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Supporting Information Text15

Stochastic Perturbation Theory16

We take the stochastic perturbation approach outlined by Moon and Wettlaufer (1) and Fitzmaurice (2) for non-autonomous17

dynamical systems. We consider a system of the form18

dL

dt
= f(L, t) + σF ξ(t) [1]19

where f(L, t) is the deterministic system dynamics, σF is the amplitude of stochastic forcing, and ξ(t) is a Wiener process20

which is continuous in time, but can be approximated (for our purposes) as white noise when the system is numerically solved21

using the Euler-Maruyama method or similar. We assume the Martingale property wherein discrete increments of process ξ(t)22

are uncorrelated in time.23

The right hand side of equation 1 can be expanded in terms of a small perturbation, `(t), about the solution to the24

deterministic version of the system, Ld(t)25

d`

dt
=
[
ω`+ κ`2 + . . .

]
+ σF ξ(t) [2]26

where ω(t) = df
dL

∣∣∣∣
Ld

and κ(t) = 1
2
d2f
dL2

∣∣∣∣
Ld

are parameters that may be state- and time-dependent, and which define the

leading-order behavior of the system. For equation 1 in the main text, these parameters are given by

ω = λbx
[
Ph−2

g L+ (β − 1) γhβ−2
g

]
+ Ph−1

g [3]

κ = (λbx)2 h−2
g

[
Ph−1

g L+ P (λbx)−1 − 1
2 (β − 1) (β − 2) γhβ−1

g

]
[4]

where hg = −λbg is the grounding line ice thickness, and λ = ρw
ρi

.27

We expand in terms of powers of the noise magnitude σF (where σF << `): ` = `0 + σF `1 + σ2
F
2 `2. The leading order terms28

describe initial perturbation from the deterministic solution of the system, and in general `0 = 0 if the system begins on the29

deterministic trajectory (which we will take to be the case here, which greatly simplifies this analysis). The terms that are30

first-order in σF are31

d`1

dt
= ω(t)`1 + ξ, [5]32

which can be written in the form of the Fokker-Planck equation33

∂ρ

∂t
= −ω(t) + ∂

∂`1
(`1ρ) + 1

2
∂2ρ

∂`2
1
, [6]34

where ρ is the probability density function of the first-order stochastic solution. We solve the Fokker-Planck equation in the35

typical fashion, by taking the Fourier transform in `1, solving the characteristic equation, and then re-inverting the Fourier36

transform. The result is a probability density function with second moment (variance)37

σL(t)2 = σ2
F

∆t e
2ω(t)

∫ t

0
e−2ω(t)ds. [7]38

This is the general nonlinear evolution equation for the spread of the stochastic PDF, which will provide the most accurate39

solution if ω is strongly time-dependent. However, we can solve for an approximate analytic form of the variance by assuming40

constant ω, which gives41

σL(t)2 = σ2
F

2ω∆t
(
e2ωt − 1

)
, [8]42

which works fairly well soon after the onset of the instability and becomes a worse approximation over time (but captures the43

approximate rate of variance growth). Thus, we conclude that variance grows approximately exponentially with rate 2ω.44

We note some features about the variance growth rate, ω (equation 3). The first term, which is typically the larger term45

(though not dominant) is proportional to the bed slope, bx. Thus, the growth rate will generally increase with bx, when it46

is positive (reverse-sloping bed). When bx is sufficiently negative (forward-sloping bed), ω will also be negative, and the47

variance will remain bounded in time (though it won’t necessarily go to zero). If we assume that the grounding line begins at48

a steady-state, then PL = γ(−λbg)β , and we can simplify to ω = Ph−1
g

(
βλbxLh

−1
g + 1

)
. It is important to note here that49 (

βλbxLh
−1
g + 1

)
= ST is the same stability parameter (ST ) which is derived in Robel et al. (2018)(3), and which determines50

whether the slow time scale is stable or not (which is the only time scale in the model defined in equation 1 in the main text).51

Ice sheet geometry also matters in determining this growth rate, though this is, in some sense, fixed by the bed topography.52

Finally, β, the exponent for the grounding line flux also plays a role in determining the growth rate. Generally, the more53

nonlinear the grounding line flux is (e.g. for Coulomb plastic beds near the grounding line (4)), the more rapidly the ensemble54

variance will grow (see Figure S1). This should also be kept in mind when interpreting the results of the ISSM ensemble55

simulations in this study, which assume power-law sliding at the bed.56
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We can follow a similar procedure to solve the Fokker-Planck form of the equation for the terms that are second-order in57

σF : `2. This provides an analytical form of the third moment (skewness) of the probability density function (which was zero58

for the first-order terms):59

SkL = σ2
F

σ3
L∆t

[
−6κS + 6κσ2

LM + σ2
Fκ

3M3] [9]60

where

S(t) = ∆t2

σ4
F

e3ω(t)
∫ t

0
σ4
Le

−3ω(t)ds [10]

M(t) = ∆t
σ2
F

eω(t)
∫ t

0
σ2
Le

−ω(t)ds. [11]

This lengthy approximation is typically dominated by the second term in the minimal grounding line model, allowing us to61

drop the first and third terms to derive an expression for the skewness of the probability density function62

SkL(t) = 6κM(t)σ2
F

σL∆t . [12]63

Again, assuming that ω and κ are constant in time, we can solve the corresponding linear problem to derive a simplified64

approximate analytic form of the skewness65

SkL(t) = 6κσF
[
2ω3∆t

(
e2ωt − 1

)]− 1
2
(
eωt − 1

)2 [13]66

The skewness is also dependent on ω through σL. However, critically, it is also proportional to κ. κ is proportional to67

b2
x meaning that skewness increases rapidly as the bed slope increases in magnitude, This is the case both for reverse- and68

forward-sloping beds, though as we showed above σL will remain sharply bounded for forward-sloping beds, and so will69

skewness. If we again make the assumption that the system begins at a steady-state (PL = γhβg ), then we can simplify the70

terms inside the brackets to: PLh−1
g

[
1 − 1

2 (β − 1) (β − 2)
]

+ P (λbx)−1. This expression is dominated by the first term, in71

which the sign is set by 1 − 1
2 (β − 1) (β − 2). This is a quadratic expression which is positive for 0 < β < 3 and negative for72

β > 3. In asymptotic analyses of the grounding line ice flux (4–6), this exact exponent is the target of considerable analysis. It73

is generally the case that β > 3, and often considerably so. Thus, we may conclude that the skewness of ensemble projections74

will generally be negative during the marine ice sheet instability, corresponding to ensemble projection distributions with a fat75

tail in the direction of more ice loss.76

Figure S1 shows variation in ensemble statistics as a function of changing grounding line flux nonlinearity, β. This plot77

shows that the skewness is zero or positive (towards slower retreat) when β ≤ 3 and that skewness becomes increasingly78

negative as β increases above 3.79

Autocorrelated Forcing. Moon & Wettlaufer (1) invoke the Martingale property to simplify their approach to stochastic80

perturbation analysis, via an appeal to the Fokker-Planck equation (see ??). The Martingale property assumes that the forcing81

is white nose, thus disallowing any autocorrelation in the forcing function. However, in reality, forcing from the ocean and82

atmopshere may be expected to have persistence at time scales longer than the forcing time step.83

We can get a sense for the influence of autocorrelation in the time-dependent forcing function, by following the approach of84

Roe & Baker (7). For a first-order autoregressive discrete forcing process with autocorrelation coefficient r = 1 − ∆t/τF (where85

τF is the decorrelation time scale), they derive a scaling for the expected spread of the prognostic variable (L in our case)86

σL = σr=0
L

[
1 − r2

(1 − r)2

] 1
2

[14]87

where σr=0
L is the ensemble spread for white noise forcing, derived in the section above. Thus, in terms of τF , the ensemble88

spread is89

σL = σr=0
L

[
2 τ

∆t − 1
] 1

2
. [15]90

Strictly speaking, this added factor is derived for a stable auto-regressive model. However, it turns out to match numerically91

calculated values of σL for autocorrelated forcing (see Fig. 2 in the main text) sufficiently close to the initial steady-state92

condition, similarly to the linearized approximations for σr=0
L calculated in section ?? which are good for some time after the93

onset of instability, and degrade after a sufficiently long period of unstable growth of the ensemble spread. However, it does not94

provide an analytical estimate for the skewness in the presence of autocorrelated forcing.95
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Fig. S1. Ensembles of grounding line retreat simulated with minimal prognostic model of grounding line migration (equation 1 in main text). In all simulations: P = 0.35
m/yr, bx = 3 × 10−3. β and γ varied in each row to keep initial value of γhβg constant. (Left-side) Grounding line migration over different bed slopes. Black lines are
50 randomly-chosen ensemble members (out of 10000 used to calculate ensemble statistics). Magenta lines are simulations with η = 0. (Right-side) Ensemble statistics:
standard deviation (blue), skewness (red, with more retreat being negative skew).
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Ocean Model Simulation. The Massachusetts Institute of Technology general circulation model (MITgcm; (8)) was used to96

simulate the evolution of oceanic conditions in the Amundsen Sea over the 1992-2007 period. The simulation includes a97

thermodynamic sea ice model (9) and a representation of ocean induced melting and freezing parameterized as a diffusive flux98

of temperature and salinity (10, 11). The model relies on a global configuration that is part of the Estimating the Circulation99

and Climate of the Ocean, Phase II (ECCO2) project (12, 13). The model domain covers the Amundsen Sea Embayment,100

from Abbott to Getz ice shelves, and extends at least 100 km beyond the outer edge of the continental shelf, similar to the101

configuration in Seroussi et al. (14). The model grid is extracted from the 18 km Cube Sphere of Menemenlis et al. (12),102

downscaled to a 2 km horizontal grid spacing, and includes 46 uneven vertical levels, which constrains the time steps to 115103

s. The initial and boundary conditions are interpolated from the ECCO2 integration (15), and the atmospheric forcing is104

constrained with the Japan Meteorological Agency and Central Research Institute of Electric Power Industry 25 year reanalysis105

(16) over the 1992-2007 period. A constant turbulent exchange and friction velocity coefficients is applied for the exchange of106

fresh water and heat at the ice shelf base (17), similar to Dinniman et al. (18), and Schodlok et al. (19, 20). Ice shelf cavities107

do not evolve during the simulation as the objective of this simulation is to assess the variability in oceanic conditions in ice108

shelf cavities, independently of changes happening over the ice sheet.109

The dominant time scale of variability in the ocean model simulation is almost exactly one year, likely due to the dominance110

of the annual cycle in the forcing. Longer time scales are not present due to the absence of ocean-atmosphere coupling which111

tends to produce low-frequency modes of variability in fully coupled climate models in this region (21). We show the ensemble112

statistics for Thwaites Glacier with ocean forcing persistent at τF = 13 months in supplemental Fig. 2. The interannual113

standard deviation of the maximum melt rate at depth is σM = 1.4 m/yr. However, it should be noted that calculations of114

standard deviation from time series depend on the time step under consideration. The inter-monthly standard deviation is 5115

m/yr.116

Ice Sheet System Model (ISSM) Configuration117

ISSM is a finite element software package which is used to solve the two-dimensional shelfy-stream approximation for this118

study (22). It is publicly available for download from: https://issm.jpl.nasa.gov/. The model solves for ice velocity, surface and119

base elevation, and grounding line position at each time step. In our simulations, basal friction follows a linear viscous law and120

ice rigidity is a function of ice temperature, both are inverted on the basis of modern velocities (23) using data assimilation121

(24). Ice temperature, basal friction and basin boundaries (covering the Thwaites Glacier catchment) are held fixed throughout122

the simulation to reduce computational load and facilitate the large ensemble simulations. The horizontal resolution is 1 km123

over the entire catchment basin. Grounding line position is determined by a floatation criterion: ice is floating if its thickness is124

smaller than the floatation height and grounded otherwise. A minimum ice thickness is imposed to be 1 m everywhere, which125

contributes negligibly to buttressing. We use a subelement parameterization in order to accurately capture the position of126

the grounding line and integrate basal friction accurately over the grounded part of the domain(25). Sub-ice shelf basal melt127

follows a simple function of depth: M(z) = Mmax −Mmax(zmax − z), where Mmax is the maximum melt rate that occurs at a128

depth zmax. Melt is applied only to elements which are completely floating, which produces slower, but more rapidly-converged129

(to a benchmark solution) retreat rates (26). Two week time steps are used for all simulations, though perturbations in Mmax130

are varied every month and renormalized to ensure that the standard deviation of monthly Mmax is always 5 m/yr, regardless131

of the long-term persistence. Bedrock elevation and initial surface elevation for the ice streams and ice shelves are derived132

from a combination of Bedmap2 (27) and a mass conservation method (28). Surface mass balance and surface temperatures133

averaged over the 1979-2010 period from RACMO2 (29) are applied at the surface of the domain, and the geothermal flux used134

to compute the ice steady state temperature comes from Shapiro and Ritzwoller (30). Surface mass balance is held constant135

during all simulations.136

Extended Results of ISSM Ensembles137

In this section, we provide full diagnostic results for each ISSM ensemble of Thwaites Glacier simulation in the same format as138

Figure 3 in the main text. Each of these plots corresponds to one of the lines in Figure 4 of the main text, exploring how139

ensemble statistics change as a function of forcing persistence and uncertainty in the time-average forcing.140
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Fig. S2. Evolution of a 500-member ensemble of Ice Sheet System Model (ISSM) simulations of Thwaites glacier evolution over 500 years (where year zero in model time is the
modern glacier state) in response to interannual variability (τF = 1.1 yr) and constant average in maximum sub-ice shelf melt rate. (a) Evolution of ensemble probability
distribution function (PDF) over time, plotted every 25 years, with probability on y-axis and Thwaites Glacier ice volume (in cm sea level equivalent; SLE) on x-axis. (b) Black
lines are simulated ice volume contained in Thwaites Glacier catchment in cm SLE for all ensemble members. (c) Black dots are evolving grounding line migration rates for all
ensemble members (based on the centroid of the 2D grounding line). (d) Snapshots (red, orange and pink lines) of grounding line positions at year 635 in model time, from 5th
percentile, 50th percentile and 95th percentile ice volume ensemble members.
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Fig. S3. Evolution of a 500-member ensemble of Ice Sheet System Model (ISSM) simulations of Thwaites glacier evolution over 500 years (where year zero in model time is
the modern glacier state) in response to decadal variability (τF = 10 yr) and constant average in maximum sub-ice shelf melt rate. (a) Evolution of ensemble probability
distribution function (PDF) over time, plotted every 25 years, with probability on y-axis and Thwaites Glacier ice volume (in cm sea level equivalent; SLE) on x-axis. (b) Black
lines are simulated ice volume contained in Thwaites Glacier catchment in cm SLE for all ensemble members. (c) Black dots are evolving grounding line migration rates for all
ensemble members (based on the centroid of the 2D grounding line). (d) Snapshots (red, orange and pink lines) of grounding line positions at year 635 in model time, from 5th
percentile, 50th percentile and 95th percentile ice volume ensemble members.
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Fig. S4. Evolution of a 500-member ensemble of Ice Sheet System Model (ISSM) simulations of Thwaites glacier evolution over 500 years (where year zero in model time is the
modern glacier state) in response to multidecadal variability (τF = 30 yr) and constant average in maximum sub-ice shelf melt rate. (a) Evolution of ensemble probability
distribution function (PDF) over time, plotted every 25 years, with probability on y-axis and Thwaites Glacier ice volume (in cm sea level equivalent; SLE) on x-axis. (b) Black
lines are simulated ice volume contained in Thwaites Glacier catchment in cm SLE for all ensemble members. (c) Black dots are evolving grounding line migration rates for all
ensemble members (based on the centroid of the 2D grounding line). (d) Snapshots (red, orange and pink lines) of grounding line positions at year 635 in model time, from 5th
percentile, 50th percentile and 95th percentile ice volume ensemble members.

8 of 10 Alexander A. Robel, Helene Seroussi, Gerard H. Roe



Fig. S5. Evolution of a 500-member ensemble of Ice Sheet System Model (ISSM) simulations of Thwaites glacier evolution over 500 years (where year zero in model time is
the modern glacier state) in response to ocean forcing that is constant in time, but drawn from a Gaussian distribution for each individual ensemble member (mean 90 m/yr,
standard deviation 5 m/yr). (a) Evolution of ensemble probability distribution function (PDF) over time, plotted every 25 years, with probability on y-axis and Thwaites Glacier ice
volume (in cm sea level equivalent; SLE) on x-axis. (b) Black lines are simulated ice volume contained in Thwaites Glacier catchment in cm SLE for all ensemble members. (c)
Black dots are evolving grounding line migration rates for all ensemble members (based on the centroid of the 2D grounding line). (d) Snapshots (red, orange and pink lines) of
grounding line positions at year 635 in model time, from 5th percentile, 50th percentile and 95th percentile ice volume ensemble members.

Animations of ISSM Thwaites Glacier ensembles141

Movie S1. Evolution of a 500-member ensemble of Ice Sheet System Model (ISSM) simulations of Thwaites142

glacier evolution over 500 years (where year zero in model time is the modern glacier state) in response to143

interannual variability (τF = 1.1 yr) and constant average in maximum sub-ice shelf melt rate. Top left panel144

shows maximum melt rate (Mmax) for a sample of 20 ensemble members. Top right panels shows evolving145

grounding line position for a sample of 20 ensemble members. Bottom panel shows the evolving probability146

distribution calculated from all ensemble members.147

Movie S2. Evolution of a 500-member ensemble of Ice Sheet System Model (ISSM) simulations of Thwaites148

glacier evolution over 500 years (where year zero in model time is the modern glacier state) in response to149

interdecadal variability (τF = 10 yr) and constant average in maximum sub-ice shelf melt rate. Top left panel150

shows maximum melt rate (Mmax) for a sample of 20 ensemble members. Top right panels shows evolving151

grounding line position for a sample of 20 ensemble members. Bottom panel shows the evolving probability152

distribution calculated from all ensemble members.153

Movie S3. Evolution of a 500-member ensemble of Ice Sheet System Model (ISSM) simulations of Thwaites154

glacier evolution over 500 years (where year zero in model time is the modern glacier state) in response to155

multidecadal variability (τF = 30 yr) and constant average in maximum sub-ice shelf melt rate. Top left panel156

shows maximum melt rate (Mmax) for a sample of 20 ensemble members. Top right panels shows evolving157

grounding line position for a sample of 20 ensemble members. Bottom panel shows the evolving probability158

distribution calculated from all ensemble members.159

Movie S4. Evolution of a 500-member ensemble of Ice Sheet System Model (ISSM) simulations of Thwaites160

glacier evolution over 500 years (where year zero in model time is the modern glacier state) in response to161

ocean forcing that is constant in time, but drawn from a Gaussian distribution for each individual ensemble162

member (mean 90 m/yr, standard deviation 5 m/yr). Top left panel shows maximum melt rate (Mmax) for a163

sample of 20 ensemble members. Top right panels shows evolving grounding line position for a sample of 20164
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ensemble members. Bottom panel shows the evolving probability distribution calculated from all ensemble165

members.166
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