S2 Table: Context-specific MDRI and FRR estimates from the three demonstrative surveillance scenarios under different assumptions about impact of ARV exposure testing on FRR

				Assmuption 1*		Assumption 2**	
Assay	ODn	Scenario [§]	MDRI^{\dagger} (95% CI)	FRR (95% CI)	RSE	FRR (95% CI)	RSE
Maxim	0.5	A	88 (74,104)	$0.0\% \ (0.0,0.1)$	16.7%	$0.6\% \ (0.1,2.4)$	63.8%
Maxim	1.0	A	140 (119,165)	$0.3\% \ (0.0,0.8)$	19.0%	$0.9\% \ (0.1,3.0)$	46.8%
Maxim	1.5	A	186 (159,214)	$0.3\% \ (0.0,0.9)$	15.6%	$1.0\% \ (0.2, 3.3)$	38.1%
Maxim	2.0	A	228 (196,261)	$0.4\% \ (0.1,1.0)$	13.8%	$1.2\% \ (0.3, 3.7)$	34.2%
Maxim	2.5	A	313 (273,353)	$0.8\% \ (0.4,1.5)$	11.8%	$1.7\% \ (0.7,4.4)$	27.3%
Sedia	0.5	A	73 (61,85)	$0.0\% \ (0.0,0.0)$	16.1%	$0.5\% \ (0.0,2.0)$	63.5%
Sedia	1.0	A	101 (86,120)	$0.0\% \ (0.0,1.0)$	14.7%	$0.7\% \ (0.1, 2.6)$	58.9%
Sedia	1.5	A	151 (130,174)	$0.1\% \ (0.0, 0.2)$	12.3%	$0.8\% \ (0.1, 2.8)$	42.1%
Sedia	2.0	A	186 (159,215)	$0.1\% \ (0.0,0.2)$	11.7%	$0.8\% \ (0.1,3.0)$	36.5%
Sedia	2.5	A	272 (234,311)	$0.7\% \ (0.3, 1.3)$	13.1%	$1.5\% \ (0.6,4.1)$	30.0%
Maxim	0.5	В	88 (74,104)	$0.0\% \ (0.0, 0.1)$	16.7%	$0.6\% \ (0.1,2.4)$	63.8%
Maxim	1.0	В	140 (119,165)	$0.3\% \ (0.0,0.8)$	19.0%	$0.9\% \ (0.1, 2.0)$	46.8%
Maxim	1.5	В	186 (159,214)	$0.3\% \ (0.0,0.9)$	15.6%	$1.0\% \ (0.2, 3.3)$	38.1%
Maxim	2.0	В	228 (196,261)	$0.4\% \ (0.1,1.0)$	13.8%	$1.2\% \ (0.3, 3.7)$	34.2%
Maxim	2.5	В	313 (273,353)	$0.8\% \ (0.4,1.5)$	11.8%	$1.7\% \ (0.7,4.4)$	27.3%
Sedia	0.5	В	73 (61,85)	$0.0\% \ (0.0,0.0)$	16.1%	$0.5\% \ (0,0.02)$	63.5%
Sedia	1.0	В	101 (86,120)	$0.0\% \ (0.0,0.1)$	14.7%	$0.7\% \ (0.1, 2.6)$	58.9%
Sedia	1.5	В	151 (130,174)	$0.1\% \ (0.0,0.2)$	12.3%	$0.8\% \ (0.1,2.8)$	42.1%
Sedia	2.0	В	186 (159,215)	$0.1\% \ (0.0,0.2)$	11.7%	$0.8\% \ (0.1,3.0)$	36.5%
Sedia	2.5	В	272 (234,311)	$0.7\% \ (0.3,1.3)$	13.1%	1.5% (0.6,4.1)	29.9%
Maxim	0.5	$^{\mathrm{C}}$	88 (74,104)	0.0% (0.0, 0.1)	16.7%	$0.6\% \ (0.1, 2.4)$	63.8%
Maxim	1.0	$^{\mathrm{C}}$	140 (119,165)	$0.3\% \ (0.0,0.8)$	19.0%	$0.9\% \ (0.1,3.0)$	46.8%
Maxim	1.5	$^{\mathrm{C}}$	186 (159,214)	$0.3\% \ (0.0,0.9)$	15.6%	$1.0\% \ (0.2,3.3)$	38.1%
Maxim	2.0	$^{\mathrm{C}}$	228 (196,261)	$0.4\% \ (0.1,1.0)$	13.8%	$1.2\% \ (0.3, 3.7)$	34.2%
Maxim	2.5	$^{\mathrm{C}}$	313 (273,353)	$0.8\% \ (0.4,1.5)$	11.8%	$1.7\% \ (0.7,4.4)$	27.3%
Sedia	0.5	$^{\mathrm{C}}$	73 (61,85)	0.0% (0.0,0.0)	16.1%	0.5% (0.0,2.0)	63.5%
Sedia	1.0	$^{\mathrm{C}}$	101 (86,120)	0.0% (0.0,0.1)	14.7%	$0.7\% \ (0.1, 2.6)$	58.9%
Sedia	1.5	$^{\mathrm{C}}$	151 (130,174)	0.1% (0.0,0.2)	12.3%	0.8% (0.1,2.8)	42.0%
Sedia	2.0	$^{\mathrm{C}}$	186 (159,215)	0.1% (0.0,0.2)	11.7%	$0.8\% \ (0.1,3.0)$	36.5%
Sedia	2.5	$^{\mathrm{C}}$	272 (234,311)	$0.7\% \ (0.3, 1.3)$	13.1%	$1.5\% \ (0.6,4.1)$	29.9%

 $[\]S$ Scenario $\mathbf{A} :$ South Africa-like epidemic; $\mathbf{B} :$ Kenya-like epidemic; $\mathbf{C} :$ Concentrated epidemic.

 $^{^\}dagger \mathrm{Adjusted}$ for subtype mix and screening as say

 $^{^* \}mathrm{ARV}$ exposure testing classifies all treated subjects as long-term

 $^{^{**}\}mathrm{ARV}$ exposure testing reduces FRR in treated subjects to 10% of FRR without viral load