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Methods 
 

Systems and Molecular Dynamics simulations: 
Folded structures were taken from the Protein Data Bank crystal structures (NTL9 (residues 1 – 
39) PDB ID: 2HBB,1 Protein G (residues 1 - 56) PDB ID: 1PGA2). Almost all molecular dynamics 
simulations were performed using the AMBER 163-4 software package with their custom-designed 
hybrid precision model5 on NVIDIA GPUs (Titan-X and GTX-1080) with a single GPU per WESTPA 
simulation; some NTL9 simulations with γ = 80 ps-1 were run on CPUs. The AMBER force field 
FF14SB6 was used in conjunction with Hawkins, Cramer, Truhlar7-8 pairwise Generalized Born (GB, 
igb=1) implicit solvation model. A single 2 μs MD simulation of folded structures was performed 
to test the stability of NTL9 and Protein G structures in this force field. We also tested other 
solvent model combinations such as FF14SB (igb=2 & 5) and FF99SB (igb = 1, 2 & 5), which were 
found not suitable for these protein folding simulations as shown by a quick unfolding of folded 
structures with these force fields. All simulations were carried out at 300 K temperature, using a 
leapfrog stochastic dynamics integrator. The integration time step was taken to be 2 fs. The 
temperature was controlled using Langevin dynamics, and hydrogen bond length was 
constrained using the SHAKE algorithm. Simulations were performed at two different solvent 
viscosities (γ): a low solvent viscosity (γ = 5 ps-1) and water-like viscosity (γ = 80 ps-1) to test its 
effect on rate estimation.  
 
Starting structures for folding simulations: 
To generate starting structures, we ran unfolding simulations of both NTL9 and Protein G crystal 
structures using the WE method to obtain an ensemble of unfolded structures. The same WE 
parameters were used for both folding and unfolding simulations. Conformations with Cα-RMSD 
equal to or greater than 10 Å (for NTL9) and 12 Å (for Protein G) were considered to be unfolded, 
based on the data in the literature.9-10 We randomly picked an unfolded structure with Cα-RMSD 
~ 10.0 Å (NTL9), and ~ 12.0 Å (Protein G) from an ensemble of WE-unfolded structures to start 
our folding simulations. There can be many unfolded configurations which presents a difficulty 



 S2 

on how to select an ensemble of unfolded structure. The unfolded structures selected here are 
not representative of all unfolded configurations. Rather, the results presented here are to show 
the effectiveness of the WE simulation to study the folding kinetics of both fast and slow folding 
systems.  This work is just a beginning of the study of the estimation of folding rate constants 
using WE simulations. In the future, one can either take several starting structures or run 
independent WE simulations on them or consider starting a WE simulation with an ensemble of 
starting structures.  
 
Weighted Ensemble simulation 
Weighted ensemble simulations were carried out using the WESTPA software package.11 In this 
method, multiple simulations run in parallel in a conformational space systematically divided  
into bins, based on some progress coordinates. Each bin may contain a fixed number (M) of 
trajectories or “walkers” which carry a certain weight. The simulations are periodically stopped, 
and the trajectories are replicated if there are less than M number of trajectories in a bin, 
whereas they are merged if there are greater than M number of trajectories. The total weight of 
the walkers is constant throughout the simulations; trajectory replication and merging are carried 
using statistical resampling, making the method statistically unbiased. Detailed description about 
WE method and WESTPA software can be found elsewhere.11-13  
 

We ran non-equilibrium steady-state WE simulations for all folding data reported, where 
the unfolded and folded states are the initial and target states, respectively.  Details regarding 
state definitions are given below.  In non-equilibrium steady state simulations, once trajectories 
reach the target state, their weight is re-assigned to the initial state. The flux of the trajectories 
reaching the target state allows the estimation of the rate constant k via the Hill relation,14-15  

𝑘 = 	
1

MFPT (Unfolded→Folded)
= Flux (Unfolded →Folded) 

which over time will reach a steady value.  
 
WE Parameters: The folded target states are defined to have a Cα-RMSD of 1 Å (NTL9) and 1.25 
Å (Protein G), respectively, based on the brute force simulations of the folded structures. After 
exploring a variety of WE parameters, a resampling time (τ) of 10 ps, and four trajectories per bin 
were chosen. For NTL9, we ran both one dimensional (1D) and two dimensional (2D) WE 
simulations combined with low viscosity (γ=5 ps-1), and water-like viscosity (γ=80 ps-1). For 
Protein G, only 2D simulations with γ=5 ps-1 were performed. In 1D simulations, Cα-RMSD was 
taken as the progress coordinate, whereas for 2D WE simulations, the number of H-bonds were 
considered as a second progress coordinate in addition to Cα-RMSD. In particular, for NTL9 we 
used as a second coordinate the number of H-bonds formed between any native donor and 
acceptor site; for Protein G, we used the number of native H-bonds formed only in the alpha-
helix region, as this was found to work effectively.  Below, we refer to these simply as ‘native H-
bonds’ for both systems. 
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Except for Figures S7 and S8, in which different WE protocols are compared for the NTL9 
simulations, all results on NTL9 reported in the main text and in this supplement are based on 
the 2D WE simulation with γ=5 ps-1 and the 1D WE simulation with γ=80 ps-1. For all sets of folding 
simulations, multiple independent WE folding simulations were performed starting from the 
same initial unfolded structure and with the same simulation parameters. Rate constants were 
estimated for each independent run by averaging over the last 100 iterations (1 ns) to reduce the 
noise. A summary of WE parameters, the bin mapping, and the computational resources used in 
this study is given below: 
 
 
Table S1: WE Parameters 
 

Resampling time (τ) 10 ps 
Trajectories per bin 4 
Progress coordinates Cα-RMSD (1D), + 

Number of native H-
bonds (2D) 

Folding target Cα-RMSD: 
1 Å (NTL9),  
1.25 Å (Protein G) 
Native H-bonds: 
13 (NTL9), 
10 (Protein G) 

Bin Mapping Rectilinear binmapper 
 
 
Bin Mapping: 
 
NTL9 (1D, Cα-RMSD, Å):  
0.0 - 1.0 (1 bin), 1.0 - 4.4 (35 bins), 4.4 – 6.6 (12 bins), 6.6 – 10.2 (5 bins), 10.2 – inf (1 bin)   
 
NTL9 (2D, Cα-RMSD (Å) + Number of native H-bonds): 
Cα-RMSD (Å): 0.0 - 1.0 (1 bin), 1.0 - 4.4 (35 bins), 4.4 – 6.6 (12 bins), 6.6 –10.2 (5 bins), 10.2 – inf 
(1 bin)   
Number of native H-bonds: 0 – 9 (1 bin), 9 – 13 (5 bins), 13 – inf (1 bin) 

 
Protein G (2D, Cα-RMSD (Å) + Number of native H-bonds): 
Cα-RMSD (Å): 0.00 – 1.25 (1 bin), 1.25 – 4.00 (36 bins), 4.00 – 7.00 (30 bins), 7.00 – 10.0 (15 
bins), 10.0 – 13.0 (6 bins), 13.0 – inf (1 bin) 
Number of native H-bonds: 0 – 5 (1 bin), 5 – 10 (5 bins), 10 – inf (1 bin) 
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Computational Resources: 
 
NTL9 (γ=5ps-1; 10 independent WESTPA simulations on 1 GPU each): 
~22 days per WESTPA simulation 
~24 minutes per iteration 
Total number of iterations per WESTPA simulation: 1,200 
Possible number of trajectories per iteration: 1512 (4 trajectories/bin  x  378 possible 2D-bins)  
Total number of trajectories over all iterations: ~1,200,000 (average WESTPA simulation) 
 
NTL9 (γ=80ps-1; 30 independent WESTPA simulations on 1 GPU or on 48 CPUs each): 
~20 days per WESTPA simulation 
~7 minutes per iteration 
Total number of iterations per WESTPA simulation: 4,500 
Possible number of trajectories per iteration: 216 (4 trajectories/bin  x  54 possible 1D-bins)  
Total number of trajectories over all iterations: ~850,000 (average WESTPA simulation) 
 
Protein G (15 independent WESTPA simulations on 1 GPU each): 
~31 days per WESTPA simulation 
~30 minutes per iteration 
Total number of iterations per WESTPA simulation: 1,500 
Possible number of trajectories per iteration: 2492 (4 trajectories/bin  x  623 possible 2D-bins)  
Total number of trajectories over all iterations: ~1,700,000 (average WESTPA simulation) 
 
 
 
Flux profile calculation 
The profile of the flux, 𝐽, along the Cα-RMSD progress coordinate was calculated from the WE 
simulation data in two steps.  First, inter-bin fluxes are calculated according to  〈𝐽'(〉 = 	 〈𝑤'(〉/	𝜏, 
with 𝑤'(  the weight transitioning from bin 𝑖 to bin 𝑗 in a single iteration and 𝜏 the resampling time 
(10 ps).  Angular brackets indicate time- and ensemble-averages. Second, the net flux at the 𝑖th 
bin along the Cα-RMSD reaction coordinate was calculated from the difference in directional 
fluxes crossing from larger Cα-RMSD to smaller Cα-RMSD, 𝐽' = ∑ (	𝐽(1 − 𝐽1((3',15' ), where 
positive flux is directed towards the folded state and larger indices corresponding to larger RMSD 
values. 
 
 
 
haMSM analysis 
History augmented Markov State Models (haMSMs) were constructed directly from the WE 
simulation trajectories. Each haMSM was clustered using the latest-occurring 100,000 structures 
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from the training period (Table S2).  K-means clustering with a minimum-RMSD metric and all 
protein-atom Cartesian coordinates (rotationally and translationally minimized) was performed 
using the PyEMMA software package.16 While haMSMs trained from steady-state trajectories 
yield mean first-passage times which are independent of the clustering and number of 
microstates,10, 17 we found haMSMs with ~10,000 microstates were able to estimate steady-state 
kinetics from training data in the transient regime.18 Given a set number of desired microstates 
and an initial condition, a k-means clustering is deterministic, but is random given a change in the 
desired number of microstates or initial bin. To quantify uncertainty in the clustering process, we 
therefore used three independent clusterings based on a set of similar numbers of microstates – 
i.e., 9999, 10000, and 10001.   
 
 Construction of the haMSM transition matrix proceeds in a highly similar manner to 
constructing a standard MSM, except via WE weights instead of simple transition counts. The 
mean first-passage times were obtained from the steady state flux of the haMSM transition 
matrix.17 The lag time of the stochastic matrix was the same as the WE integration time, or 10.0 
ps in this case, enabling the use of all of the stored trajectory information from the WE simulation 
to construct the haMSM. Further details can be found elsewhere.18 
 
 Error in WE-haMSM rate estimates was estimated in a manner analogous to the 
procedure for direct WE rate estimates (below), using a Bayesian bootstrapping approach. The 
haMSM flux matrix (transition matrix before row normalization) was calculated separately for 
each WE simulation, and each of the 3 independent clusterings. Bayesian bootstrapping 
(described below) was then performed by randomly weighting and summing together the flux 
matrix from each run, and was then row normalized to construct the bootstrap instance haMSM 
transition matrix and estimate the rate. For each clustering, 250 such Bayesian bootstrap samples 
were constructed, and the resulting 750 rates for each system were used to estimate 95% 
confidence intervals. This bootstrap ensemble contained 250 samples capturing the inter-run 
variability for each clustering, but only 3 clusterings to capture the variability of the clustering 
algorithm. As shown in Table S2, column 4, when equally weighting each WE run, the variability 
in the estimated rate between the clusterings is much less than the total error; thus, we do not 
expect additional clustering calculations to significantly change the measured confidence 
interval. The haMSM training period, estimated rate and confidence interval, and min/max 
estimated rate between the 3 clustering calculations with equally weighted transition 
information between each run, are shown in Table S2. 
 
Table S2: haMSM analysis results 
 

System Training period haMSM folding MFPT MFPT min/max from clustering 
NTL9, γ = 5 ps-1 10-12 ns 2.1 µs [0.78-9.0 µs] 1.2-1.7 µs 
NTL9, γ = 80 ps-1 30-45 ns 0.44 ms [0.17-1.9ms] 0.21-0.34 ms 
Protein G, γ = 5 ps-1 10-15 ns 0.014 s [.0033-.20s] 0.016-0.027 s 
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Statistical analysis 
To assess the uncertainty of a WE-direct folding rate, a Bayesian credibility region19 was 
calculated at each simulation time according to the Bayesian bootstrap procedure outlined by 
Rubin20 and detailed by Mostofian et al.21  The Bayesian bootstrap calculates the likelihood for a 
set of random parameters to describe the observed data based on a multinomial distribution and 
a uniform prior.  For each set of rates, a 1000-fold bootstrap resampling was performed over 
multinomial parameters and the credibility region is reported as the interval that covered 95% of 
the weighted distribution of average rates.  The Bayesian bootstrap is preferred in this study over 
the standard bootstrap method22 which yields lower confidence limits that are systematically and 
significantly low.21  However, it must be noted, that although we derive a nominal 95% credibility 
region for the observed data, this uncertainty interval, regardless of the procedure used, exhibits 
~30% underestimation error and slight overestimation error which is intrinsic to the relatively 
small sample sizes.21 Based on synthetic data resampled from the original data sets,21 we 
conclude that the nominal 95% credibility region should be treated as a ~60% range of 
uncertainty. A larger range is not possible with the given small sample sizes.  We emphasize, 
nevertheless, that possessing >10 truly independent and identically distributed values for a key 
observable is rather unusual and reflects the methodology choice and resource investment.    
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Figure S1: Fluctuations among WE runs.  Evolution of the rate constant with molecular time for 
NTL9 folding using 2D WE method with solvent viscosity (γ) set to 5 ps-1. Rate constants were 
calculated as windowed averages of the previous 1 ns. Color lines represent runs with top three 
highest rate constants and all other simulations are shown in gray.  
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Figure S2: Fluctuations among WE runs.  Evolution of the rate constant with molecular time for 
NTL9 folding using 1D WE method with solvent viscosity (γ) set to 80 ps-1. Rate constants were 
calculated as windowed averages of the previous 1 ns. Color lines represent runs with top five 
highest rate constants and all other simulations are shown in gray.  
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Figure S3: Fluctuations among WE runs.  Evolution of the rate constant with molecular time for 
Protein G folding using 2D WE method with solvent viscosity (γ) set to 5 ps-1. Rate constants were 
calculated as windowed averages of the previous 1 ns. Color lines represent runs with top six 
highest rate constants and all other simulations are shown in gray.  
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Figure S4:  Flux profiles as a function of Cα-RMSD for NTL9 folding using 2D WE method, with 
solvent viscosity (γ) 5 ps-1. The net change of probability, or flux, across a certain Cα-RMSD value 
during the given time range averaged over all 10 independent simulations is plotted as a function 
of that Cα-RMSD value.  The filled left-pointing triangles indicate a flux toward the folded state 
and the empty right-pointing triangles indicate a flux toward the unfolded state.  The 
“backwards” (unfolded-directed) flux values may reflect both noise in the data and that steady 
state has not been fully reached.  We note that the flux profile is a fairly stringent assessment of 
the steady state that has not previously been used to assess WE simulations to our knowledge. 
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Figure S5:  Flux profiles as a function of Cα-RMSD for NTL9 folding using 1D WE method, with 
solvent viscosity (γ) 80 ps-1. The net change of probability, or flux, across a certain Cα-RMSD value 
during the given time range averaged over all 30 independent simulations is plotted as a function 
of that Cα-RMSD value. The filled left-pointing triangles indicate a flux toward the folded state 
and the empty right-pointing triangles indicate a flux toward the unfolded state. The “backwards” 
(unfolded-directed) flux values may reflect both noise in the data and that steady state has not 
been fully reached.  We note that the flux profile is a fairly stringent assessment of the steady 
state that has not previously been used to assess WE simulations to our knowledge 
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Figure S6:  Flux profiles as a function of Cα-RMSD for Protein G folding using 2D WE method, with 
solvent viscosity (γ) 5 ps-1. The net change of probability, or flux, across a certain Cα-RMSD value 
during the given time range averaged over all 15 independent simulations is plotted as a function 
of that Cα-RMSD value. The filled left-pointing triangles indicate a flux toward the folded state 
and the empty right-pointing triangles indicate a flux toward the unfolded state. The “backwards” 
(unfolded-directed) flux values may reflect both noise in the data and that steady state has not 
been fully reached.  We note that the flux profile is a fairly stringent assessment of the steady 
state that has not previously been used to assess WE simulations to our knowledge 
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Figure S7: Comparison of two WE protocols for low-friction NTL9.  Evolution of the average rate 
constant with molecular time for NTL9 folding with solvent viscosity (γ)  set to 5 ps-1 (aggregate 
time = 45 µs (1D, 30 independent simulations), 100 µs (2D, 10 independent simulations)). Rate 
constants were calculated as windowed averages of the previous 1 ns. The red (1D) and blue (2D) 
lines show the 95 % (nominal) Credibility Region (CR) calculated using the Bayesian bootstrap. 
Based on statistical re-analysis of the rate constants at tmol = 12 ns,21 the Bayesian bootstrap tends 
to overestimate the true mean by ~5-8% and underestimates by ~36-39%. 
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Figure S8: Comparison of two WE protocols for high-friction NTL9.  Evolution of the rate constant 
with molecular time for NTL9 folding with solvent viscosity (γ) set to 80 ps-1 (aggregate time = 252 
µs (1D, 30 independent simulations), 200 µs (2D, 10 independent simulations)). Rate constants 
were calculated as windowed averages of the previous 1 ns. The red (1D) and blue (2D) lines 
show the 95% (nominal) Credibility Region (CR) calculated using the Bayesian bootstrap. Based 
on statistical re-analysis of the rate constants at tmol = 45 ns,21 the Bayesian bootstrap 
overestimates the true mean by ~7-8% and underestimates by ~32-36% for 1D and 2D WE 
simulations, respectively. 
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Figure S9:  NTL9 folding events (γ = 5 ps-1): Definitions and durations.  (A) Folding events are 
defined based on Cα-RMSD thresholds, and horizontal arrows indicate three choices examined 
for event definitions: starting at 4 Å (blue), 5 Å (red), and 6 Å (green). For reference, the black 
curve shows the negative logarithm of the weighted Cα-RMSD distribution, which serves as an 
effective non-equilibrium free energy profile of the steady-state folding simulation.  Because of 
the absorbing boundary at Cα-RMSD = 1 Å, probability is extensively depleted from low Cα-RMSD 
values as compared to equilibrium, thus elevating the effective free energy.  (B) An event 
duration is defined as the time span between the time point at which a structure had assumed 
the event starting point, i.e. a Cα-RMSD value of at least 4 Å (blue), 5 Å (red), or 6 Å (green), for 
the last time and the time point at which it reached the target state in that same continuous 
trajectory, weighted by the probability of the simulation when reaching the target state. The 
distributions, with a bin width of 1 ns, are based on ~80,000 events.  
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Figure S10:  NTL9 folding events (γ = 80 ps-1): Definitions and durations.  (A) Folding events are 
defined based on Cα-RMSD thresholds, and horizontal arrows indicate three choices examined 
for event definitions: starting at 4 Å (blue), 5 Å (red), and 6 Å (green). For reference, the black 
curve shows the negative logarithm of the weighted Cα-RMSD distribution, which serves as an 
effective non-equilibrium free energy profile of the steady-state folding simulation.  Because of 
the absorbing boundary at Cα-RMSD = 1 Å, probability is extensively depleted from low Cα-RMSD 
values as compared to equilibrium, thus elevating the effective free energy.  (B) An event 
duration is defined as the time span between the time point at which a structure had assumed 
the event starting point, i.e. a Cα-RMSD value of at least 4 Å (blue), 5 Å (red), or 6 Å (green), for 
the last time and the time point at which it reached the target state in that same continuous 
trajectory, weighted by the probability of the simulation when reaching the target state. The 
distributions, with a bin width of 1 ns, are based on ~65,000 events.  
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Figure S11:  Protein G folding events: Definitions and durations. (A) Folding events are defined 
based on Cα-RMSD thresholds, and horizontal arrows indicate three choices examined for event 
definitions: starting at 6 Å (blue), 8 Å (red), and 10 Å (green). For reference, the black curve shows 
the negative logarithm of the weighted Cα-RMSD distribution, which serves as an effective non-
equilibrium free energy profile of the steady-state folding simulation.  Because of the absorbing 
boundary at Cα-RMSD = 1.25 Å, probability is extensively depleted from low Cα-RMSD values, as 
compared to equilibrium, thus elevating the effective free energy. (B) An event duration is 
defined as the time span between the time point at which a structure had assumed the event 
starting point, i.e. a Cα-RMSD value of at least 6 Å (blue), 8 Å (red), or 10 Å (green), for the last 
time and the time point at which it reached the target state in that same continuous trajectory, 
weighted by the probability of the simulation when reaching the target state. The distributions, 
with a bin width of 1 ns, are based on ~50,000 events.  
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Figure S12: Estimation of approximate melting/folding temperatures. Plotted is the time 
evolution of Cα-RMSD from brute-force simulations of (A) NTL9 and (B) Protein G at temperatures 
≥ 300 K.  The simulations were at least 1 μs long to assess the stability of the proteins at the 
corresponding temperature.  Repeated simulations show that both proteins can more frequently 
unfold and re-fold at 325 K compared to other temperatures. Thus, we roughly estimate Tm ~ 
325 K to be the melting temperature of both proteins, which is somewhat lower than the 
experimental results (355 K for NTL923 and 365 K for Protein G24).  
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Figure S13: Rate constant estimations for NTL9 folding at 300 K (red) and at 325 K (blue) using 2D WE 
method with solvent viscosity (γ) set to 5 ps-1. The lines show the nominal 95% Credibility Region 
(CR) as a function of molecular time from Bayesian bootstrapping based on direct WE rate 
constant estimates, which were windowed averages of the previous 1 ns of molecular time for 
each of the 5 independent simulations. The credibility region is shifted to slightly larger rate 
constants at 325 K compared to 300 K, yet the two profiles are overlapping for the most part.  
This suggests that NTL9 does not fold significantly faster at its melting temperature than it does 
at room temperature.  
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