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Supporting Information Text

Derivation of the synaptic integration current. In the main text, we have demonstrated that the point neuron model without
the synaptic integration current (Eqs. 1 and 2 in the main text) does not suffice to characterize the somatic voltage dynamics
of a spatial neuron with dendrites. In addition, using both electrophysiological experiments and realistic neuron simulations,
we have obtained a novel synaptic integration current form being capable of characterizing the synaptic current arriving at the
soma when the spatial neuron receives synaptic inputs on its dendrites. A bilinear conductance relation is further obtained in
experiments and realistic neuron simulations. Here we theoretically explain the origin of the synaptic integration current by
performing the static two-port analysis.1, 2, 3 When a neuron receives static synaptic inputs, the electrical circuit representation
of the neuron and the corresponding variables used in our analysis are shown in Fig. S0 below.
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Fig. S0. Schematic diagram of the electrical circuit representation of a neuron when (a) an individual E input is received on the dendrite, (b) an individual I input is received

on the dendrite, and (c) a pair of E and I inputs are received on the dendrite. The dashed grey boxes indicate the effective inputs received at the soma mapped from the local

inputs on the dendrite (see text for details).

When a spatial neuron receives an excitatory (E) input on the dendrite, the local synaptic current on the dendrite Id
E can

be characterized by Ohm’s law,
Id

E = gd
E(εE − V d

E), [1]

where gd
E is the local E conductance on the dendrite, εE is the E reversal potential, and V d

E is the local membrane potential
on the dendrite. Here the superscript “d” emphasizes the quantities on the dendrite.

Based on Ohm’s law, the local membrane potential V d
E can be computed by

V d
E = KEEId

E , [2]

where KEE is the resistance at the E synapse. Therefore, combining Eqs. 1-2, the local membrane potential V d
E is expressed

as

V d
E = gd

EKEEεE

1 + gd
EKEE

. [3]
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Similarly, the excitatory postsynaptic potential (EPSP) V s
E measured at the soma in response to the excitatory synaptic

current Id
E on the dendrite can be computed by

V s
E = KESId

E , [4]

where KES is the transfer resistance between the E synapse and the soma. The combination of Eqs. 1-4 yields the somatic
membrane potential in response to the E input on the dendrite,

V s
E = gd

EKESεE

1 + gd
EKEE

. [5]

Now if we denote the synaptic current arriving at the soma as Is
E that is induced by the synaptic current Id

E (Eq. 1) from the
dendrite, then based on Ohm’s law, the synaptic current at the soma can be derived as

Is
E = V s

E

KSS
, [6]

where KSS is the resistance at the soma, the superscript “s” emphasizes the quantities at the soma.

If we further denote the E conductance measured at the soma as gs
E , then gs

E shall also obey Ohm’s law

gs
E = Is

E

εE − V s
E

, [7]

From Eqs. 5-7, we can obtain an expression for the E conductance gs
E at the soma,

gs
E = gd

EKES

KSS

[
1 + gd

E(KEE − KES)
] [8]

Similarly, when a spatial neuron receives an inhibitory (I) input on its dendrites, the somatic membrane potential in response
to the I input on the dendrite and the I conductance gs

I measured at the soma can be derived as

V s
I = gd

I KISεI

1 + gd
I KII

, [9]

gs
I = gd

I KIS

KSS

[
1 + gd

I (KII − KIS)
] , [10]

where gd
I is the local I conductance on the dendrite, KIS is the transfer resistance between the I synaptic site and the soma,

and KII and KSS are the resistances at the I synapse and the soma, respectively.

If we measure the E and I conductances gs
E and gs

I at the soma, from Eqs. 8 and 10, we are able to infer the local E and I
conductances on the dendrite gd

E and gd
I as

gd
E = gs

EKSS

KES − gs
EKSS(KEE − KES) , [11]

gd
I = gs

IKSS

KIS − gs
IKSS(KII − KIS) . [12]

Now given a pair of E and I synaptic inputs on the dendrites of the spatial neuron with the same input locations and strengths
as given separately, by Ohm’s law, we have the local E and I synaptic currents on the dendrite

Id
E = gd

E(εE − V d
E), [13]

Id
I = gd

I (εI − V d
I ). [14]

In Eqs. 13-14, the local membrane potentials measured at the E synapse V d
E and at the I synapse V d

I can be obtained as
follows,

V d
E = KEEId

E + KIEId
I , [15]

V d
I = KEIId

E + KIIId
I . [16]

By solving Eqs. 13-16, we can obtain the local synaptic currents on the dendrite as

Id
E = gd

EεE + gd
Egd

I (KIIεE − KEIεI)
1 + gd

EKEE + gd
I KII + gd

Egd
I (KEEKII − K2

EI)
, [17]

Id
I = gd

I εI + gd
Egd

I (KEEεI − KEIεE)
1 + gd

EKEE + gd
I KII + gd

Egd
I (KEEKII − K2

EI)
. [18]
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By Ohm’s law together with the local synaptic current expressions (17-18), we can further solve the membrane potential at
the soma as

V s
SUM = KESId

E + KISId
I [19]

=
gd

EKESεE + gd
I KISεI + gd

Egd
I

[
εE(KIIKES − KISKEI) + εI(KEEKIS − KESKEI)

]
1 + gd

EKEE + gd
I KII + gd

Egd
I (KEEKII − K2

EI)
,

V s
SUM has been referred to as the summed somatic potential (SSP) in the main text.

On the one hand, by using the SSP expression (19), we can obtain the summed somatic current (SSC) denoted as Is
SUM =

V s
SUM /KSS ; on the other hand, by using Eqs. 8, 10 and 19, we can reconstruct the EPSC and IPSC at the soma as

Is
E = gs

E(εE − V s
SUM ) and Is

I = gs
I(εI − V s

SUM ), respectively.

Through calculations, we can show that the SSC is not equal to the linear summation of the EPSC and the IPSC. The
difference between them, i.e., the synaptic integration current, can be expressed as

∆Isyn = Is
SUM − Is

E − Is
I

= gd
Egd

I (A + gd
EB + gd

I C + gd
Egd

I D)
KSS

[
1 + gd

E(KEE − KES)
][

1 + gd
I (KII − KIS)

][
1 + gd

EKEE + gd
I KII + gd

Egd
I (KEEKII − K2

EI)
]

where

A = εEKIS(KES − KEI) + εIKES(KIS − KEI),
B = εE

[
KESKIS(KEE − KES) + KEI(KEIKES − KEEKIS)

]
+ εIKEEKES(KIS − KEI),

C = εI

[
KESKIS(KII − KIS) + KEI(KEIKIS − KIIKES)

]
+ εEKIIKIS(KES − KEI),

D = εE

[
K2

EIKES(KII − KIS) + KEEKIIKIS(KES − KEI) + KESKIS(KEIKIS − KESKII)
]

+ εI

[
K2

EIKIS(KEE − KES) + KEEKIIKES(KIS − KEI) + KESKIS(KEIKES − KISKEE)
]
.

We note that, the synaptic integration current ∆Isyn vanishes when the E and I inputs are given at the soma, where A =
B = C = D = 0. To the leading order of the input conductances, the synaptic integration current ∆Isyn is proportional to
the multiplication of the E and I conductances on the dendrite,

∆Isyn = A

KSS
gd

Egd
I + o(gd

Egd
I ). [20]

If we further cast the synaptic integration current ∆Isyn in the form of Ohm’s law, i.e., ∆Isyn = ∆g(εE − V s
SUM ), then we

have

∆g = ∆Isyn

εE − V s
SUM

[21]

= A

εEKSS
gd

Egd
I + o(gd

Egd
I )

= AKSS

εEKESKIS
gs

Egs
I + o(gs

Egs
I)

The second equality in Eq. 21 holds by viewing the ratio V s
SUM /εE as a small variable and performing Taylor expansion to

the first order. the The last equality in Eq. 21 holds because of Eqs. 11-12. We thus have explained the bilinear conductance
relation observed in both the electrophysiological experiments and the realistic neuron simulations, i.e.,

∆g = αEIgs
Egs

I , [22]

where the integration coefficient αEI can be explicitly expressed as

αEI ≈ KSS

(
1 − KEI

KES

)
+ KSS

εI

εE

(
1 − KEI

KIS

)
. [23]

From the above expression (23), the integration coefficient αEI vanishes when the E and I inputs are given at the soma. On
account of the fact that εE is almost one order of magnitude larger than εI , the expression for the coefficient could be further
simplified as

αEI ≈ KSS

(
1 − KEI

KES

)
.

Note that when the synaptic integration current is cast in the form of Ohm’s law, the reversal potential is set to be the
excitatory reversal potential εE . In fact, there is a degree of freedom for choosing the value of the reversal potential ε within
the regime in which the ratio V s

SUM /ε is much smaller than unity in order to make the Taylor expansion in Eq. 21 accurate.
Correspondingly, the value of the integration coefficient αEI depends on the choice of the reversal potential. However, we
stress that the bilinear relation of the conductances (22) remains valid when choosing a different reversal potential value.
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Spatial dependence of the integration coefficients. Note that the transfer function KEI decreases as the distance between the
E and I input locations increases, and KES decreases as the distance between the E input location and the soma increases.
Therefore, in general, αEI is large negative for E and I inputs spatially close to each other at distal dendrite and it is less
negative for E and I inputs spatially separated away from each other at proximal dendrite. In particular, when the I input
location is fixed on the dendritic trunk and the E input location is between the soma and the I input location, as the distance
between the E input location and the soma increases, KEI in the numerator increases while KES in the denominator decreases,
hence the decrease of αEI ; when the E input location is further away from the soma than the I input location, as the distance
between the E input location and the soma increases, both KEI in the numerator and KES in the denominator decreases,
hence αEI remains almost constant. This explains the spatially asymmetric dependence of αEI as observed in the realistic
neuron simulation in the main text. In addition, in general, a neuron receives E inputs at distal dendrites while receives I
inputs at proximal dendrites. In such a case, KEI > KES . Therefore, αEI is mostly negative.

Similarly, for a pair of inputs of the same type, we can also derive the bilinear form of the integration conductance as

∆g = αQ1Q2 gs
Q1 gs

Q2 ,

where Q = E, I represents the input type, and the integration coefficient αQ1Q2 can be expressed as

αQ1Q2 ≈
KSS

[
KQ2S(KQ1S−KQ1Q2 )+KQ1S(KQ2S−KQ1Q2 )

]
KQ1SKQ2S

= KSS

(
2 − KQ1Q2

KQ1S
− KQ1Q2

KQ2S

)
, [24]

from which we can see that αQ1Q2 is smaller for both inputs spatially close to each other at distal dendrite than those spatially
separated away from each other at proximal dendrite. In particular, when the input location of Q1 is fixed at the dendritic
trunk while the input location of Q2 is between the soma and that of Q1, as the distance between the location of Q2 and the
soma increases, KQ1Q2 increases but KQ2S decreases, hence the decrease of αQ1Q2 ; when the input location of Q2 is further
away from the soma than that of Q1, as the distance between the location of Q2 and the soma increases, both KQ1Q2 and
KQ2S decreases, which results in the decrease of the term KQ1Q2

KQ1S
and almost no change of the term KQ1Q2

KQ2S
, hence the increase

of αQ1Q2 . This explains the spatially symmetric dependence of αEE and αII as observed in the realistic neuron simulation in
the main text.

Bilinear dendritic integration rule. Previous experiments2, 4 showed that when a neuron receives a pair of E and I inputs, the
SSP denoted by VS can be well characterized by the following bilinear integration rule,

V s
SUM = V s

E + V s
I + kEIV s

EV s
I

where V s
E and V s

I denote the somatic EPSP and IPSP induced by the E and I inputs given alone respectively, and kEI is the
shunting coefficient independent of input strengths but dependent of input time and locations.

The above rule can be captured in the point neuron model by incorporating the synaptic integration current, and there is a
one-to-one mapping between the shunting coefficient and the integration coefficient that can be derived in the following. Using
the approximations of EPSP, IPSP, and SSP (Eqs. 5, 9 and 19), we can obtain the expression of the shunting coefficient kEI

kEI = V s
SUM − V s

E − V s
I

V s
EV s

I

≈ − KIE

KISεE
− KEI

KESεI
. [25]

This explains the experimental observation that the SSP follows a bilinear integration rule with the shunting coefficient being
independent of synaptic input strengths but dependent of the synaptic input locations. From Eqs. 23 and 25, we can directly
obtain the one-to-one linear mapping between the integration coefficient and the shunting coefficient,

αEI ≈ KSSεI

(
εE + εI

εEεI
+ kEI

)
Therefore, the shunting coefficient kEI exhibits the same spatially asymmetric feature as the integration coefficient αEI as
explained from our two-port analysis in the above.

Direction selectivity. Here we illustrate the capability of direction selectivity5, 6 of our point neuron model as discussed in the
main text. For the sake of illustration, we consider the idealized case that the decay time constant of the membrane potential
is extremely fast. In this case, on the one hand, if multiple E synaptic inputs are received by the neuron at different times, the
last pair of E inputs will dominantly contribute to the somatic membrane potential at the time right after the last E input is
received, because the membrane potential change induced by all the previous inputs decays rapidly. On the other hand, as an
E input moves away from the soma towards the distal dendrite, KES becomes smaller. According to Eq. 24, αEE in the point
neuron model is larger negative for a pair of E inputs located at distal dendrite than that at proximal dendrite. Therefore,
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the sequential activation of synaptic inputs in the direction from distal to proximal dendrites (whose effect will be dominated
by the last pair of inputs at proximal dendrite with a small negative coefficient) gives rise to larger somatic response than the
sequential activation of synaptic inputs in the reversed direction (whose effect will be dominated by the last pair of inputs
at distal dendrite with a large negative coefficient). This enables the point neuron to perform the computation of direction
selectivity.

Coincidence detection. Here we illustrate the capability of coincidence detection7 of our point neuron model as discussed in
the main text. For the sake of illustration, we consider the idealized case that a spatial neuron has two identical dendritic
branches connecting to its soma. On the one hand, we have KE1S = KE2S and a large KE1E2 when two E inputs are received
at the same location on a branch; on the other hand, we have KE1S = KE2S and a small KE1E2 when two E inputs are
received on two different branches with equal distance to the soma. Therefore, from Eq. 24, αEE in our point neuron model
is large negative for two E inputs received on the same branch from one ear and it is nearly positive for two E inputs received
on two separate branches from both ears. Therefore, the neuron’s membrane potential may stay below the firing threshold
when receiving two E inputs on the same branch, while it may cross the firing threshold when receiving two E inputs on two
separate branches. This enables the point neuron to perform coincidence detection of inputs from both ears.
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Fig. S1. The validity of the bilinear relation between ∆g and the multiplication of gE and gI for different choice of reversal potential values ε in the synaptic integration

current ∆Isyn = ∆g(ε − V ). The same data set is used here as that in Fig. 2c in the main text. The value of the reversal potential ranges from 0 mV to −100 mV. The

corresponding integration coefficient value αEI is specified within each figure panel with the unit of kΩ · cm2.
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coefficient as a function of the time difference between the two inputs. All the data are measured at the peak time of an E conductance (for the EI and EE cases) or the peak

time of an I conductance (for the II case).
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other E(I) input scattered on the dendrites. d-f, the same as a-c except that one input is fixed at a dendritic branch rather than at the dendritic trunk.
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Fig. S4. The issue of conductance measurement based on the assumption of linear summation of E and I synaptic currents. a, the recording configuration when the realistic

neuron model receives a pair of E and I inputs. A voltage clamp is made at the soma. Somatic voltage is clamped from −60 mV to −100 mV with a decrement of −10 mV

when both the E and I inputs are given simultaneously at the dendritic trunk 350 µm and 280 µm away from the soma. The arrows indicate the locations of the E and I inputs.

b, the recovered E conductance (dash red) and I conductance (dash blue) based on the form of linear summation of E and I synaptic currents when a pair of transient E and

I inputs are given simultaneously at the locations indicated in a. The reference E conductance (solid red) and I conductance (solid blue) are calculated from the point neuron

model when the E or I input is given separately in the realistic neuron model. c, the same as b except that the neuron receives two spike trains as the inputs. The input times

at each location are uniformly distributed from 0 ms to 1000 ms. The rate of the E input is 400 Hz and that of the I input is 100 Hz at each input location.
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Fig. S5. The sparsity of the integration coefficient matrices. a, the measured integration coefficient matrices for −αEI , −αEE , and −αII . An element in each matrix

corresponds to an integration coefficient measured in the realistic neuron model given a pair of inputs at its dendritic arbor in stratum radiatum. The labels of the x-axis and

the y-axis of each matrix are the ID number of the dendritic compartment in the model. In general, two compartments are physically close to each other if their ID numbers

are close, and one compartment is further away from the soma than another compartment if its ID number is larger than that of another compartment. b, the same as a

except that the minus of the coefficients below a threshold in each matrix are set to be zero. The thresholds are determined as that the integration coefficient is significantly

nonzero such that the bilinear integration of synaptic currents only leads to a change of SSP greater than 5%, given an EPSP of 4 mV and an IPSP of −1 mV. The value of

the threshold is 3.13 kΩ · cm2 for the E-I case, 16.72 kΩ · cm2 for the E-E case, and 9.89 kΩ · cm2 for the I-I case. The percentage of nonzero coefficients in each matrix

is 15.33% for the E-I case, 7.39% for the E-E case, and 4.67% for the I-I case, which is sparse.
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