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1. The Level-Set Method for Minimizing the VISM Solvation Free-Energy Functional
We consider the solvation of solute molecules with all the solute atoms located at r1, . . . , rN in an aqueous solvent. A
solute-solvent interface Γ is a closed surface that encloses all the solute atoms but no solvent molecules. The interior
and exterior of such a surface Γ, denoted by Ωm and Ωw, are termed the solute and solvent regions, respectively. In
the variational implicit-solvent model (VISM), we minimize the solvation free-energy functional (cf. Eq. [2] in the
main text) (1, 2)

G[Γ] = ∆P vol (Ωm) + γ0

∫
Γ
(1− 2τH) dS + ρ0

N∑
i=1

∫
Ωw

Ui(|r− ri|) dV +Ge[Γ] [1]

among all the solute-solvent interfaces Γ. The parameters ∆P , γ0, τ , and ρ0 are the difference of pressures across Γ,
the surface tension constant for a planar solute-solvent interface, the curvature correction coefficient (i.e., the Tolman
length), and the bulk solvent density, respectively. In Eq. [1], H is the local mean curvature and each Ui is a 12-6
Lennard-Jones (LJ) potential with parameters σi and εi. We shall set the electrostatic part Ge[Γ] = 0 in this study.
But we will make a remark at the end of this section on the full VISM with the electrostatics. We call a solute-solvent
interface a VISM surface if it minimizes (locally) the VISM functional Eq. [1], i.e., if it is a stable equilibrium. A
VISM surface is dry, representing a dry hydration state, if it loosely wraps up all the solute atoms with enough space
for a few solvent molecules, or wet, representing a wet hydration state, if it tightly wraps up all the solute atoms
without extra space for a solvent molecule.

We have designed and implemented a robust level-set method to numerically minimize the VISM solvation free-
energy functional Eq. [1] in the three-dimensional setting (3–8). Beginning with an initial solute-solvent interface that
may have a large value of solvation free energy, our level-set method moves the interface in the direction of steepest
descent of the VISM solvation free energy step by step until a VISM surface is reached. The (normal component of
the) boundary force that moves the interface is given by the negative first variation, Fn = −δΓG[Γ], of the VISM
solvation free-energy functional Eq. [1] (with Ge[Γ] = 0) (3, 7):

Fn(r) = −∆P − 2γ0[H(r)− τK(r)] + ρ0

N∑
i=1

Ui(|r− ri|) ∀r ∈ Γ, [2]

where K(r) is the Gaussian curvature at r. As our level-set method is an optimization method of the steepest descent
type, different initial interfaces are relaxed to different VISM surfaces, often representing different hydrations states.
We often use the following two types of initial interfaces: a tight wrap that is a surface of the union of van der Waals
(vdW) spheres centered at solute atoms with reduced radii; and a loose wrap that is a large surface loosely enclosing
all the solute atoms.

To apply the level-set method (9–11) to minimizing the functional Eq. [1], we represent a solute-solvent interface Γ
as the zero level set (i.e., level surface) of a function φ = φ(r) (called a level-set function), i.e., Γ = {r : φ(r) = 0}.
We keep a level-set function to be negative and positive inside and outside the interface Γ, respectively. The unit
normal n pointing from the solute to solvent region, the mean curvature H, and the Gaussian curvature K at a point
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r on the interface can be readily expressed as n = ∇φ/|∇φ|, H = (1/2)∇ · n, and K = n · adj (∇2φ)n, respectively.
Here, ∇2φ is the Hessian matrix of the function φ with entries being the second order partial derivatives ∂2

ijφ of the
level-set function φ, and adj

(
∇2φ

)
is the adjoint matrix of the Hessian ∇2φ. The motion of the interface Γ = Γ(t),

where t denotes the relaxation time, is then tracked by locating the level set of the corresponding level-set function
φ = φ(r, t) that solves the so-called level-set equation

∂tφ+ Fn|∇φ| = 0, [3]

where the boundary force Fn, given in Eq. [2], is extended to the entire computational box or a band centered around
the interface Γ. We start from an initial level-set function φ0 at t = 0 and solve the equation by iteration in time until
a steady-state solution is reached. To avoid the gradient ∇φ being too small which can lead to numerical instability
in locating the interface, we reinitialize the level-set function φ every few time steps in iteration. The reinitialization
is done by solving

∂tφ+ sign (φ0)(|∇φ| − 1) = 0, [4]

where φ0 is the level-set function before reinitialization, sign (φ0) is the sign of φ0, and the time t can be different
from that in the original level-set equation [3]. See (3, 5–7) for more details.

We remark that the electrostatic part of the solvation free energy, Ge[Γ], can be included as the Coulomb-
field approximation (CFA) (12, 13) or the dielectric-boundary Poisson–Boltzmann (PB) electrostatic free energy
(14–16). The CFA does not include the ionic effect but is efficient as it requires no numerical solution of partial
differential equations. The PB free energy is determined by the electrostatic potential that is the unique solution
to a boundary-value problem of the dielectric-boundary PB equation. Explicit formula of the (normal component
of the) dielectric-boundary force, defined as the negative variation −δΓGe[Γ], has been obtained (17–19). We have
implemented both CFA and PB electrostatics; cf. (6–8).

2. The Level-Set Implementation of the VISM-String Method
Let us fix all the solute atoms ri (i = 1, . . . , N) and consider two different VISM surfaces Γ0 and Γ1, represented by
two level-set functions φ0 and φ1, respectively. We use the string method (20–22) to find minimum energy paths
(MEPs) that connect these two states. A string or path here is a family of solute-solvent interfaces {Γα}α∈[0,1], or
their corresponding level-set functions {φα}α∈[0,1], that connect the two states Γ0 and Γ1, or their level-set functions
φ0 and φ1. A MEP here is a string that is orthogonal to the level surfaces of the VISM solvation free-energy functional.
In the level-set formulation, a MEP can be obtained by solving for a steady-state solution of the equation for the
level-set function φα = φα(x, t)

∂tφα = −Fn(φα)|∇φα|+ λα
∂αφα
‖∂αφα‖

for each α ∈ (0, 1),

together with a given initial string {φ(0)
α }α∈[0,1] that connects φ0 and φ1, Here, the normal component of the boundary

force Fn(φα) = −δΓG[Γα] (with φα being a zero level-set of Γα) is given in Eq. [2], ∂αφα/‖∂αφα‖ is the unit vector
tangential to the string, the constant λα is a Lagrange multiplier for enforcing particular parameterization (e.g., equal
arc-length or energy weighted arc-length parameterization) of the string, and ‖ · ‖ denotes the L2(Ω)-norm.

Let us focus now on the model ligand-pocket system (cf. Fig. 1 in the main text) with a fixed reaction coordinate
z. We implement a simplified version of the string method (21) to numerically find a MEP connecting two hydration
states Γ0 and Γ1, with their level-set functions φ0 and φ1, respectively. To do so, we select some integer M ≥ 2 and
discretize the parameter α ∈ [0, 1] by 0 = α0 < α1 < · · · < αM < αM+1 = 1, and consider the corresponding level-set
functions φαj

(j = 0, 1, . . . ,M + 1) that represent some solute-solvent interfaces. Each φαj
is called an image. These

images are discrete points of a string or path connecting φ0 and φ1. They are updated iteratively to reach a stable
steady state, representing a MEP. We set the initial images for the iteration to be

φ(0)
αj

= φ0 + αj(φ1 − φ0) (j = 1, . . . ,M). [5]

Each iteration is a two-step process: relaxation and redistribution. Suppose we know all the interior images φ(k)
αj

(j = 1, . . . ,M) after the kth iteration. In the first step, we solve the level-set equation [3] for each j (1 ≤ j ≤ M)
with the initial function φ(k)

αj but only for one time step, followed by the reinitialization (cf. Eq. [4]), and obtain a
solution φ∗αj

. These images φ∗αj
(j = 1, . . . ,M) should make the new string “closer” to being normal to the free-energy

level surfaces, but may also cluster around the two states φ0 and φ1, as they are local minimizers of the VISM
solvation free-energy functional. In the second step, we redistribute these intermediate images by linear interpolation
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to generate new and well-separated images φ(k+1)
αj . More precisely, we set s0 = 0 and sj = sj−1 + ‖φ∗αj

− φ∗αj−1
‖

(j = 1, . . . ,M + 1), where φ∗α0
= φ0 and φ∗αM+1

= φ1. We also set α∗j = sj/sM (j = 0, 1, . . . ,M + 1). For each j
(1 ≤ j ≤M), we find the unique i (1 ≤ i ≤M + 1) that depends on j such that α∗i−1 ≤ αj < α∗i . We then calculate
φ

(k+1)
αj by the linear interpolation

φ(k+1)
αj

= φ∗αi−1
+
αj − α∗i−1
α∗i − α∗i−1

(φ∗αi
− φ∗αi−1

). [6]

Once the iteration converges to a MEP, we find an interior image that has the largest VISM solvation free energy
among all the images, and identify it as a saddle point. Note that different initial images may lead to different MEPs;
cf. Fig. 3 in the main text.

Algorithm of a Simplified String Method.

Step 1. Input all the parameters ∆P , γ0, τ , ρ0, and ri, σi, and εi for all i = 1, . . . , N . Input the level-set functions
φ0 and φ1 for the two states. Input M , the number of (interior) images in the string, the parameters αj
(j = 0, 1, . . . ,M + 1) for the string images, and the initial (interior) image level-set functions φ(0)

j (j = 1, . . . ,M);
cf. Eq. [5]. Input the time step ∆t. Set the iteration counter k = 0.

Step 2. Given the interior images φ(k)
αj (j = 1, . . . ,M). For each j (1 ≤ j ≤M), solve the level-set equation [3] using

the initial solution φ
(k)
αj for one time step to obtain the image φ̄αj . Compute the image φ∗αj

by solving the
reinitialization equation [4] with φ̄αj as the initial solution.

Step 3. Compute the arc lengths s0 = 0 and sj = sj−1 + ‖φ∗αj
− φ∗αj−1

‖ (j = 1, . . . ,M + 1) and the parameters
α∗j = sj/sM (j = 0, 1, . . . ,M + 1). Generate the images φ(k+1)

αj (j = 1, . . . ,M) by Eq. [6].
Step 4. Check the stopping criteria. If failed, set k := k + 1 and go to Step 2.

To find possible multiple MEPs connecting the two states φ0 and φ1, we can alternatively apply the climbing
string method (23) to first find saddle points near φ0. In implementation, we fix the first image φ0 but allow the last
image to climb uphill in the direction tangental to the string. The string converges when the last image approaches a
saddle point close to the starting state φ0. Usually, we use more images close to the last one to more efficiently find a
saddle point. Once a saddle point is found, we then relax it to a level-set function representing a VISM surface. If
this function is φ1, then we can use the simplified string method described above, in which we keep the saddle point
as an image during the iteration, to find an MEP that connects these two states φ0 and φ1, and that passes through
the found saddle point. Otherwise, we start over with different initial images. Since we usually have at most three
significant hydration states for each reaction coordinate, we can efficiently find multiple MEPs (if exist) connecting
these states.

Algorithm of a Climbing String Method.

Step 1. Input all the parameters ∆P , γ0, τ , ρ0, and ri, σi, and εi for all i = 1, . . . , N . Input a level-set function φ0
for a VISM surface. Input M , with M + 2 the number of images in the string, the parameters {αj}M+1

j=0 for the
string images with 0 = α0 < α1 < · · · < αM+1 < 1, and the initial image level-set functions {φ(0)

αj }M+1
j=1 . Input

the time step ∆t. Set the iteration counter k = 0.
Step 2. Given the images φ(k)

αj (j = 1, . . . ,M + 1). For each j (1 ≤ j ≤M + 1), solve the level-set equation [3] using
the initial solution φ(k)

αj for one time step to obtain an image φ̄j . Solve the reinitialization equation [4] using the
initial solution φ̄j for one time step to obtain an image φ∗j .

Step 3. Update the last image

φ(k+1)
αM+1

= φ∗M+1 − 2〈φ∗M+1 − φ(k)
αM+1

, τ̂M+1〉τ̂M+1 with τ̂M+1 =
φ

(k)
αM+1 − φ

(k)
αM

‖φ(k)
αM+1 − φ

(k)
αM ‖

,

where 〈·, ·〉 denotes the L2(Ω)-inner product.
Step 4. Compute the arc lengths s0 = 0 and sj = sj−1 + ‖φ∗αj

− φ∗αj−1
‖ (j = 1, . . . ,M + 1), and set α∗j = sj/sM

(j = 0, 1, . . . ,M + 1). Update the other images to obtain φ(k+1)
αj (j = 1, . . . ,M) by Eq. [6].

Step 5. Check the stopping criteria. If failed, set k := k + 1 and go to Step 2.
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3. Algorithms for Brownian Dynamics Simulations of the Ligand Stochastic Motion

In the absence of the pocket dry-wet fluctuations, the random position z = z(t) (also denoted zt) can be determined
by the standard Brownian dynamics (BD) simulations that solve numerically the stochastic differential equation

dzt =
[
− 1
kBT

D(zt)V ′(zt) +D′(zt)
]
dt+

√
2D(zt) dξt, [7]

together with a given initial position z(0), where V (z) is the equilibrium potential of mean force (PMF) (defined in
Eq. [1] and plotted in Fig. 2 (B), both in the main text), ξt is the standard Brownian motion, and a prime stands
for derivative. The effective and position-dependent diffusion coefficient D = D(z) is a smooth interpolation of the
diffusion constants Din and Dout for the ligand inside and outside the pocket, respectively. It is given by

D(z) = Din +Dout

2 − Din −Dout

2 tanh [ν (z − zc)] , [8]

where ν > 0 is a parameter that controls the width of the transition from Din to Dout and zc is a threshold reaction
coordinate distinguishing the ligand being inside or outside the pocket. Solutions to Eq. [7] are constrained by
z(t) ∈ [zL, zR] for all t for some boundaries zL and zR, with zL close to the pocket and zR far away from the pocket,
respectively. For the binding simulation (i.e., the simulation of a binding process), we reset the value of z(t) to be
2zR − z(t) if z(t) ≥ zR, and we stop the simulation if z(t) ≤ zL. For the unbinding simulation (i.e., the simulation of
an unbinding process), we reset the value of z(t) to be zL if z(t) ≤ zL, and we stop the simulation if z(t) ≥ zR.

Algorithm for BD Simulations without the Dry-Wet Fluctuations.

Step 1. Input the diffusion constants Din and Dout, the controlling parameter ν, the threshold position zc, the total
PMF V (z), an initial ligand position zinit, and the simulation time step δt. Set Time = 0, z(0) = zinit, and
k = 0.

Step 2. Given a ligand position z(k). Calculate z(k+1) by

z(k+1) − z(k) = −
[

1
kBT

D(z(k))V ′(z(k)) +D′(z(k))
]
δt+

√
2D(z(k))δt ξ,

where ξ is a random number with the standard normal distribution.
Step 3. Set Time := Time +δt.

(a) For binding simulations: If z(k+1) ≥ zR, set z(k+1) := 2zR − z(k+1); If z(k+1) ≤ zL, then stop.
(b) For unbinding simulations: If z(k+1) ≤ zL, set z(k+1) := zL; If z(k+1) ≥ zR, then stop.

Step 4. Set k := k + 1 and go to Step 2.

To study the effect of dry-wet fluctuations on the kinetics of ligand-pocket binding/unbinding, let us define a
position-dependent, three-state, random variable η = η(z) ∈ {0, 1, 2} by η(z) = 0, 1, or 2, if the hydration state of the
system at a given reaction coordinate z is 1s-dry, 2s-dry, or 2s-wet, respectively. The (discrete) probability density of
η(z) is defined by the equilibrium probabilities P eq

i (z) (i = 0, 1, 2):

Prob ({η(z) = i}) = P eq
i (z) = e−G[Γi(z)]/kBT∑2

j=0 e
−G[Γj(z)]/kBT

, i = 0, 1, 2,

where G[Γi(z)] is the VISM solvation free energy at the ith hydration state represented by the VISM surface Γi(z), and
the sum runs over all the hydration states, at the given reaction coordinate z. To account for the fluctuations among
the three states at each reaction coordinate, we further define a potential Vfluc = Vfluc(η, z) by Vfluc(η, z) = Vi(z)
if η = i for i ∈ {0, 1, 2}, where the potential functional Vi(z), defined in Eq. [3] in the main text, is the sum of
the solvation free energy of the ith hydration state and the ligand-pocket vdW interaction energy at the reaction
coordinate z. If at a given coordinate z, there is only one or two hydration states, then we set Vi(z) = 0 for the other
states i.

We perform our continuous-time Markov chain (CTMC) BD simulations, i.e., numerically solve the following
stochastic differential equation for the ligand position z = z(t) = zt (same as that in the CTMC BD simulations part
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of section Theory and Methods in the main text):

dzt =
[
− 1
kBT

D(zt)
∂Vfluc(η(zt), zt)

∂z
+D′(zt)

]
dt+

√
2D(zt) dξt,

η(zt) ∈ {0, 1, 2} is a CTMC with the transition rate matrix− [R01(zt) +R02(zt)] R01(zt) R02(zt)
R10(zt) − [R10(zt) +R12(zt)] R12(zt)
R20(zt) R21(zt) − [R20(zt) +R21(zt)]

 ,

[9]

together with a given initial position z0 = zinit. Here, the partial derivative of Vfluc is with respect to its second
variable, ξt is the standard Brownian motion, and the rates of transitions Rij(z) from the ith state to the jth state
for all i, j = 0, 1, 2 are defined in Theory and Methods in the main text. Solutions to Eq. [9] are constrained by
z(t) ∈ [zL, zR] for all t for some boundaries zL and zR. Again, for a binding simulation, we reset the value of z(t) to
be 2zR − z(t) if z(t) ≥ zR, and we stop the simulation if z(t) ≤ zL. For an unbinding simulation, we reset the value of
z(t) to be zL if z(t) ≤ zL, and we stop the simulation if z(t) ≥ zR.

Algorithm for CTMC BD Simulations.
Step 1. Input the diffusion constants Din and Dout, the controlling parameter ν, the threshold position zc, the

potential functions V0(z), V1(z), and V2(z), an initial position zinit, and the simulation time step δt. Initialize
the hydration state η(zinit) according to the probabilities P eq

i (zinit) (i = 0, 1, 2). Set Time = 0, z(0) = zinit, and
k = 0.

Step 2. Given a ligand position z(k). Calculate z(k+1) by

z(k+1) − z(k) = −
[

1
kBT

D(z(k))V ′i (z(k)) +D′(z(k))
]
δt+

√
2D(z(k))δt ξ if η(z(k)) = i,

where ξ is a random number with the standard normal distribution.
Step 3. Update the hydration state η. If z(k+1) ≤ zc, set η = 0; else, determine η as follows:

For η = i, if e−δt
∑

j 6=i
Rij(z(k+1)) ≥ ζ, keep η = i,; otherwise, determine the transition from state i to state

j according to the probability Rij/
∑
k 6=iRik (i 6= j), where ζ is a random number uniformly distributed

between 0 and 1.
Step 4. Set Time := Time +δt.

(a) For binding simulations: If z(k+1) ≥ zR, set z(k+1) := 2zR − z(k+1); If z(k+1) ≤ zL, then stop.
(b) For unbinding simulations: If z(k+1) ≤ zL, set z(k+1) := zL; If z(k+1) ≥ zR, then stop.

Step 5. Set k := k + 1 and go to Step 2.

4. Generalized Fokker–Planck Equations and the Mean First-Passage Time

Let us denote by P̄ (z, t) the probability density of the ligand random position z = z(t) ∈ [zL, zR] in the absence of
pocket dry-wet fluctuations. It is determined by the following Fokker–Planck equation (FPE) that is associated with
the stochastic differential equation [7]:

∂P̄

∂t
= ∂

∂z

{
D(z)

[
∂P̄

∂z
+ 1
kBT

V ′(z)P̄
]}

, [10]

where V = V (z) is the equilibrium PMF defined in Eq. [1] in the main text. The initial condition for this equation is
P̄ (z, 0) = P̄ (0)(z) for some P̄ (0)(z) and the boundary conditions are designed separately for the simulation of binding
and that of unbinding:

P̄ (zL, t) = 0 and ∂P̄ (zR, t)
∂z

= 0 for binding,

∂P̄ (zL, t)
∂z

+ 1
kBT

V ′(zL)P̄ (zL, t) = 0 and P̄ (zR, t) = 0 for unbinding.
[11]

The mean first-passage time (MFPT) of binding/unbinding is given by

τMFPT(zinit) =
∫ ∞

0

∫ zR

zL

P̄ (z, t) dz dt,
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where zinit is the initial ligand position, or equivalently, the initial value of P̄ is given by P̄ (z, 0) = δ(z − zinit), the
Dirac mass concentrated at zinit. Integrating both sides of Eq. [10] with respect to time, we arrive at

− P̄ init(z, zinit) = d

dz

{
D(z)

[
dP̄ I(z)
dz

+ 1
kBT

P̄ I(z)V ′(z)
]}

, [12]

where P̄ init(z, zinit) = δ(z − zinit) is the initial probability density, and

P̄ I(z) =
∫ ∞

0
P̄ (z, t)dt.

The solution to Eq. [12] can be obtained by integrating the equation twice with the boundary conditions Eq. [11]. For
instance, the unbinding MFPT of a ligand starting at zinit without solvent fluctuations is given by

τMFPT(zinit) =
∫ zR

zL

P̄ I(z)dz

=
∫ zR

zinit

eβV (z)

D(z) dz
∫ zinit

zL

e−βV (z)dz +
∫ zR

zinit

e−βV (z)

[∫ zR

z

eβV (z′)

D(z′) dz
′

]
dz,

where β = 1/(kBT ). To get an explicit analytical solution for the MFPT of the binding, we make an assumption that
V ′(zR) = 0, which is often true when zR is far from the pocket. Under such an assumption, the binding MFPT of a
ligand starting at zinit without solvent fluctuations is obtained analogously:

τMFPT(zinit) =
∫ zR

zL

P̄ I(z)dz

=
∫ zinit

zL

eβV (z)

D(z) dz
∫ zR

zinit

e−βV (z)dz +
∫ zinit

zL

e−βV (z)

[∫ z

zL

eβV (z′)

D(z′) dz
′

]
dz.

We now consider the MFPT with dry-wet fluctuations (or the solvent fluctuations). We solve the following system
of generalized FPEs for the probability densities, P0(z, t), P1(z, t), and P2(z, t), for the probabilities of finding the
ligand at location z at time t with the system being in the states of 1s-dry, 2s-dry, and 2s-wet, respectively (24):

∂Pi
∂t

= ∂

∂z

{
D(z)

[
∂Pi
∂z

+ 1
kBT

V ′i (z)Pi
]}

+
∑

0≤j≤2, j 6=i
Rji(z)Pj −

 ∑
0≤j≤2, j 6=i

Rij(z)

Pi for i = 0, 1, 2. [13]

This is the same equation as in section Theory and Methods in the main text.
These equations correspond to the stochastic differential equation [9] for our CTMC BD simulations. They are

solved with some initial values and also for zL < z < zR, with the boundary conditions

Pi(zL, t) = 0 and ∂Pi(zR, t)
∂z

= 0 for binding,

∂Pi(zL, t)
∂z

+ 1
kBT

V ′(zL)Pi(zL, t) = 0 and Pi(zR, t) = 0 for unbinding,

where i = 0, 1, 2.
To calculate the MFPT for the ligand-pocket binding/unbinding starting from zinit, we let

P init
i (z, zinit) = P eq

i (zinit)δ(z − zinit)

be the initial probability densities for Pi with i = 0, 1, 2. Integrating both sides of the Eq. [13] with respect to time,
we have

−P init
i (z, zinit) = d

dz

{
D(z)

[
dP Ii (z)
dz

+ 1
kBT

P Ii (z)V ′i (z)
]}

+
∑
j 6=i

Rji(z)P Ij −

∑
j 6=i

Rij(z)

P Ii ,

where
P Ii (z) =

∫ ∞
0

Pi(z, t) dt. for i = 0, 1, 2.
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With certain boundary conditions, the boundary-value problem can be solved with the finite difference method. The
MFPT is then given by

τMFPT(zinit) =
2∑
i=0

∫ zR

zL

P Ii (z)dz.

This can be calculated with numerical integration.

5. Parameters

We list the values and units of all the parameters in our computations. These are the same as those described in the
main text.

Symbol Description Units Value
T Temperature Kelvin 298
∆P Pressure difference (cf. Eq. [1]) a bar 0
γ0 surface tension for a planar interface (cf. Eq. [1]) kBT/Å2 0.143
τ Tolman length (cf. Eq. [1]) Å 0.8
ρ0 bulk solvent (i.e., water) density (cf. Eq. [1]) Å−3 0.033
σwater LJ length parameter for a solvent molecule b Å 3.154
σwall LJ length parameter for a wall particle b Å 4.152
σligand LJ length parameter for the ligand b Å 3.73
εwater LJ energy parameter for a solvent molecule b kBT 0.26
εwall LJ energy parameter for a wall particle b kBT 9.67E-4
εligand LJ energy parameter for the ligand b kBT 0.5
M Number of (interior) images of a string No units 10
zc The coordinate of the pocket entrance Å −0.5
zL Smallest value of the reaction coordinate c Å −4
zR Largest value of the reaction coordinate c Å 15.5
R0 Prefactor of transition rates d ps−1 0.13
Din Diffusion constant inside the pocket (cf. Eq. [8]) e Å2/ps 1
Dout Diffusion constant outside the pocket (cf. Eq. [8]) f Å2/ps 0.26
ν The control parameter in D (cf. Eq. [8]) 1/Å 5

Table S1. Parameters.

a The term ∆P vol (Ωm) is very small compared with the other terms in Eq. [1].
b The values are taken from (25, 26). We use the Lorentz–Berthelot mixing rules to determine the LJ parameters
for the interaction of two particles.

c These values can vary.
d R0 is estimated from the relaxation timescale (Rdw +Rwd)−1 ≈ 10 ps of water fluctuations in the pocket when
the ligand is far away (27), where Rdw = R0e

−Bdw/kBT and Rwz = R0e
−Bwd/kBT with Bdw and Bwd the barriers

in the pocket dry-wet and wet-dry transitions when the ligand is far away; cf. section Theory and Methods in
the main text.

e This is a trial value. See subsection B in section 6. Additional Simulation Results.
f The value is taken from (27).

6. Additional Simulation Results

A. Minimum Energy Paths for z = 2 Å and z = 10 Å. At the reaction coordinate z = 2 Å, there are two hydration
states: 2s-wet and 1s-dry, and only one MEP is found to connect these two states. Fig. S1 shows this MEP, together
with the solute-solvent interfacial structures of the two hydration states (marked (I) and (III), respectively) and the
only transition state (marked (II)). Note that the 1s-dry has a lower solvation free energy.
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Fig. S1. The MEP connecting the only hydration states of 2s-wet (marked (I)) and 1s-dry (marked (III)) when the ligand is placed at z = 2 Å. The solute-solvent interfaces of
these hydration states, and the transition state (marked (II)) are also shown. The energy barrier in the dewetting transition from 2s-wet to 1s-dry is 2.73 kBT .

Fig. S2 shows the MEP connecting the only hydration states 2s-wet and 2s-dry for the reaction coordinate z = 10
Å. The calculated activation energy barrier is about 0.68 kBT . In contrast to the dewetting energy barrier (0.70 kBT )
for z = 6 Å (cf. Fig. 3 in the main text), one finds that the presence of the ligand with a smaller ligand-pocket
distance increases the dewetting energy barrier of the hydrophobic pocket. This is because that, when the ligand
is close, part of the solvent region with the attractive solute-solvent vdW interaction is lost in such a dewetting
transition. From an explicit-solvent point of view, the water molecules in the hydration shell of the methane particle
hinders the evaporation of water molecules from the pocket.
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Fig. S2. The MEP connecting the hydration states 2s-wet and 2s-dry with the ligand is placed at z = 10 Å. The energy barrier in the dewetting transition from 2s-wet to
2s-dry is 0.68 kBT . The solute-solvent interfaces of the hydration states 2s-wet (marked (I)) and 2s-dry (marked (III)), and that of the transition state (marked (II)) are also
shown.

B. Effect of Din. We choose two very different values of the diffusion constant Din = 1 Å2
/ps and Din = 1, 000 Å2

/ps,
and hence determine two, effective and position-dependent diffusion coefficient D(z) by Eq. [8]. With these diffusion
coefficients, we solve numerically Eq. [10], and Eqs [13], and then calculate the MFPT for the binding and unbinding
process. Fig. S3 shows that the large difference in the diffusion constant Din does not affect the MFPT with or
without the dry-wet fluctuations.
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Fig. S3. The FPE calculations of the binding and unbinding MFPT of the ligand starting at z with two different values of the diffusion coefficient Din for the ligand inside the
pocket. SolFlt stands for the solvent fluctuations, i.e., the pocket dry-wet fluctuations.

C. Evolution of Probability Density of Ligand Position. To further understand the effect of solvent fluctuations, we
investigate the decay rate of the probability densities P̄ (z, t) and Ptot(z, t) =

∑2
i=0 Pi(z, t) in binding and unbinding

processes Here, P̄ (z, t) is the probability density for the ligand random position z(t) in the absence of dry-wet
fluctuations (cf. Eq. [10]), and each Pi(z, t) (i = 0, 1, or 2) is the probability density for the ligand random position
z(t) with the system being at the ith hydration state (cf. Eq. [13]). Fig. S4 displays the evolution of the probability
densities normalized by the initial value at the positions z = 6 and z = −2 in binding and unbinding simulations,
respectively. In the binding processes, the normalized probability density decays slower when solvent fluctuations are
included, because the pocket fluctuates between dry and wet states and the PMF of the wet branch is repulsive. On
the contrary, the normalized probability density decays faster in unbinding processes, and hence a shorter residence
time when solvent fluctuations are included. This is again due to the repulsive PMF of the wet branch. The pocket
fluctuates to the wet state when the unbinding ligand approaches the entrance of the pocket.

Time (ps)
0 10 20 30 40 50 60 70

0

0.025

0.05

0.075

0.1

P̄ (z = 6, t)/P̄ (z = 6, t = 0)
Binding No SolFlt
Ptot(z = 6, t)/Ptot(z = 6, t = 0)
Binding With SolFlt

Time (ns)
0 20 40 60 80 100 120 140 160 180

0

0.025

0.05

0.075

0.1

P̄ (z = −2, t)/P̄ (z = −2, t = 0)
Unbinding No SolFlt
Ptot(z = −2, t)/Ptot(z = −2, t = 0)
Unbinding With SolFlt

Fig. S4. Evolution of probability densities, P̄ (z, t) (cf. Eq. [10]) and Ptot(z, t) = P0(z, t) + P1(z, t) + P2(z, t) (cf. Eq. [13]) normalized by the initial values at z = 6
(left) and z = −2 (right) in the binding and unbinding simulations with and without solvent fluctuations. SolFlt stands for the solvent fluctuations, i.e., the pocket dry-wet
fluctuations.
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D. Sensitivity of R0. We now discuss the effect of R0 on the binding and unbinding kinetics. Fig. S5 presents the
MFPT of the binding and unbinding of ligand against the starting position zinit = z with different values of R0. We
see that the results predicted by the CTMC BD simulations and FPE calculations agree with each other perfectly.
As R0 decreases, both binding and unbinding MFPTs increase. With a smaller R0, the dewetting transition rate
decreases and the ligand stays in the branch of 2s-wet for longer time in binding processes. This explains the longer
binding MFPT with a smaller R0. For unbinding, a smaller R0 leads to a smaller wetting transition rate, restraining
the transition starting from the 1s-dry state whose PMF is attractive. This explains the increasing unbinding MFPT
with a decreasing value of R0.
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Fig. S5. The MFPT for the binding (left) and the unbinding of ligand that starts from zinit = z, predicted by the CTMC BD simulations and FPE calculations with different
values of R0.
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