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Supplementary Information Text 

1. Cell lines and experimental methods. 
 

1.1. LUHMES culture and differentiation. 

Proliferating LUHMES cells were cultured on Nunc plasticware coated with 40 µg/ml Poly-L-

ornithine (Sigma-Aldrich; P-3655-100mg) and 1µg/ml Fibronectin (Sigma-Aldrich; F-1141-

5mg) in medium for proliferating cells: Advanced DMEM (Life Technologies; 12634-010) plus 

N2 supplement (Life Technologies; 17502-048), 2mM L-Glutamine (Sigma-Aldrich; G7513), 

and 40 µg/ml bFGF (R&D Systems; 4114-TC-1 mg). For differentiation, LUHMES cells were 

seeded on 40 µg/ml Poly-L-Ornithine and 1 µg/ml Fibronectin coated plastic-ware at a density 

of 3-4 x 104 cells/cm2 in medium for proliferating cells. Next day after seeding, the medium 

was changed to the differentiation medium containing Advanced DMEM, 2mM L-Glutamine, 

N2 supplement, 1mM cAMP (Sigma-Aldrich; D0627), 1µg/ml Tetracycline (Sigma-Aldrich; T-

7660) and 2 ng/ml GDNF (R&D Systems; 212-GD-50 µg). Two days later, cells were 

trypsinized and seeded at a density of 1.1x105 cells/cm2 in the differentiation medium for the 

final differentiation (Fig. S1A). 

1.2. Lentiviral particle preparation and LUHMES infection.  

Lentiviruses were produced in HEK293FT cells (Life Technologies; R700-07) by retrograde 

transfection of vectors: 7.5 µg pLKO.1; 4.6 µg psPax2; 2.8 µg pMD2G using Lipofectamine 

2000 (Life Technologies; 11668027). For one transfection, plasmids in appropriate ratios were 

added to 1.5 ml OptiMEM (Life Technologies; 31985062) and 36 µl of Lipofectamine 2000 was 

mixed with 1.5 ml of OptiMEM. Both solutions were combined and incubated for 20 min at 

room temperature. Meanwhile, HEK293FT cells were trypsinised and concentration-adjusted 

to 1.2x106/ml. 5 ml of cell suspension was added to a 10 cm dish; the transfection mix was 

then added and the culture was left overnight. Cells were left for 72 hours, after which the 

supernatant was collected, and viral particles were precipitated using a PEG Virus 

Precipitation kit (BioVision) following the manufacturer’s protocol. Viruses were aliquoted and 

either used directly or frozen at -80 ºC. LUHMES cells were infected with lentiviral particles 

overnight. The next day, cells were selected with 0.5 µg/ml Puromycin (Life Technologies; 

A11138-03), and concentration of antibiotic was reduced the following day to 0.25 µg/ml. The 

population of resistant cells was either analysed as a pool or FACS-sorted into a 96-well plate 

in order to isolate single clones.  
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1.3. Western blot, qPCR, immunofluorescence, live cell imaging. 

For protein quantification, cells were either lysed to give a whole cell extract or only nuclei 

were isolated, depending on the location protein of interest. To obtain whole cell extracts, cells 

were homogenized in the NE1 buffer (20 mM HEPES pH 7.9, 10 mM KCl, 1 mM MgCl2, 0.5 

mM DTT, 0.1% Triton X, 20% glycerol, 2mM PMSF, protease inhibitor) and treated with 

Benzonase (Sigma) for 15 min at RT to remove DNA. Protein concentration was measured 

(Bradford, Bio-Rad) and loading buffer (5x, 250 mM Tris·HCl pH 6.8, 10% SDS, 30% [v/v] 

Glycerol, 10 mM DTT, 0.05% [w/v] Bromophenol Blue) was added. Samples were boiled for 5 

min prior to loading 40 µg of protein extract onto a polyacrylamide gel. 

To prepare nuclei, cells were lysed in hypotonic buffer (0.32 M Sucrose, 10 mM Tris-HCl pH 

8, 3 mM CaCl2, 2 mM MgOAc, 0.1 mM EDTA, 0.5% NP-40). Nuclei were washed with NP-40-

free buffer, counted, centrifuged, and resuspended in an appropriate volume of 20% glycerol 

in PBS. Nuclei were treated with Benzonase, loading buffer was added and samples were 

boiled for 5 min. Nuclear lysates (1.6x105 per lane) were separated on the gradient 4-15% 

SDS-PAGE gels (Mini-Protean, Bio-Rad) in running buffer (25 mM Tris, 190 mM glycine, 0.1% 

SDS) at 200 V for ~40 min alongside a protein size marker (PageRuler, Thermo Scientific). 

Proteins were transferred onto a Nitrocellulose membrane using wet transfer method for 1 

hour at 200 V. The membrane was stained first with Ponceau S solution for quality check and 

then treated with blocking buffer (PBS, 1% PVP, 1% non-fat dried milk, 0.1% Tween 20, 0.01% 

NaN3) for 30 min at RT. The membrane was incubated for 1 hour with primary antibodies (see 

Table S3) at room temperature and then 1 hour with secondary antibodies conjugated with 

either IRDye 700DX or IRDye 800CW (LI-COR). The membrane was washed with PBS 

containing 0.1% Tween 20 after adding each antibody and was imaged using Odyssey CLx 

(LI-COR). 

For qPCR analysis, total RNA was isolated using RNeasy kit (Qiagen) and treated with DNase 

I (DNA free kit, Ambion) to remove genomic DNA. The efficiency of removal of genomic DNA 

in the samples was tested by performing PCR using primers against the GAPDH genomic 

locus. Synthesis of cDNA was performed using qScript cDNA Supermix (Quanta Biosciences) 

from 1 µg of total RNA according to the manufacturer’s protocol. cDNA was diluted 100x and 

2.5 µl aliquots subjected to qPCR with SensiMix SYBR & Fluorescein Mastermix (Bioline) and 

appropriate primers (see Table S4) on a LightCycler 480 (Roche). 

For immunofluorescence analysis, cells were seeded on coverslips and either fixed the next 

day for undifferentiated LUHMES cells or differentiated for defined time points and then fixed 

with 4% formaldehyde for 10 min at room temperature. Cells were permeabilised with 0.2% 

Triton X in PBS for 10 min and blocked with 10% fetal bovine serum in PBS for 30 min at RT. 
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Primary antibody (Table S3) incubation was performed in 1% FBS, 0.1% Tween 20 in PBS for 

1 hour at RT and coverslips were washed three times with 0.1% Tween 20 in PBS. Secondary 

antibodies (Alexa Fluor 488, Alexa Fluor 555, Alexa Fluor 647, Thermo Scientific) were diluted 

1000x in 1% FBS, 0.1% Tween 20 in PBS and applied for 1 hour at RT. Finally, cells were 

washed three times with 0.1% Tween 20 in PBS, stained with 5000-fold diluted DAPI in PBS 

for 10 min at RT, mounted using Prolong Gold or Diamond (Thermo Scientific) and dried 

overnight at RT. Cells were imaged on the Leica TCS Sp5 confocal microscope (Leica 

Microsystems) using either 40x or 63x oil immersion objectives. Image analysis was performed 

using Volocity (PerkinElmer). Live cell imaging of differentiating neurons was performed using 

the IncuCyte Zoom system (Essen BioScience) and neurite lengths were analysed using 

NeuroTrack package from the IncuCyte software.  

1.4. Preparation of total DNA for HPLC.  

Cells were washed in PBS, lysed in lysis buffer (10 mM Tris HCl [pH 7.4], 50 mM NaCl, 0.5% 

SDS, 100 mM EDTA, 300 μg/ml proteinase K) and incubated at 50°C for 2 hours. Total nucleic 

acid was recovered from the completely lysed sample by ethanol precipitation in 2 volumes of 

100% ethanol at room temperature (for 30 minutes), and pelleted by centrifugation. The pellet 

was washed once in 2 volumes of 70% ethanol, and the nucleic acid pellet was resuspended 

in hydrolysis buffer containing 1x DNase I buffer (NEB), 1mM zinc sulphate, DNase I (NEB) 

and Nuclease P1 (Sigma). After 4 hours, the sample was mixed thoroughly and digested for 

a further 8 hours. After 12 hours at 37°C, the sample was heated to 92°C for 3 minutes and 

cooled on ice. Two volumes of 30 mM sodium acetate, 1 mM zinc sulphate [pH 5.2], Nuclease 

P1 were added, and nucleic acids were digested to deoxyribonucleotide and ribonucleotide 5’ 

monophosphates by incubating for 24 hours at 37°C.  

1.5. HPLC quantification of nucleotide content. 

HPLC was performed on the 5 m Apex ODS C18 column, with isocratic 50 mM ammonium 

phospate (monobasic) mobile phase. UV absorbance was recorded at 276 nm (dCMP, elution 

time 9.4 minutes), 282 nm (5mdCMP, elution time 17 minutes), 268 nm (dTMP, elution time 

21.9 minutes), 260 nm AMP and dAMP (elution times 27 minutes and 62.47 minutes) and 254 

nm (GMP and dGMP, elution times 11.1 minutes and 29.7 minutes). Extinction coefficients 

used in nucleotide quantifications were dCMP, 8.86 x 103; 5mdCMP 9.0 x 103; dTMP, 

dGMP/GMP 12.16 x 103; dAMP/AMP 15.04 x 103. Relative amounts of all nucleotides were 

calculated from the area under each peak (Chromeleon software) using the respective 

extinction coefficients. 

1.6. Methylation-dependent repression assay. 
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Repression assay was performed using Dual Luciferase assay kit (Promega) according to 

manufacturer’s protocol. First, we inserted Firefly luciferase containing CpGs into CpG-free 

plasmid obtained from InvivoGen. 100 μg of CpG-free luciferase plasmid was methylated with 

200 U M.Sss I (NEB) in the presence of SAM for 2 h 40 min at 37°C. Simultaneously, the 

same amount of the plasmid was incubated in the buffer with SAM but without M.Sss I to be 

used as unmethylated control. Reaction was deactivated at 65°C for 20 min. Plasmids were 

purified from proteins by PCI (Sigma) and DNA was precipitated from the water phase using 

isopropanol. To confirm the methylation status of the plasmids, restriction enzymes Hpa II and 

Msp I (NEB) were used. CpG-free luciferase plasmid, plasmids containing human MeCP2 

either WT or R111G or R306C and plasmid containing Renilla luciferase were transfected into 

MBD2-/- MeCP2 -/y MEFs (total amount transfected: 500 ng). Specifically, 5 ng of 

unmethylated or methylated CpG-free luciferase plasmid was mixed with 500 ng of CpG- and 

luciferase-free plasmid, and further mixed with 100 ng of plasmid expressing MeCP2 and 12.5 

ng of plasmid expressing Renilla luciferase. This mixture of DNA was combined with 3.5 µl of 

Lipofectamine 2000 (Thermo Scientific) in the OPTIMEM medium and added onto MEFs 

seeded on the day before transfection at the density of 50,000 cells per well of a 24-well plate. 

The transfection mixture was incubated with cells at 37°C for 5-6 hours and after that the 

medium was changed. Dual luciferase assay was performed 48 h after transfection as follows. 

Transfected cells were lysed in 1x Passive Lysis buffer at RT for 15 min with gentle rocking. 

100 µl of Luciferase substrate were transferred into an illuminometer tube. 20 µl of lysed cells 

were added and luminescence of the firefly luciferase was recorded. Next, immediately after 

the first measurement of the firefly luciferase, Stop and Glo reagent was added and Renilla 

luciferase activity was measured. All measurements were done in at least three replicates and 

ratios of the Firefly and Renilla luciferase activities were calculated for unmethylated and 

methylated plasmids. 

 

2. Library preparation for Next Generation Sequencing. 

 

2.1. TAB-seq. 

The TAB-treated genomic DNA was sonicated for 30 cycles of 30 sec ON and 30 sec OFF on 

low power using Bioruptor (Diagenode). DNA was end-repaired and the ends were 3’-

adenylated in order to facilitate adapter ligation. Size selection was performed using Agencourt 

AMPure XP (Beckman Coulter) beads. After adapter ligation and size selection, DNA was 

treated using the EpiTect Bisulfite kit (Qiagen) and PCR amplified using custom primers. All 



 6 

libraries were sequenced as 100 bp long pair-end reads on HiSeq 2500 Illumina platforms. 

Raw data were deposited in GEO database (accession number GSE125660). 

2.2. RNA-seq. 

Total RNA was isolated from all generated cell lines (Table S1) at day 9 of differentiation using 

either the RNeasy Mini kit or the AllPrep DNA/RNA Mini kit (Qiagen). Genomic DNA 

contamination was removed with the DNA-free kit (Ambion) and remaining DNA-free RNA was 

tested for purity using PCR for the GAPDH genomic locus. Total RNA was tested on the 2100 

Bioanalyzer (Agilent Technologies) to ensure a RIN quality higher than 9, and quantified using 

Nanodrop. Equal amounts of total RNA were taken forward for library preparation and ERCC 

RNA Spike-in control mixes (Ambion) were added according to the manufacturer’s guide. 

Ribosomal RNA was depleted using the Ribo-Zero Gold rRNA Removal module (Epicentre, 

Illumina). Isolated mRNA was tested for purity on the 2100 Bioanalyzer. mRNA was quantified 

using Qubit and equal amounts of each sample were used for cDNA synthesis and 3’ terminal 

tagging using ScriptSeq v2 RNA-seq library preparation kit (Epicentre, Illumina). Libraries 

were PCR-amplified to add adaptors and barcodes. The libraries were sequenced as 100 bp 

pair-end reads using HiSeq 2000 or HiSeq 2500 Illumina platforms. Raw data were deposited 

in GEO database (accession number GSE125660). 

2.3. ATAC-seq.  

Neurons were scraped from the plate and nuclei were isolated using a hypotonic buffer (10 

mM Tris-HCl pH7.4, 10 mM NaCl, 3 mM MgCl2, 0.1% [v/v] Igepal CA-630), and counted. 

50,000 nuclei were resuspended in 50 µl of a transposition reaction mix containing 2.5 µl 

Nextera Tn5 Transposase and 2x TD Nextera reaction buffer. The mix was incubated for 30 

min at 37 ºC. DNA was purified by either the MinElute PCR kit (Qiagen) or the Agencourt 

AMPure XP (Beckman Coulter) beads and PCR amplified with the NEBNext High Fidelity 

reaction mix (NEB) to generate DNA libraries. The libraries were sequenced as 75 bp long 

pair-end reads on a HiSeq 2500 Illumina platform. Raw data were deposited in GEO database 

(accession number GSE125660). 

2.4. MeCP2 ChIP-seq. 

LUHMES-derived neurons at day 9 of differentiation with four levels of MeCP2: KO, WT, OE 

4x and OE 11x (Table S1) were crosslinked with 1% of Formaldehyde (Sigma) for 10 min at 

room temperature (RT) and quenched with 2.5 M Glycine (Sigma) for 2 min at RT. Cells were 

washed with PBS, scraped from the plate and centrifuged. Crosslinked nuclei were isolated in 

a hypotonic buffer (10 mM Tris-HCl pH7.4, 10 mM NaCl, 3 mM MgCl2, 0.1% [v/v] Igepal CA-

630) and counted using a haemocytometer. Chromatin from ~4x106 nuclei was sonicated for 
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20 cycles (30 sec ON and 30 sec OFF) using Bioruptor (Diagenode) on high power. 

Crosslinked and sonicated chromatin was mixed with 60 ng of sonicated Drosophila chromatin 

(Active Motif) as a spike-in, and the mix was incubated overnight at 4 ºC with antibodies 

against MeCP2 (D4F3, Cell Signalling) plus spike-in antibody (Active Motif). After overnight 

incubation, magnetic Protein G coated beads (Thermo Scientific) were added and incubated 

for 4 hours at 4 ºC. Beads were washed, and chromatin was reverse-crosslinked overnight at 

65 ºC. DNA was purified using the Agencourt AMPure XP (Beckman Coulter) beads. For ChIP-

seq library preparation, IPs for each condition were pooled together to achieve 5 ng total DNA 

as a starting material. For example, 3-4 IPs were pooled together for the KO sample and 2 

IPs were pooled for the WT sample. Libraries were prepared using the NEBNext Ultra II DNA 

library Prep kit (NEB) for both IPs and corresponding inputs. The libraries were sequenced as 

75 bp long pair-end reads on a HiSeq 2500 Illumina platform. Raw data were deposited in 

GEO database (accession number GSE125660). 

 

3. Bioinformatics and data preparation. 
 

3.1. Bisulfite sequencing (TAB-seq).  

Trimmomatic version 0.32 (1) was used to perform quality control on paired-end reads to 

remove adapter sequence and poor-quality bases at the ends of reads for both BS-sq and 

ChIP-seq. For BS-seq, we used Bismark version 0.10 (2) to further align and process the 

reads. Mapping was performed in bowtie2 mode to the human hg19 reference genome. 

Following alignment, reads were deduplicated and methylation values were extracted as 

bismark coverage and cytosine context files. We calculated the methylation percentage 

(mC%) at each cytosine position as: 

mC% = (number of methylated reads (mC) / total number of reads (mC+C))*100  

and generated *.bed files for further processing. We used two parameters to characterize 

methylation of genomic regions:  

mC mean = sum of mC% for each cytosine / number of cytosines in the genomic 

region 

mC density = sum of mC% for each cytosine / length of the genomic region. 
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3.2. ChIP-seq and ATAC-seq.  

We used bwa mem version 0.7.5 (3) to map reads to the human hg19 reference genome. We 

filtered the alignments to remove reads that map to multiple locations in the genome and to 

blacklisted regions defined by the ENCODE project. We further removed duplicate reads with 

Picard version 1.107 MarkDuplicates (http://broadinstitute.github.io/picard/). To account for 

varying read depths we used deepTools version 2.5.1 (4) to create bigWig files normalised by 

RPKM (reads per kilobase per million reads). To quantify MeCP2 occupancy on the genomic 

features of interest (mCG, mCA, GT, etc.), we reject fragments longer than 1 kb regarding 

them as alignment artefacts.  

3.3. RNA-seq.  

All paired-end sequencing reads were trimmed, and quality controlled using Trimmomatic 

version 0.33 (1). The filtered reads were then mapped using STAR version 2.4.2 (5) using 

hg19 human genome assembly and Ensembl 74 release for annotation. Additionally, TPM 

values for genomic features were quantified by quasi-mapping approach using Sailfish version 

0.10.0 (6). Protein coding transcripts for Sailfish index generation were taken from Gencode 

release 19. In order to assign reads to genomic features, featureCounts version 1.5.0 was 

used (7). Differential expression analysis was performed using DE-Seq (8). Mutant vs wildtype 

comparisons were performed within the same batch using the design formula 

~differentiation+condition in order to account variance from the differentiation. 

 

4. Transcriptome analysis. 

 

4.1. Filtering RNA-seq data to test robustness of effect. 

We attempted to eliminate genes whose Log2FC fluctuated too much among different levels 

of MeCP2 by selecting only such genes for which Log2FC changed quasi-monotonously 

across five MeCP2 levels: KO, WT, OE 3x, OE 4x, and OE 11x. Specifically, we selected 

genes for which the Spearman rank correlation between Log2FC and MeCP2 level was larger 

than 0.8. This resulted in 2252 genes (out of ∼ 17,000 used in Fig. 1C). Fig. S10A shows that 

the number of such genes decreases quickly when an additional constraint on Log2FC>cut-

off value is imposed, and only about 500 genes show a two-fold change between OE 11x and 

OE control. 

Fig. S10B shows that plots of Log2FC versus mCG density are very similar to those for 

unfiltered genes (Fig. 1C). However, statistical uncertainty (characterized by error bars) is 

larger due to a smaller number of genes and less good averaging out of MeCP2-independent 
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effects. Using higher cut-off for the Spearman correlation leads to less selected genes and 

even higher uncertainty. 

Besides selecting genes with respect to correlations between Log2FC and MeCP2 level, we 

tried other approaches to remove the noise in Fig. 1C: 

- Select only statistically significant genes (based on p-values returned by DE-Seq, the 

software used to generate Log2FC from RNA-seq) (Fig. S4A). Even setting aside problems 

with this approach (Log2FC known only up to an additive constant), this approach did not 

significantly change the results, apart from reducing the number of analysed genes. 

- Select only genes with high/low TPMs. We observed no change except larger error 

bars due to smaller number of genes in each bin. 

- Select only long genes (>100kb). This increased the slope of Log2FC vs mCG density 

approximately two-fold (see Fig. S4B for plots for KO/WT and OE 11x/OE ctr). We note that 

this is what we would expect from our congestion model with slow-sites, which predicts that 

longer genes should be affected more strongly. 

4.2. Maximum slope calculation. 

To obtain the slope (Fig. 1D) we used an automated algorithm for each cell line. We fitted 

straight lines Log2FC = 𝑎𝜌mCG + 𝑏 to Log2FC(expression) to different ranges of 𝜌mCG ∈

[𝜌1, 𝜌1 + Δ𝜌], for different pairs 𝜌1 ∈ [0.5,1] and Δ𝜌 ∈ [1,4] (units: 1/100bp). The maximum 

slope was taken to be equal to 𝑎 of the fit with the largest absolute slope-to-error ratio (largest 

|𝑎|/𝜎𝑎 where 𝜎𝑎 is the standard error of 𝑎). While the algorithm sometimes fails to find the true 

maximum slope, we prefer to use it instead of manual fitting to minimise a possible cognitive 

bias. 

The maximum linear slope is a good measure of the profile’s steepness because it is sensitive 

to the level of MeCP2, and does not depend on absolute values of Log2FC. We also tried non-

linear fits (exponential function or a polynomial) but since such fits require more than one 

parameter, selecting a suitable combination of parameters that would give something akin to 

a “slope” was ambiguous and did not improve the results compared to the linear fit. 

4.3. Possible explanations of Log2FC increase in the OE with mCG density for 𝜌𝑚𝐶𝐺 < 0.8. 

Figure 1C shows a non-monotonous behaviour of Log2FC(OE 11x/OE ctr) as a function of 

mCG density: Log2FC initially increases with mCG, peaks at about 0.8/100bp, and then 

decreases with mCG density. In the main text, we focus on the range 0.8-4/100bp which 

contains most of the expressed genes. Below we discuss possible explanations of the low-

mCG behaviour. 
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i) Activation at low mCG densities. It is possible that the mechanism of MeCP2-

dependent transcription regulation is different for low mCG densities. We 

considered the following hypothesis: low gene-body methylation (0… 0.8/100bp) 

increases transcription in the OE compared to KO because additional MeCP2 

helps the chromatin to stay in the open state. This accounts for the increase in 

Log2FC for low mCG density. However, if too much MeCP2 is bound to the DNA 

(higher mCG density), MeCP2 blocks transcription due to Pol II queuing as 

discussed in the manuscript. This accounts for the falling slope of the Log2FC 

curve for mCG density larger than approx. 1 per 100bp. At an mCG density close 

to 1/100bp the two effects balance each other and we get a maximum of Log2FC 

in the OE 11x. Regardless of the mechanistic details and assuming that 

transcription is affected by the density of MeCP2 (and not just mCG density), this 

hypothesis would predict that Log2FCs for different MeCP2 levels should collapse 

onto a single curve when plotted as a function of MeCP2 occupancy on genes. 

This implies that, when plotted as a function of mCG density (Fig. 1C), the position 

of the peak in the OE 11x (at approx. 1/100bp) should shift to the right (approx. 

position: 3/100bp) in the OE 3x. We do not observe this; in fact, the position of the 

peak in all OEs remains close to 0.5-1/100bp. 

 

ii) Artefact. It is possible that this is an artefact and not a genuine effect. There are 

only 726 genes (4.7% of all analysed genes) in this range; 87% genes have mCG 

density between 0.8 and 4 per 100bp. Log2FCs may be strongly affected by gene-

gene interactions which have not been averaged out due to the small number of 

genes, and therefore the results may not truly reflect the “average”, MeCP2-

dependent behaviour. 

 

5. ChIP-seq accumulation algorithm. 
 

For each chromosome we create an array 𝑛𝑖 of the number of instances a particular locus (a 

single base pair at position 𝑖 in the chromosome) is covered by a ChIP-seq read. We do this 

by going through all ChIP-seq reads from *.bed files, each time incrementing all 𝑛𝑖’s for which 

𝑖 is between the start and end position of a given read. When all reads in a given chromosome 

have been processed, for each feature 𝑥 (𝑥 = mCG, non-mCG, …) at position 𝑗 we select a 

region of interest of length 𝐿 around it (𝑗 ± 𝐿/2 bp) and accumulate the counts in a separate 

array (different for each feature 𝑥): 𝑐𝑖
𝑥 → 𝑐𝑖

𝑥 + 𝑛𝑖+𝑗 , for all 𝑖 such that −
𝐿

2
≤ 𝑖 <

𝐿

2
. The obtained 
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accumulated counts 𝑐𝑖
𝑥 for ChIP-seq are divided by the accumulated counts for the 

corresponding input DNA-seq to reduce the sequencing bias present in the data. 

 

To demonstrate the above procedure, let us take the following sequence as the reference 

genome with features of interest (in this case CG) marked red:  

 
aaacagctagttaattttgaatcgcaggtaaacaatcgaataattttcta 

 

We assume that ChIP-seq has generated the following reads: 
 

                                ttttgaatcgca 
                   aatcgcaggta 

             attttgaatcg 

                      cgcaggtaa 

                                caatcgaa 

                                   tcgaataattt 

 

The number of reads 𝑛𝑖 covering a specific site in the genome is 
 
00000000000001222223334433222210111222221111110000 

 

Raw counts over a fixed-length region (here +/-5bp, in the actual algorithm this would be +/- 
5000bp) centred at the feature of interest are 
 

223334433222 

011122222111 

 

Total accumulated counts 𝑐𝑖
𝐶𝐺 versus position 𝑖 relative to the feature of interest are therefore 

 

234456655333 

 
In the actual analysis, the above sequence would be a 10 kb-long array of integers. 
 

6. Details of the ChiP-seq computer model. 
 

6.1. The algorithm. 
 

The input to the simulation are the *.bed files with ChIP or input (DNA) reads, and the two 

parameters 𝑝, 𝑝𝑏𝑔. The simulation uses the data files to preserve the distribution of the lengths 

of reads but not their positions. The positions are determined by the following algorithm: 

1) For each input file, GC content- and length bias is first estimated by constructing a 

table of counts 𝑟[%𝐺𝐶][𝑙] for the actual reads and 𝑔[%𝐺𝐶][𝑙] for genomic sequences 

of the same length 𝑙, %GC, and randomly selected locations. 
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2) For each read from the experimental *.bed file we calculate its length 𝑙 = 𝑒 − 𝑠 and 

then select a random start point 𝑠 (within the same chromosome as the original read) 

and the end point 𝑒 = 𝑠 + 𝑙. 

3) GC content and the number of mCs for the simulated read is calculated. We take a 

particular C to be methylated with probability proportional to the fraction of methylated 

reads containing this site in our methylation data (TAB-seq). 

4) If there is at least one mC within the read, an auxiliary variable 𝑃 is set to 1 with 

probability 𝑝 times the relative binding affinity of the motif to which this C belongs. 

Otherwise 𝑃 is set to 𝑝𝑏𝑔. This accounts for MeCP2 present/absent in this particular 

DNA fragment. 

5) 𝑃 is multiplied by 𝑟[%𝐺𝐶][𝑙]/𝑔[%𝐺𝐶][𝑙] to account for the GC content and read length 

bias. 

6) The simulated read is accepted with probability 𝑃 and saved to a file, or rejected (with 

probability 1 − 𝑃). If the read is rejected, another random position 𝑠 is selected and the 

algorithm continues from (3). 

7) Go to step 2 unless all reads from the *.bed file have been processed. 

Simulated reads are then processed in the same way as the experimental ChIP data (SI 

Section 5). 

 

6.2. Height of the ChIP-seq enrichment peak. 
 

Since mCG is much more frequent than any other MeCP2-binding motif in our cell lines, in 

what follows we focus on enrichment profiles on mCG. Fig. S11A shows simulated enrichment 

profiles on mCG obtained for 𝑝𝑏𝑔 = 0 and different 𝑝. Counterintuitively, the height of the 

central peak does not decrease with decreasing 𝑝, but it slowly increases. The height of the 

peak tends to a constant as 𝑝 → 0 (Fig. S11B). This can be explained as follows. For large 𝑝, 

fragments centred at adjacent mCGs overlap, increasing the counts 𝑐𝑖
𝑚𝐶𝐺 in the flanking 

regions (|𝑖| ≫ 1). Normalization lowers the apparent height of the peak since it divides the 

profile by the counts in the flanking regions. As 𝑝 decreases, the number of overlapping 

fragments from neighbouring mCGs decreases; this reduces raw counts in the flanks and 

increases the relative height of the central peak after normalization. 

 

 



 13 

6.3. Fitting ChIP-seq to data. 

 

For each ChIP-seq data set we fitted the simulated profile 𝑓𝑖
𝑠𝑖𝑚 (parametrized by 𝑝, 𝑝𝑏𝑔) to the 

experimental enrichment profile 𝑓𝑖
𝑒𝑥𝑝𝑟

 by minimizing the sum of squared differences,  

𝜒2 = ∑ (𝑓𝑖
𝑒𝑥𝑝𝑟

− 𝑓𝑖
𝑠𝑖𝑚)

2
100

𝑖=−100

, 

with respect to 𝑝 and 𝑝𝑏𝑔. The region +/-100bp was chosen because of the sensitivity of the 

profile shape to 𝑝, 𝑝𝑏𝑔 in this region. Minimization was performed as follows: we simulated 

profiles for a range of 𝑝 and two values of 𝑝𝑏𝑔: 0 and 0.9; profiles for 𝑝𝑏𝑔 between these two 

values were obtained by linear interpolation (permitted due to the assumed additive model of 

signal and background reads). The minimum 𝜒2 obtained in this way for 11x OE is plotted in 

Fig. S6D. Any 𝑝 ≤ 0.1 gives similar (low) values of 𝜒2, indicating that 𝑝 ≈ 0.1 is the upper 

bound on mCG occupancy in 11x OE. 

A peak is noticeable in KO (Fig. 2B) where MeCP2 is absent. We think the peak may be 

caused by non-specific binding between proteins other than MeCP2 and antibodies used in 

the immunoprecipitation. Even a minute amount of binding (𝑝 ≪ 1) by an MeCP2-mimicking 

protein can create a peak. CG and length bias (different in different replicates and impossible 

to completely remove) probably also contributes to the peak. Non-uniform profiles (peaks or 

troughs) are present in virtually any ChIP-seq even in the absence of the protein of interest, 

but they are usually not shown; instead, a common practice is to divide the profile of interest 

by the “control” profile (KO in our case). We decided to present the KO ChIP-seq data to show 

our confidence in the ChIP/MeCP2 binding model which is able to reproduce the peak. 

To predict profiles on unmethylated CG (Fig. S6E), we used the values of (𝑝, 𝑝𝑏𝑔) obtained 

from the mCG profiles by minimizing 𝜒2 with respect to 𝑝𝑏𝑔 and assuming 𝑝 =

0.1, 0.05, 0.02, 0.002 for OE 11x, OE 4x, WT, and KO, respectively. These values are based on 

the best-fit 𝑝 = 0.1 obtained for OE 11x, the other 𝑝’s being a fraction of this value 

approximately proportional to the relative abundance of MeCP2 in a given cell line compared 

to OE 11x. The predicted profiles match the data very well but are not sensitive to the exact 

value of 𝑝. This indicates that ChIP-seq alone cannot be used to estimate the occupancy 𝑝 

besides providing the upper bound on 𝑝. 

The dip visible in the profiles in Fig. S6E is caused by MeCP2 binding to methylated CGs 

surrounding the unmethylated site. This increases the number of immunoprecipitated 
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fragments in the flanks compared to the centre (at or near the unmethylated CG). Since all 

profiles are normalized by enrichment in the flanks, the centre looks as if it was rarefied.  

7. ATAC-seq model. 
 

7.1. The algorithm. 
 

We simulate binding to a short DNA sequence (first 𝐿=50Mbp of chromosome 1). We assume 

that MeCP2 occupies 11bp (20, 21) and that the protein is centred on an mC, thus the 

obscured genomic sequence is xxxxxmCxxxxx where x can be any nucleotide. 

The following algorithm is repeated 𝑇 times (larger 𝑇 corresponds to longer digestion times in 

the experiment): 

1) A random location 𝑖 is chosen as the position of the new cut. We assume the following 

convention: 𝑖 refers to the position of the nucleotide immediately to the left from the 

centre of the cut. Hence, 𝑖 + 1 denotes the position of the nucleotide to the right from 

the cut. Positions 𝑖, 𝑖 + 1 are the positions of insertion sites. 

2) The position is accepted with probability 𝑝𝑖 which depends on the nucleotide sequence 

𝑖 − 𝑤, … , 𝑖 + 𝑤 where 𝑤=10 bp. This is based on the known Tn5 sequence preference 

across 21 = 2𝑤 + 1 bp that it contacts (9, 10). The probability 𝑝𝑖 is calculated using 

the position weight matrix (PWM) obtained from ATAC-seq reads for KO1. 

3) If the position is rejected, go to step 1 and try again. 

4) If there is enough space for Tn5, a cut is made between 𝑖 and 𝑖 + 1. We assume that 

Tn5 occupies 21bp (𝑖 − 𝑤, … , 𝑖 + 𝑤) and for a cut to be made there must not be any 

protein (MeCP2) overlapping with this region. There must not be any previous cuts 

made in this region too, otherwise the proposed cut is rejected. 

5) If the proposed cut is rejected, go to step 1 and try again. 

6) A weight 𝑊 = exp(𝑏 × 𝐺𝐶) is assigned to each fragment where 𝐺𝐶 is the GC content 

(0…1) of the fragment and 𝑏 is a constant. This simulates an additional GC bias that 

may be created during library preparation and DNA-sequencing procedures. 

The shortest possible fragment generated by the algorithm is 21bp which corresponds to two 

Tn5 cutting just next to each other. Since MeCP2 occupies 11bp, the shortest MeCP2-

containing fragment is 11+21=32bp. We retain only fragments longer than 35bp because our 

experimental data does not contain fragments shorter than this. 

The simulation creates artificial fragments that we process in the same way as the 

experimental data. The input to the program is the DNA sequence (fixed), the density 𝑝 of 
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MeCP2 on mCxx, the average density of insertion (cut) sites 𝑡 = 𝑇/𝐿 (cannot be larger than 

1/21bp), and the GC bias 𝑏. 

7.2. Algorithm benchmarking 
 

To test the role of the parameters on the shape and depth of the simulated footprint of MeCP2, 

we run the model for different 𝑝, 𝑡, 𝑏. We also performed simulations with/without Tn5 bias. 

Fig. S12A shows the counts profiles for 𝑝 = 0 (no MeCP2) with and without Tn5 bias, 

compared to the experimental profile. It is evident that the insertion bias is required to 

reproduce the experimental insertion profile. However, the bias cancels out when calculating 

the relative profile (footprint) 𝑓𝑖. This is demonstrated in Fig. S12B which shows the footprint 

obtained by dividing the counts profile for 𝑝 = 0.05 by the profile for 𝑝 = 0, for different 𝑡 and 

𝑏 = 6 (Tn5 bias) or 𝑏 = 0 (no bias). Increasing digestion time 𝑡 increases the height of the side 

peaks surrounding a depression caused by MeCP2. However, the depth of the depression 

does not change noticeably.  

Fig. S12C, left shows that the GC bias 𝑏 can does not affect the depth of the footprint if the 

bias is the same in the simulated test and reference samples. However, the footprint is affected 

if the GC bias is different in the two samples (Fig. S12C, right). Since such a mismatch in the 

GC bias would have a notable signature (rising/falling flanks >50bp away from mCG) which 

we do not see in our data, we conclude that the bias is very similar in all experimental samples. 

Fig. S12D shows that dividing the counts for 𝑝 > 0 by the counts for 𝑝 = 0 but with a different 

digestion time 𝑡 changes the depth of the footprint slightly. Experimental variation causes 𝑡 to 

be slightly different for different samples, and hence our results can have a small systematic 

error. 

Our simulations cannot explain two subtle features of the experimental data: the presence of 

oscillations superimposed on the main profile, and a small central peak visible in WT/KO, and 

OE 4x/KO. We speculate that the first is caused by steric interactions between MeCP2 and 

Tn5, and the latter by interactions of proteins other than MeCP2 with mC or a small difference 

in the GC bias among the samples. 
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7.3. Fitting simulated ATAC-seq profiles to data.  

 

We used the depth of the footprint to extract MeCP2 occupancy 𝑝. We simulated ATAC-seq 

for many pairs (𝑝, 𝑡), for 𝑝 = 0 … 0.1, 𝑡 = 0 … 0.08, and a fixed 𝑏 = 6.0 (the exact value is not 

important since GC bias cancels out when calculating 𝑓𝑖). We then selected those (𝑝, 𝑡) which 

minimized the distance between the simulated and experimental footprints 𝑓𝑖
𝑠𝑖𝑚 and 𝑓𝑖

𝑒𝑥𝑝
, 

𝐷 = ∑ (𝑓𝑖
𝑒𝑥𝑝

− 𝑓𝑖
𝑠𝑖𝑚)

𝑖={−9,−10,14,15}

2

  × ∑ (𝑓𝑖
𝑒𝑥𝑝

− 𝑓𝑖
𝑠𝑖𝑚)

2
100

𝑖=−100

.  

This formula assigns a larger weight to the edges of the central dip which is the region least 

sensitive to variations in the ATAC-seq protocol, and reduces the systematic error caused by 

the (small) central peak of unknown origin (SI Section 7.2). The best fit to the 11x OE footprint 

yields 𝑝 = 0.063, 𝑡 = 0.04. Fig. 2E shows 𝑝 for all MeCP2 levels 𝑀. The relationship is linear, 

with the best-fit 𝑝 = 0.0058 × 𝑀𝑐𝑒𝑙𝑙 𝑙𝑖𝑛𝑒/𝑀𝑊𝑇. 

 

8. Generic model of gene expression.  
 

Below we list all the parameters and observables of the generic (“paradigm”) model of gene 

expression (22) from Fig. S7A which is the starting point for all other models. For each gene 

𝑖 we define 

- 𝑘𝑖,𝑂𝑁, 𝑘𝑖,𝑂𝐹𝐹 – the switching rates OFFON and ONOFF, respectively. 

- 𝐽𝑖 – transcription rate (in transcripts/second).  

- 𝛼𝑖 – transcription initiation rate (1/second) 

- 𝑣𝑖 -  transcription elongation rate (bp/second).  

- 𝑑𝑖 – mRNA degradation rate (1/second). 

- 𝑓𝑖 – the fraction of cells in the population that at any given time have gene 𝑖 in the ON 

(actively transcribed) state. 

We assume that mRNA is degraded according to 1st order kinetics (11). The steady-state 

concentration 𝑐𝑖 of mRNA from gene 𝑖 is obtained by equating production (transcription in the 

ON state) and degradation rates: 

𝐽𝑖𝑓𝑖 = 𝑐𝑖𝑑𝑖, (Equation S1) 

from which it follows that  
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𝑐𝑖 = 𝐽𝑖𝑓𝑖 /𝑑𝑖. (Equation S2) 

The number of transcripts per million (TPM) which we obtain from RNA-seq is thus 

TPM𝑖 =  𝑁𝐽𝑖𝑓𝑖 /𝑑𝑖,  (Equation S3) 

where 𝑁 is an unknown proportionality constant that depends on the sample and is different 

for different cell lines, replicates and conditions but is the same for all genes in a given sample. 

9. Condensation model. 
 

This model considers a hypothesis (ultimately proven to be false, see the main text) that 

MeCP2 causes chromatin condensation which reduces the fraction of cells with genes in the 

active (ON) state (Fig. 3A). We assume that the fraction 𝑓𝑖 of cells with gene 𝑖 in the active 

state depends on promoter openness 𝑎𝑖 (measured by ATAC-seq) which in turn depends on 

the level 𝑀 of MeCP2 and gene methylation 𝜌𝑖: 

𝑓𝑖 = 𝑓𝑖(𝑀, 𝜌𝑖) ∝ 𝑎𝑖 = 𝑎𝑖(𝑀, 𝜌𝑖).  (Equation S4) 

The model also assumes that transcription rate 𝐽𝑖 and mRNA degradation rate 𝑑𝑖 are not 

affected by MeCP2. The Log2FC of differential expression of gene 𝑖 for cell lines X and Y is 

then 

Log2FCX/Y,𝑖 = log2

TPM𝑖(X)

TPM𝑖(Y)
= log2

𝑁X

𝑁Y
+ log2

𝑎𝑖(𝑀X, 𝜌𝑖)

𝑎𝑖(𝑀Y, 𝜌𝑖)
. 

The average Log2FC of genes with the same methylation density 𝜌 is therefore 

Log2FCX/Y(𝜌) = log2

𝑁X

𝑁Y
+ 〈log2

𝑎𝑖(𝑀X, 𝜌)

𝑎𝑖(𝑀Y, 𝜌)
〉, 

where 〈… 〉 denotes averaging over genes with the same 𝜌. According to the above equation, 

Log2FCX/Y should yield the same curve (modulo a vertical shift due to different normalization 

factors 𝑁X and 𝑁Y) as the logarithm of the ratio of accessibilities of X versus Y when plotted 

as a function of methylation density. Fig. 3C shows that this is not the case. We can therefore 

reject the hypothesis that MeCP2 modulates gene expression primarily by altering the fraction 

of active genes. 

10. Detachment model. 
 

In this hypothetical scenario we assume that RNA Pol II aborts transcription with some small 

probability 𝜆 when it collides with MeCP2 or encounters a chemical mark left by the interaction 
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between MeCP2 and chromatin. The probability that RNA Pol II reaches the end of the gene 

(transcription end site, TES) is thus 

𝑃 = (1 − 𝜆)𝑛 ≅ 𝑒−𝜆𝑛, 

where 𝑛 is the number of “abort sites” on the gene, proportional to the number of MeCP2 

molecules on the gene. ATAC-seq shows that the density of MeCP2 on a gene is proportional 

to its methylation density 𝜌 and the total concentration 𝑀 of MeCP2 in the nucleus, hence we 

can write that 𝑛 = 𝐴𝑀𝜌𝐿 = 𝐴𝑀𝑁mCG, where 𝐴 is an unknown proportionality factor, 𝐿 is the 

length of the gene, and 𝑁mCG is the total number of mCGs. Log2FC of the differential 

expression X versus Y can then be written as 

Log2FCX/Y = log2

TPM𝑖(X)

TPM𝑖(Y)
= log2

𝑁X

𝑁Y
+ log2

𝑃(𝑀X, 𝑁mCG)

𝑃(𝑀Y, 𝑁mCG)
 

= const + log2

exp(−𝜆𝐴𝑀X𝑁mCG)

exp(−𝜆𝐴𝑀Y𝑁mCG)
 

= const − 𝛾 Δ𝑀X/Y𝑁mCG, 

where 𝛾 = 𝜆𝐴𝑀Y/ (ln 2) is an unknown parameter identical for all cell lines, and Δ𝑀X/Y =
𝑀X

𝑀Y
−

1 is the relative difference between the level of MeCP2 in cell lines X and Y. For example, Δ

𝑀KO/WT = −1 and Δ𝑀11x OE/WT = 10. Log2FCX/Y should therefore follow a straight line when 

plotted versus 𝑁mCG, and the slope of this line should be positive for KO/WT, and negative 

(and 10x more steep) for 11xOE/OE ctr. Fig. 3E shows that when the model is fitted to the KO 

data to fix the unknown constant 𝛾, it fails to reproduce the OE 11x data. We hence conclude 

that there is no evidence that MeCP2 causes premature termination of transcription. 

 

11. Congestion models. 
 

11.1. General considerations. 
 

We consider a hypothesis that MeCP2 slows down the elongation step of transcription by 

creating queues of RNA Pol II in front of MeCP2 or chemical modifications left by it in gene 

bodies (Figs. 4A and S8A). We assume that the density of obstacles, or “slow sites”, is 

proportional to the density of molecules of MeCP2 bound to the DNA. We first show that a 

general class of models based on these assumptions is consistent with our experimental data. 

We then discuss two specific examples in Secs. 11.2 and 11.3. 
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We show in the main text that (i) the density 𝑚 of MeCP2 on the DNA is proportional to the 

concentration 𝑀 of MeCP2 in the cell and (ii) that 𝑚 is proportional to mCG density 𝜌. We can 

thus write that the transcription rate 𝐽 averaged over many genes with the same mCG density 

𝜌 is 

𝐽 = 𝐽(𝑀𝜌, 𝜌). 

The first argument (𝑀𝜌 ≈ MeCP2 occupancy on the DNA) represent MeCP2-dependent 

modulation of transcription. The second argument of 𝐽 accounts for non-MeCP2 but mCG-

density dependent modulation. Fig. S13A show gene expression (TPMs) versus gene body 

methylation for KO and OE 11x. The difference between the two cells lines is very small, and 

non-MeCP2 dependent component of 𝐽 dominates the behaviour of 𝐽(𝜌). We are thus 

permitted to rewrite 𝐽 in the factorized form  

𝐽 ≈ [1 − 𝜖(𝑀𝜌)]𝐾(𝜌), 

where 𝐾 is a fast-changing function of 𝜌 and a small correction 𝜖(𝑚) due to MeCP2 is a slowly 

increasing function of 𝑚, and 𝜖(0) = 0. This leads to the following expression for the Log2FC 

of cell lines X versus Y: 

Log2FCX/Y(𝜌) = log2

TPM𝑖(X)

TPM𝑖(Y)
≈ log2

𝑁X

𝑁Y
+ log2

[1 − 𝜖(𝑀X 𝜌)]𝐾(𝜌) 

[1 − 𝜖(𝑀Y𝜌)]𝐾(𝜌)
 

= const(X, Y) + log2[1 − 𝜖(𝜌𝑀X)] − log2[1 − 𝜖(𝜌𝑀Y) 

≈ const(X, Y) − 𝜖(𝜌𝑀X) + 𝜖(𝜌𝑀Y).             (Equation S5) 

The latter approximation is valid since 𝜖 is assumed to be small. In particular, the Log2FC of 

any cell line X versus KO reads 

Log2FCX/KO(𝜌) ≈ const(X, KO) − 𝜖(𝜌𝑀X) 

because 𝜖(𝜌𝑀KO) = 𝜖(0) = 0. The Log2FC curves for different cell lines versus KO will 

therefore have the same shape when plotted in the variable 𝜌𝑀X. It follows that the maximum 

slope should be proportional to 𝑀X, which is what we observe in Fig. 1C, D. One important 

difference is that Log2FC plots from Fig. 1C do not assume KO as the reference but rather 

different control cell lines with low but non-zero level of MeCP2. We can however show that 

these results (in particular the linear dependence of the slope on MeCP2) remain 

approximately true also in this case. 

We first need to make another (mild) assumption that 𝜖(𝑚) increases monotonically with 𝑚, 

is linear in 𝑚 for small 𝑚, and saturates for large 𝑚. This can be justified retrospectively based 
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on the observed behaviour of Log2FC versus 𝜌. Both specific models from Secs. 11.2, 11.3 

obey these assumptions. 

From equation (S5) applied to the pair (CTR, KO) we have 

Log2FCCTR/KO(𝜌) ≈ const(CTR, KO) − 𝜖(𝜌𝑀CTR). 

We can calculate 𝜖(𝑚) from this equation: 

𝜖(𝑚) ≈  const(CTR, KO) − Log2FCCTR/KO(𝑚/𝑀CTR).        (Equation S6) 

This enables us to express (by combining (S5) and (S6)) the Log2FC of any cell line X versus 

control CTR as 

Log2FCX/CTR(𝜌) ≈ const(X, CTR) − 𝜖(𝜌𝑀X) + 𝜖(𝜌𝑀CTR)    (Equation S7) 

=  const(X, CTR) + Log2FCCTR/KO(𝜌𝑀X/𝑀CTR) −  Log2FCCTR/KO(𝜌). 

Since we assumed that 𝜖(𝑚) first increases linearly with 𝑚 and then saturates, its largest slope 

(largest value of the derivative 𝜖′(𝑚)) will be at 𝑚 = 0. The maximum slope of Eq. (S7) will 

therefore occur at 𝜌 = 0. We can Taylor-expand Eq. (S7) in the vicinity of this point and write 

Log2FCX/CTR(𝜌) ≈ const(X, CTR) + 𝜌𝑀𝐶𝑇𝑅𝜖′(0) (
𝑀X

𝑀CTR
− 1), 

where 𝜖′(0) is the derivative of 𝜖(𝑚) at 𝑚 = 0. The maximum slope is therefore proportional 

to 𝑀X/𝑀CTR − 1. This is corroborated by experimental results presented in Fig. 1C, D. 

 
11.2. Slow sites model.  
 

In this model, MeCP2 causes a chromatin modification that slows down the RNA polymerase 

II. To mathematically model this process, we use totally asymmetric simple exclusion process 

(TASEP) with open boundaries (12-14). A gene is represented as a one-dimensional chain of 

𝐿 sites. Each site is either occupied by a particle, representing RNA Pol II, or is empty. Particles 

enter the chain at site 𝑖 = 1 with rate 𝛼 (transcription initiation rate), move along the chain and 

exit at site 𝑖 = 𝐿 with rate 𝛽. Sites can be either “fast” or “slow”. Slow sites represent mCGs 

affected by the interaction with MeCP2, whereas fast sites are all other sites (methylated or 

not). The speed of the particles is 𝑣 on fast sites and 𝑣𝑠 on slow sites. Slow sites are randomly 

and uniformly distributed, and their density is 𝜌𝑠 = 𝜌𝑝 where 𝜌 is the mCG density, and 𝑝 is 

the probability that an mCG is occupied by MeCP2 (as in the ChIP-seq and ATAC-seq 

models). 𝑝 is taken to be 0.063 for OE 11x, and proportionally smaller for other cell lines (𝑝 =

0.0058𝑀cell line/𝑀WT). 
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Since RNA Pol II occupies about 60bp on the DNA and moves with the speed of about 60-70 

bp/s (15), it is convenient to equate a single site of the model with a 60bp-long stretch of the 

actual DNA, and set the RNA Pol II speed to 𝑣 = 1 sites per second on fast sites. We also 

assume 𝛽 = 𝑣 = 1 sec-1 so that RNA Pol II is not blocked from exiting the chain at the end 

(𝛼 < 𝛽 for all genes). 

We simulated this model for different chain lengths 𝐿 = 166, 500, 1666, 5000 corresponding to 

gene lengths between 10kb and 300kb, and a range of initiation rates 𝛼 ∈ [0.001,1], densities 

of slow sites 𝜌𝑠 ∈ [1/64, 8] (mCG density between 0.026 and 13.3 per 100bp), and slow-site 

velocities 𝑣𝑠 = 0.01, 0.02, 0.05,0.1,0.2 (all rates are in 1/sec). For each set of (𝛼, 𝜌𝑠, 𝑣𝑠) we first 

let the model to reach steady state (“thermalization step”). We then measured the flow 𝐽 of 

particles (equivalent to the rate of transcription) through the chain. The flow strongly depends 

on 𝜌𝑠 and only weakly (logarithmically) on the length 𝐿 (Fig. S13B and C). Therefore, in what 

follows we fix 𝐿 = 5000 sites, which is equivalent to the gene length of 300 kb. The flow 𝐽 

obtained from these simulations is presented in Fig. S8B as a function of 𝛼, for different 

MeCP2 densities 𝜌, and for 𝑝 = 0.063 (OE 11x). The flow is approximately linear in 𝛼 until 

some critical 𝛼𝑐 which depends on 𝜌𝑠, and saturates at 𝐽 = 𝐽𝑚𝑎𝑥 when 𝛼 > 𝛼𝑐.  

To relate this model to the mRNA-seq differential expression data we must calculate Log2FC: 

Log2FCX/Y = log2
𝐽(𝛼,𝜌s,X)

𝐽(𝛼,𝜌s,Y)
 , 

where 𝜌s,X = 𝜌𝑝X, 𝜌s,Y = 𝜌𝑝Y in which 𝜌mCG is mCG density and 𝑝X, 𝑝Y are MeCP2 occupation 

probabilities for cell lines X,Y. We take 𝑝X = (
𝑀X

𝑀OE11x
) 𝑝OE11x = 0.05 (

𝑀X

𝑀OE11x
), and similarly for 

𝑝Y. In the above expression we know all quantities except the initiation rate 𝛼.  

To obtain the initiation rate we bin genes according to their methylation, grouping gene with 

similar mCG density into bins of approximately constant width (0.1/100bp). Each of the ∼80 

bins is parametrized by a single value of α. Next, in each bin we find 𝛼 such that Log2FC(OE 

11x/OE ctr) from the above equation equals the average experimental Log2FC in the bin. This 

gives us 𝛼(𝜌) as a function of methylation density 𝜌 (Fig. S8E; average 𝛼 = 0.027 s-1), which 

exactly reproduces the OE 11x/OE ctr data. This approach, rather than fitting initiation rates 

of individual genes, removes correlations due to gene-gene interactions and produces a 

relatively smooth curve 𝛼(𝜌).   

We can then use the fitted 𝛼(𝜌) to predict Log2FCX/Y for other pairs of cells lines. The results 

are presented in Fig. S8C, D and, as described in the main text, are in good agreement with 

experimental Log2FCs. 
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A model in which 𝐽 is first evaluated for individual genes (defined by their 𝜌, 𝐿) and then Log2FC 

obtained by binning genes according to their mCG density 𝜌mCG does not significantly affect 

the results. 

11.3. Dynamical obstacles model.  
 

This model is very similar to the slow sites model with two exceptions: (i) polymerase always 

moves with the same speed 𝑣 (no slow sites) as long as it is not blocked by other polymerases 

and obstacles, (ii) obstacles binds and unbinds dynamically from the methylated sites. These 

obstacles can be MeCP2, other proteins recruited by MeCP2, or structural changes induced 

by MeCP2. We assume that unbinding occurs with rate 𝑘𝑢 per obstacle, whereas binding 

occurs with rate 𝑘𝑢𝑝 per unoccupied mCG. An obstacle does not bind if an mCG is occupied 

by an obstacle or a polymerase. The parameters of the model are: 𝛼, 𝑣, 𝐿, 𝜌, 𝑝 and, in addition, 

the unbinding constant 𝑘𝑢. Since the exact nature of obstacles in not specified, the density 𝑝 

of sites that bind obstacles does not have to be the same as the MeCP2 occupancy estimated 

from ATAC-seq data. In fact, we found that the model reproduces the data best when 𝑘𝑢 =

0.04,  and 𝑝 = 𝑀/𝑀OE11x, i.e., 𝑝 = 1 for the OE 11x cell line. 

The model behaves similarly to the slow-sites model. Fig. 4B shows a plot of the flow as a 

function of 𝛼 and 𝜌. Fig. 4E, F shows that after fitting the initiation rates as described for the 

slow-site model (Fig. S8F) the model is also able to reproduce the experimental data.  

The fact that the apparent fraction 𝑝 of occupied mCGs must be close to 1 in OE 11x suggest 

that MeCP2 may slow down RNA Pol II by altering chromatin structure rather than by direct 

steric interference. 
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Fig. S1. Characterisation of LUHMES-derived cell lines KO and WT. (A) Experimental 

protocol for LUHMES differentiation. Phase contrast images show cells in different stages of 

differentiation. Scale bar is 50 m. (B) Expression of neuronal differentiation markers 

normalized to the housekeeping gene CYPA during WT LUHMES differentiation. Error bars 

represent +/-SEM. (C) Changes in the number of MeCP2 molecules per nucleus during 

differentiation of WT LUHMES cells, calculated from Western blotting. Error bars represent +/-

SEM. (D) Expression of MeCP2 in cells at day 9 of differentiation (Western blot). (E) 

Immunofluorescence imaging of MeCP2 and neurofilament (NF) expression in day-9 neurons. 

Scale bar is 20 m. 
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Fig. S2. DNA methylation in LUHMES WT cells. (A) Fraction of methylated Cs in the genome 

(quantified by HPLC) for LUHMES-derived neurons at day 9 of differentiation. OE 11x (red), 

OE 4x (orange) and controls (green). Error bars are +/-SEM. (B) Number of methylated (mC) 

and hydroxymethylated (hmC) dinucleotides (per haploid genome) obtained from TAB-seq in 

WT LUHMES-derived neurons (day 9). (C) Percentage fraction of methylated Cs in the context 

of different dinucleotides calculated from TAB-seq data. 
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Fig. S3. Gene expression changes do not correlate with other methylation-related 

quantities such as total mCG and mCG mean. (A) Violin plots show that changes in gene 

expression in cell lines expressing different levels of MeCP2 are very small. (B) Number of 

genes versus mCG density in gene bodies. Genes have been binned as in Fig. 1C (bin width 

0.1bp). (C) Log2FC of gene expression relative to appropriate controls (ctr – unmodified 

controls; SCR – scrambled control, OE ctr – overexpression control) for all seven levels of 

MeCP2, plotted against mCG density at promoters. Genes have been binned according to 

their promoter mCG density (bin size = 0.1bp), with each point representing a mean Log2FC 

of all genes falling in that particular bin. Black line shows the maximum slope. The slope of 

Log2FC for promoter mCG shows minimal dependence on the level of MeCP2. (D) As in C 

but for total mCG. The slope of Log2FC does not show a clear dependence on the level of 

MeCP2. (E) As in C but for mCG mean. In all panels, error bars represent +/- SEM. 
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Fig. S4. Relationship of MeCP2 level with expression changes is robust. (A) Strong 

reciprocal correlation of Log2FC relative to appropriate controls for KO (purple, left panel) and 

OE (red, right panel) cell lines, plotted against gene body mCG density for significantly 

changing genes (p<0.05; 1170 genes). (B) Log2FC versus mCG density for KO/WT (left) and 

OE 11x/OE ctr (right) for genes longer than 100 kb (black) and all genes (purple and red) from 

Fig. 1C. (C) Log2FC versus mCG density for KO/WT (left) and OE 11x/OE ctr (right) for low 

promoter mCG density (<1/100bp, 6849 genes) (black); all data (purple and red). (D) As in (C) 

for high promoter mCG density (>1/100bp, 8528 genes). (E) Log2FC versus mCG density for 

KO/WT (top) and OE 11x/OE ctr (bottom) from intronic RNA (black), compared to exonic RNA 

(purple and red). 
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Fig. S5. Repression assay designed to measure MeCP2-mediated repression. (A) A map 

of the CpG-free vector and promoter used to express luciferase containing approximately 100 

CpGs that are restricted to the body of the luciferase gene. (B) Study design shows how the 

expression of un-methylated and methylated reporter are compared, each normalised to a co-

transfected construct expressing Renilla luciferase. Transfected mouse fibroblasts cells were 

null for both Mecp2 and Mbd2 genes. 
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Fig. S6. Details of the experimental and simulated ChIP-seq and ATAC-seq. (A) 

Schematic representation of our quantitative MeCP2 ChIP-seq protocol for human neuronal 

chromatin (turquoise), with Drosophila chromatin spike-ins (grey) added for normalisation, and 

precipitated using antibodies against H2Av. (B) Total number of Drosophila reads compared 

to LUHMES reads obtained from ChIP-seq for cells expressing four levels of MeCP2: KO 

(purple), WT (green), OE 4x (orange) and OE 11x (red); each with three biological replicates. 

(C) Enrichment factor (human chromatin relative to spiked-in Drosophila chromatin) increases 
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linearly with the level of MeCP2. Two biological replicates are shown as individual data points. 

(D) ChIP-seq model goodness-of-fit versus 𝑝 (probability that an mCG is occupied by MeCP2). 

The model becomes relatively insensitive to the exact value of 𝑝 for 𝑝 < 0.1 (similar values of 

𝜒2). (E) ChIP-seq enrichment profiles centred at unmethylated CG dinucleotides. Black lines 

show profiles predicted by the model. (F) ATAC-seq depletion profiles in the +/-100 bp regions 

surrounding unmethylated CG dinucleotides. Profiles are averages over 2-4 biological 

replicates. 
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Fig. S7. Condensation and Detachment models fail to reproduce experimental data. (A) 

A general model of gene transcription. Each gene can be in two states: ON (TSS accessible 

to Pol II) or OFF (TSS not accessible). In the ON state, mRNA is produced with rate 𝐽 which 

depends on the transcription initiation rate 𝛼 and the elongation rate 𝑣. RNA-seq does not 

measure 𝐽 but the amount of mRNA accumulated in the cell (TPM, transcripts per million) 

which also depends on degradation rate 𝑑. Three proposed models of MeCP2-dependent 

transcriptional regulation relate to different stages of transcription. (B) Log2FC predicted by 

the Detachment model (black line) does not agree with Log2FC for KO/ctr from RNA-seq 

(purple) when plotted against gene body mCG density. (C) Same as in (B) for OE 11x/OE ctr 

(red).  
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Fig. S8. Details of Congestion models. (A) The Slow Sites model in which MeCP2-induced 

chromatin modifications slow down elongating RNA Pol II. (B) Transcription rate J as a function 

of the initiation rate α. 𝐽 saturates for large 𝛼, similarly as in the Dynamical Obstacles model 

(Fig. 4B). (C) Log2FC obtained from the Slow Sites model (black line) agree well with 

experimental data (red, orange and purple). Left panel: model fitted to OE 11x to obtain α(ρ). 

Middle and right panels: model predictions compared to the experimental Log2FC for OE 4x 

(orange) and KO (purple). (D) The maximum slope of Log2FC versus mCG density in gene 

bodies as predicted by the Slow Sites model (black line) reproduces the slopes from RNA-seq 

data for all seven levels of MeCP2. (E) Initiation rates obtained by fitting the slow sites model 

to Log2FC(OE 11x). (F) Initiation rates obtained by fitting the Dynamic Obstacles model to 

Log2FC(OE 11x). (G) Log2FC in OE 11x versus OE control plotted as a function of TPM in 

OE control shows a negative correlation with expression level as expected from the 

Congestion models. 
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Fig. S9. Generation of MeCP2 overexpression mutants. (A) LUHMES cell lines were 

modified to overexpress MeCP2 with different mutations R111G (black) and R306C (brown). 

(B) Overexpression of R111G and R306C compared with control cells (OE ctr) and OE WT 

(11x) confirmed by Western blots using antibodies against MeCP2 and H3 as loading control 

in three independent differentiations. (C) Immunofluorescence images with an antibody 

against MeCP2 show uniform overexpression of MeCP2 mutants R111G and R306C in the 

LUHMES-derived neurons at 9 days of differentiation. Scale bar is 50 m. 
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Fig. S10. (A) Number of genes for which Log2FCs are correlated with the level of MeCP2 

(Spearman’s r>0.8) and whose absolute value of Log2FC is larger than the cut-off Log2FC 

(horizontal axis). (B) Log2FC for genes changing monotonously (either increasing or 

decreasing) with MeCP2 level (black points). Unfiltered data from Fig. 1C is shown in colour. 
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Fig. S11. (A) Simulated ChIP enrichment profiles for different MeCP2-DNA attachment 

probabilities 𝑝 show a counter-intuitive reciprocal dependence between profile height and 

MeCP2 occupancy. (B) The height of the peak in the enrichment profile (C) as a function of 𝑝. 
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Fig. S12. Benchmarking of the simulated ATAC-seq. (A) Comparison between 

experimental and simulated (𝑝 = 0, 𝑡 = 0.04, 𝑔 = 6) ATAC-seq counts shows that Tn5 bias is 

important in reproducing the normalized counts in silico. Red = OE 11x, blue = simulated with 

no Tn5 bias, black = simulated with Tn5 bias. (B) Simulated footprint 𝑓 for 𝑝 = 0.05, 𝑔 = 6 and 

𝑡 = 0.01, 0.03, 0.07 (blue, yellow, and green respectively) shows that excluding the Tn5 

insertion bias does not significantly affect the depth of the footprint. Left = with Tn5 bias, right 

= no bias. (C) The role of CG bias 𝑏 on the simulated footprint 𝑓. CG bias cancels out if 

identical in both test and reference samples. Left: the same 𝑏 = 0,2,6 (blue, yellow, and green 

respectively) for the test and reference samples. The footprint is not affected by the bias. Right: 

different 𝑏’s for the test and reference samples: 𝑏𝑡𝑒𝑠𝑡 = 0, 𝑏𝑟𝑒𝑓 = 6 (blue) and 𝑏𝑡𝑒𝑠𝑡 = 6, 𝑏𝑟𝑒𝑓 =

0 (yellow). The shape and depth of the footprint is significantly affected. In all cases 𝑝 = 0.04. 

(D) The shape of the footprint depends on the difference in digestion time 𝑡 between the test 

and the reference sample, but the depth of the footprint does not. Blue = (𝑡𝑡𝑒𝑠𝑡 = 0.03, 𝑡𝑟𝑒𝑓 =

0.03), yellow = (𝑡𝑡𝑒𝑠𝑡 = 0.03, 𝑡𝑟𝑒𝑓 = 0.01), green = (𝑡𝑡𝑒𝑠𝑡 = 0.03, 𝑡𝑟𝑒𝑓 = 0.07). In all cases, 𝑝 =

0.05, 𝑏 = 6.0. 
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Fig. S13. (A) Plots of gene expression (transcripts per million, TPM) versus gene body mCG 

density for KO and OE 11x show that small differences between the two cell lines are 

overshadowed by a much stronger dependence on gene body mCG density that is 

independent of MeCP2. (B) Transcription rate 𝐽 as a function of mCG density, for 𝐿 = 30 kb. 

(C) Maximum transcription rate (𝜌 = 0) versus gene length 𝐿. 
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Table S1: Cell lines, their MeCP2 levels, and number of replicates for each experiment (RNA-

seq, ATAC-seq, ChIP-seq). Note: replicate means independent differentiation. 

   RNA-seq (number of replicates) 

ATAC-seq 
(number of 
replicates) 

ChIP-seq 
(number of 
replicates) WGBS (number of replicates) 

cell line 
name 

public 
name 

MeCP2 
relative 
to WT 

Nov-
13 

Mar-
14 

Nov-
14 

Sep-
15 

Jan-
17 

Nov-
15 

Feb-
16 Nov-16 BS_Jul_14 TAB_Sep_14 Ox_Mar_15 

KO H4 KO1 0.06   4  4   1 1 2    

KO D10 KO2 0.05   4  4    2      
lenti 4 
inf 1 KD1 0.11  4           
lenti 5 
inf 1 KD2 0.33 3            
lenti 1 
inf 1 Sc 0.87 3            
lenti 4 
inf 2 KD1 0.13 3            
lenti 5 
inf 2 KD2 0.24  4           
lenti 1 
inf 2 Sc 0.90  4           

wildtype  WT 1.00 3  4      1  2  3 3 3 

ctr E10 WT 0.95   4  4   1 1      

ctr F6 WT 0.79    4    2      

ctr C8 WT 0.82    4         

ctr G5 WT 1.06    4         
OEC 
CMV 32 
A8 OEC 1.10    4  3        
lenti 24 
inf 1 OE 3x 3.10 3            
lenti 24 
inf 2 OE 3x 3.27  4           
OE Syn 
35 E4 OE 4x 3.71    4    2  2     
OE Syn 
35 E5 OE 4x 3.97    4         
OE CMV 
33 E6 OE 11x 9.94    4   1 1      
OE CMV 
33 C10 OE 11x 11.40    4 3    2     
OE CMV 
R111G 
50 B8 

OE 
R111G 7.21     3        

OE CMV 
R306C 
49 C8 

OE 
R306C 10.74     3        
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Table S2: Sequences of shRNAs and guide RNAs used to make knock-downs and knock-

outs. 

name sequence 5'-3' 

shRNA1_s ccggTGACAAAGCTTCCCGATTAACCTCGAGGTTAATCGGGAAGCTTTGTCAtttttG 

shRNA1_as aattCaaaaaTGACAAAGCTTCCCGATTAACCTCGAGGTTAATCGGGAAGCTTTGTCA 

shRNA2_s ccggACACATCCCTGGACCCTAATGctcgagCATTAGGGTCCAGGGATGTGTtttttG 

shRNA2_as aattCaaaaaACACATCCCTGGACCCTAATGCTCGAGCATTAGGGTCCAGGGATGTGT 

shRNA_scr_s ccggGCTAGAGAGTAATCCGTAGTAttcaagagaTACTACGGATTACTCTCTAGCttttttG 

shRNA_scr_as aattCaaaaaGCTAGAGAGTAATCCGTAGTAtctcttgaaTACTACGGATTACTCTCTAGC 

Guide RNAs  

sgRNA A AGAAGCTTCCGGCACAGCCG  

sgRNA B CGCTCCATCATCCGTGACCG  
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Table S3: The list of antibodies used in this work. 

antibody species clonal company 
cat. 
number method concentration RRID 

anti-NF mouse mono Covance 
SMI-
311R IF 1:500 for IF  AB_509991 

anti-H3 rabbit mono 
Cell 
Signaling 4499 WB 

1:10 kx for 
WB AB_10544537 

anti-H3 rabbit poly Abcam AB1791 WB 
1:50 kx for 
WB AB_302613 

anti-
MeCP2 mouse mono 

Active 
Motif 61286 IF 1:200 for IF AB_2615067 

anti-
MeCP2 rabbit mono 

Cell 
Signaling D4F3 WB/IF/ChIP 1000/200/50 AB_2143849 

anti-
MeCP2 mouse mono Sigma 6818 WB 

1:1000 for 
WB AB_262075 

anti-
MeCP2 mouse mono Sigma 7443 WB 

1:1000 for 
WB AB_477235 
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Table S4: q-PCR primers used in this work. 

name sequence 5'-3' 

hMeCP2_1_f gatcaatccccagggaaaag 

hMeCP2_1_r cctctcccagttaccgtgaa 

hMeCP2_2_f gagaccgtactccccatcaa 

hMeCP2_2_r agtcctttcccgctcttctc 

hMeCP2_3_f caaggccaaacagagaggag 

hMeCP2_3_r caatccgctccgtgtaaagt 

hGAPDH_2_f acccagaagactgtggatgg 

hGAPDH_2_r ttctagacggcaggtcaggt 

hGAPDH_3_f cagcctcaagatcatcagca 

hGAPDH_3_r tgtggtcatgagtccttcca 

hCypA_1_f ggtttatgtgtcagggtggtg 

hCypA_1_r ttctccccatagatggacttg 

hCypA_2_f ttttcatctgcactgccaag 

hCypA_2_r catggcctccacaatattca 

hSox2_f caagatgcacaactcggaga 

hSox2_r gcttagcctcgtcgatgaac 

hFox-3_f ccgaccctacagagaagcag 

hFox-3_r gaattgcccgaacatttgc 

hTH_f gtgttccagtgcacccagta 

hTH_r gccaatgtcctgcgagaa 

hDAT_f agtggcctggttctatggtg 

hDAT_r gaccacgaacaggagaaagc 

hDRD2_f ggaggtggtaggtgagtgga 

hDRD2_r gatgctgatggcacacaagt 
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Movie S1: Congestion model with dynamic obstacles: visualisation of Pol II traffic in the 

absence of obstacles. 

Movie S2: Congestion model with dynamic obstacles: visualisation of Pol II traffic in the 

presence of MeCP2-induced obstacles (blue rectangles). 

Movie S3: Congestion model with slow sites: visualisation of Pol II traffic in the presence of 

MeCP2-induced slow sites. 
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