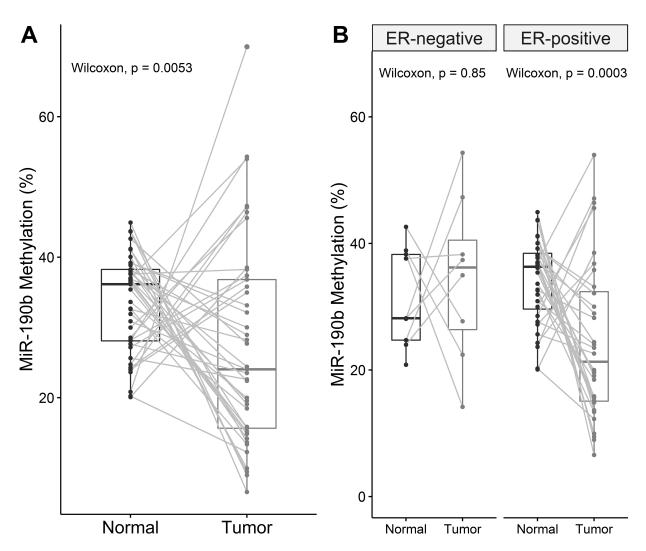
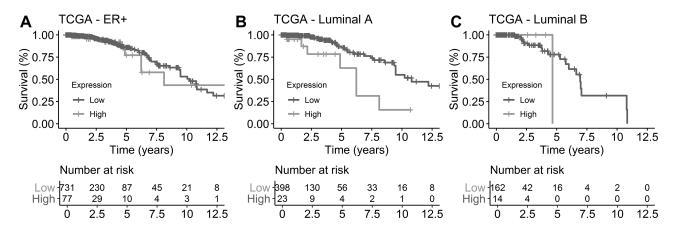
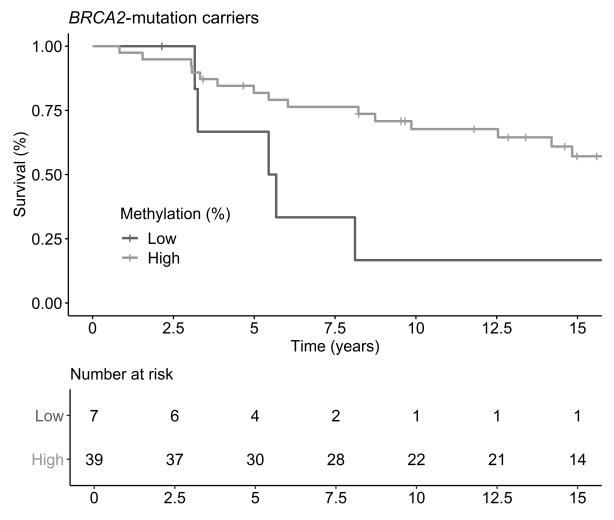

CpG promoter hypo-methylation and up-regulation of microRNA-190b in hormone receptor-positive breast cancer


SUPPLEMENTARY MATERIALS


Supplementary Figure 1: MiR-190b's genetic location and upstream CpG's. MiR-190b is situated within the TPM3 transcript ENST00000515609. CpG's upstream from MiR-190b within the transcript are labelled as gray ticks. The CpG analysed in this study is labelled as a red tick.


Supplementary Figure 2: MiR-190b mRNA expression and CpG promoter methylation in breast cancer cell lines. Spearman's rho correlation analysis was significant, $R^2 = -0.68$, p = 0.004, n = 16.

Supplementary Figure 3: MiR-190b pairwise methylation status in tumor and normal tissue. (A) pairwised comparison of miR-190b methylation status between breast tumors and normal breast tissue (n = 43) (Wilcoxon signed rank test, P = 0.046). (B) After dividing tumor tissue into their according ER status. ER+ tumors (n = 32) have significantly lower miR-190b methylation comparing to normal breast tissue (Wilcoxon signed rank test, P = 0.006). MiR-190b expression in ER- breast tumors (n = 9) is not significantly different from normal breast tissue (Wilcoxon rank sum test, P = 0.48).

Supplementary Figure 4: Overall survival from TCGA. Cutoff of high and low expression was set at the upper quartile of expression levels for normal tissue from TCGA and analyzed using Cox regression. (**A**) ER+ breast cancer patient (HR = 0.36,CI 0.29-1.34, P = 0.22). (**B**) LumA breast cancer patients (HR = 0.26,CI 0.11-0.60, P = 0.0016). (**C**) LumB breast cancer patients (HR = 0.63,CI 0.08-0.08-0.08). All analysis are corrected for age at diagnosis.

Supplementary Figure 5: Breast cancer specific survival within BRCA2999del5 mutation carriers by miR-190b methylation status. (HR = 0.30, 95% CI 0.39-4.69, P = 0.469).

Supplementary Table 1: Cell lines

Cell line	Subtype	ER	PR	HER	CK5/6	EGFR	Ki-67
BT-474	LumB ₍₁₂₎ , Lum ₍₁₃₎ ,		+(12),+(13),	3+(12), +(13)	- ₍₁₂₎	1+(12)	70 ₍₁₂₎
		+(13)					
CAMA-1	Lum ₍₁₃₎	+(13)	- ₍₁₃₎	- ₍₁₃₎			
HCC38	Basal-like B ₍₁₃₎	— ₍₁₃₎	- ₍₁₃₎	- ₍₁₃₎			
HCC1937	Basal-like A ₍₁₃₎	- ₍₁₃₎	- ₍₁₃₎	- ₍₁₃₎			
HCC1428	Lum ₍₁₃₎	+(13)	+(13)	- ₍₁₃₎			
HCC1500	Basal-like B ₍₁₃₎	- ₍₁₃₎	- ₍₁₃₎	- ₍₁₃₎			
MCF7	LumA ₍₁₂₎ , Lum ₍₁₃₎	+(12), +(13)	+(12), +(13)	$0-1+_{(12)}$	- ₍₁₂₎	$1+_{_{(12)}}$	90 ₍₁₂₎
MCF10a	Basal-like ₍₁₂₎ , Basal-like B ₍₁₃₎		- ₍₁₂₎ ,	0–1+(12),	+(12)	2+(12)	30 ₍₁₂₎
		- ₍₁₃₎	- ₍₁₃₎	- (13)			
MDA-MB-134-VI	Lum ₍₁₃₎	+(13)	- ₍₁₃₎	- ₍₁₃₎			
MDA-MB-231	Basal ₍₁₂₎ ,	- ₍₁₂₎ ,	- ₍₁₂₎ ,	0–1 ₍₁₂₎ ,	— ₍₁₂₎	1 ₍₁₂₎	100(12)
	Basal-like B ₍₁₃₎	- ₍₁₃₎	- ₍₁₃₎	- ₍₁₃₎			
MDA-MB-435	HER2 ₍₁₂₎ , Basal-like B ₍₁₃₎	- ₍₁₂₎ ,	- ₍₁₂₎ ,	3+ ₍₁₂₎ ,	- ₍₁₂₎	0 ₍₁₂₎	80 ₍₁₂₎
		– (13)	- ₍₁₃₎	— ₍₁₃₎			
MDA-MB-436	Basal-like B ₍₁₃₎	- ₍₁₃₎	- ₍₁₃₎	- ₍₁₃₎			
MDA-MB-468	Basal-like A ₍₁₃₎	- ₍₁₃₎	- ₍₁₃₎	- ₍₁₃₎			
SK-BR-3	HER2 ₍₁₂₎ , Lum ₍₁₃₎	- ₍₁₂₎ ,	- ₍₁₂₎ ,	2 .	- ₍₁₂₎	2+(12)	$20_{(12)}$
		- ₍₁₃₎	- ₍₁₃₎				
T47D	Lum ₍₁₃₎	+(13)	+(13)	- ₍₁₃₎			
ZR-75-1	Lum ₍₁₃₎	+(13)	-(13)	- ₍₁₃₎			

Supplementary Table 2: Tumor characteristics according to miR-190b methylation status

Stratified by miR-190b methylation Hypo-methylation Methylation *p*-value **Corrected for ER** 156 464 Estrogen receptor status (%) 16 (12.8) 97 (32.7) < 0.001 Neg 109 (87.2) Pos 200 (67.3) 0.002 Insignificant Progesteron receptor status (%) Neg 42 (33.9) 151 (50.7) 82 (66.1) 147 (49.3) Pos HER2 status (%) Neg 41 (67.2) 106 (58.2) 0.276 20 (32.8) Pos 76 (41.8) Ki67 status (%) 0.005 34 (59.6) 66 (37.3) Neg Pos 23 (40.4) 111 (62.7) Nodal Metastases (%) 8 (50.0) 0.984 No 20 (45.5) Yes 8 (50.0) 24 (54.5) Year of diagnosis (%) 1969-1989 49 (31.4) 150 (32.3) 0.8371990-1992 27 (17.3) 89 (19.2) 39 (25.0) 1993-1994 119 (25.6) 1995-2007 41 (26.3) 106 (22.8) Tumor size mm (%) 5-15 9 (30.0) 0.097 Insignificant 27 (27.8) 16-22 10 (33.3) 21 (21.6) 23-33 2 (6.7) 27 (27.8) 34-Over 9 (30.0) 22 (22.7) Grade (%) 1 3 (23.1) 7 (9.1) 0.330 2 4 (30.8) 35 (45.5) 3 5 (38.5) 33 (42.9) *Other 1 (7.7) 2 (2.6) Ι TNM Stage (%) 3 (18.8) 9 (18.6) 0.592 IIa 4 (25.0) 13 (30.2) IIb 5 (31.2) 8 (18.6) IIIa 3 (18.8) 5 (11.6) IIIb (0.0)6(14.0) *IV 1 (6.2) 2(4.7)Age of diagnosis (%) 30-40 0.013 Insignificant 10 (6.4) 56 (12.3) 41 - 5033 (21.2) 126 (27.7) 51-60 38 (24.4) 117 (25.7) 61 - 7039 (25.0) 92 (20.2) 70-Over 36 (23.1) 64 (14.1) Sample type (%) < 0.001 Normal 1(0.6)70 (15.1) 155 (99.4) Tumor 394 (84.9) Subtype (%) *5NP 0(0.0)7(5.0)0.008 Basal-like 3 (6.8) 29 (20.6) HER2 1(2.3)14 (9.9) LumA 25 (56.8) 45 (31.9) LumB 15 (34.1) 46 (32.6)

^{*}Expected values over 5 was un-obtainable by simplification of groups. Exclusion of these groups does not change outcome.