Supplementary Information for:

No evidence that warmer temperatures are associated with selection for smaller body sizes

Adam M. Siepielski^{1*}, Michael B. Morrissey², Stephanie M. Carlson³, Clinton D. Francis⁴, Joel G. Kingsolver⁵, Kenneth D. Whitney⁶, and Loeske E.B. Kruuk⁷

Proceedings of the Royal Society of B: Biological Sciences

https://doi.org/10.1098/rspb.2019.1332

Affiliations:

¹Department of Biological Sciences, University of Arkansas, Fayetteville, AR, U.S.A.

²School of Biology, University of St. Andrews, St. Andrews, U.K.

³Department of Environmental Science, Policy, and Management, University of California

Berkeley, CA, U.S.A.

⁴Department of Biological Sciences, Cal Poly State University, 1 Grand Ave, San Luis Obispo, CA 93407, U.S.A.

⁵Department of Biology, University of North Carolina, Chapel Hill, NC, U.S.A.

⁶Department of Biology, MSC03-2020, University of New Mexico, Albuquerque, NM, U.S.A.

⁷Research School of Biology, The Australian National University, Canberra, Australia.

This file contains:

Methods and Results of the full phylogenetic random regression model Variance components associated with Model 1 presented in the main text Figures S1-S4 Table S1-S3

Methods and Results of the full phylogenetic random regression model

The models presented in the main text contains a random term for species to account for differences in selection among species. We present here a full phylogenetic random regression model that separates out the phylogenetic component of this species effect, to account for any lack of independence originating from shared evolutionary history among the species in the dataset. We constructed this elaboration for Models 1 and 2 of the main text, as these are the core models of our analysis. We followed the general recommendations developed by [1] and [2] to construct the models. Below we describe the construction of the phylogeny, and construction and results from the full phylogenetic random regression model.

Phylogeny construction

We constructed a phylogeny for the species in our selection database. Our target species consisted of nine birds, seven fish, seven insects, five mammals, three reptiles, and one amphibian (Table S1). We used GenBank to obtain mitogenomes for each of the 32 target species (or a congeneric or confamilial, if the target species was not available) plus two Cnidarian outgroup taxa (*Acropora aculeus* and *Nematostella* sp.). After extracting five mitochondrial loci (CO1, CO2, CO3, COB, and ND2), we aligned locus-specific alignments with MAFFT v7.215 [3]) in Geneious [4]. We used PartitionFinder2 [5] to determine optimal partitioning schemes and models of sequence evolution; GTR+G was used for all genes. We constrained the tree with a series of monophyletic statements and ran 10⁷ MCMC generations with a linked clock and tree model in BEAST2 [6] via the CIPRES Science Gateway v. 3.3 [7]. We then used TreeAnnotator v.1.10 [6] with a 5% burn-in to get a single best tree with mean node heights and visualized the tree in FigTree v1.4.4 (http://tree.bio.ed.ac.uk/software/figtree/). The tree was made ultrametric using the *compute.brlen* function in the R package *ape* [8]. The phylogeny is provided as a .nex file.

Meta-analytical model

Our phylogenetic random regression extension of Models 1 and 2 in the main text took the form

$$\beta_{ijk} = A + B t_{ijk} + (a_j + b_j t_{ijk}) + (sp_k + sp_b_k t_{ijk}) + (sn_k + sn_b_k t_{ijk}) + \epsilon_{ijk} + e_{ijk},$$

where, as before: β_{ijk} is the *i*th selection coefficient estimate for dataset *j* in species *k*; *A* and *B* are the fixed effect intercept and slope, respectively, of the regression of selection coefficients on annual temperature values, t_{ijk} ; ϵ_{ijk} are measurement errors, $\epsilon_{ijk} \sim N(0, SE_{ijk}^2)$; and e_{ijk} are residuals distributed as $e_{ijk} \sim N(0, \sigma_e^2)$. In addition, this model contains the random intercepts sp_k and slopes sp_b_k for the phylogenetic component of the species effect, distributed as:

$$\begin{bmatrix} sp_k \\ sp_bk \end{bmatrix} \sim N\left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \sigma_{sp}^2 & \sigma_{sp,sp_b} \\ \sigma_{sp,sp_b} & \sigma_{sp_b}^2 \end{bmatrix}\right),$$

and intercepts and slopes sn_k and sn_b_k for the non-phylogenetic component of the species effect (with equivalent variances and covariance σ_{sn}^2 , $\sigma_{sn_b}^2$ and σ_{sn,sn_b}^2).

As above, the model was implemented in the R package MCMCglmm [9]. The prior and model were specified as follows:

```
prior_PhyloRR=list(R=list(V=1,nu=0.002),
G=list(G1=list(V=diag(2),n=1,alpha.mu=rep(0,2),alpha.V=diag(2)*1000),
G2=list(V=diag(1),n=0.002),
G3=list(V=diag(1),n=0.002)))
model_PhyloRR<- MCMCglmm(estSelCoef~1+ envMeanCenter,
random=~us(1+envMeanCenter):dataset+Species+SpeciesPermEnv, mev=mev
,data=d_grads_time_ses_size_anim
,ginverse=list(Species=Ainv.UM),prior=pr_Prior
,nitt=2600000,thin=2000,burnin=600000,verbose=FALSE)
```

All autocorrelation values were < 0.05.

Results

The results from the phylogenetic random regression were qualitatively the same as those presented in the main text. In particular, there was no evidence of an effect of temperature on either selection gradients (Table S3a) or selection differentials (Table S3b). There was also no support for any phylogenetic component to the species effect, nor for any variance in slopes or intercepts within either the phylogenetic or non-phylogenetic species effects for selection gradients (Table S3a) or differentials (Table S3b). The only exception from these phylogenetically informed results is that, although the estimates of the fixed effect intercepts are very similar (gradients 0.129, differentials 0.221 here; gradients 0.107, differentials 0.156 in the main text), the 95% CIs are considerably wider and hence span zero, reflecting the greater degree of uncertainty in the models incorporating phylogenetic effects.

Supplementary Tables

Group	Target Species	Sequence used	GenBank	Sequence
•		-	Accession	length
Amphibian	Bufo valliceps	Bufo stejnegeri	KR136211.1	17939
Bird	Petrochelidon pyrrhonota	Cecropis daurica	KJ499911.1	17949
Bird	Parus caeruleus	Cyanistes cyanus	KX388472.1	16788
Bird	Ficedula albicollis	Ficedula albicollis	KF293721.1	16787
Bird	Malurus cyaeneus	Malurus melanocephalus	KJ909199.1	15568
Bird	Parus major	Parus major	NC_026293.1	16776
Bird	Setophaga caerulescens	Setophaga coronata	FJ236285.1	15583
Bird	Spheniscus magellanicus	Spheniscus magellanicus	KU361806.1	16659
Bird	Tachycineta bicolor	Tachycineta bicolor	JQ071614.1	17945
Bird	Zosterops lateralis chlorocephalus	Zosterops lateralis	KC545407.1	17821
Cnidarian	Acropora aculeus	Acropora aculeus	NC_029251.1	18528
Cnidarian	Nematostella	Nematostella sp	DQ643835.1	16389
Fish	Esox lucius	Esox lucius	AP004103.1	16695
Fish	Oncorhynchus kisutch	Oncorhynchus kisutch	MF621751.1	16660
Fish	Oncorhynchus mykiss	Oncorhynchus mykiss	MF621750.1	16660
Fish	Oncorhynchus nerka	Oncorhynchus nerka	EF055889.1	16658
Fish	Oncorhynchus tshawytscha	Oncorhynchus tshawytscha	AF392054.1	16644
Fish	Salmo salar	Salmo salar	AF133701.1	16669
Fish	Salmo trutta	Salmo trutta	AM910409.1	16687
Insect	Aquarius remigis	Aquarius paludum	FJ456944.1	15380
Insect	Calopteryx splendens	Atrocalopteryx melli	MG011692.1	15562
Insect	Tetraneura sorini	Eriosoma lanigerum	KP722582.1	15640
Insect	Ischnura elegans	Ischnura elegans	KU958378.1	15962
Insect	Oecanthus nigricornis	Oecanthus sinensis	KY783908.1	16142
Insect	Psilocorsis quercicella	Promalactis suzukiella	KM875542.1	15507
Insect	Scathophaga stercoraria	Scathophaga stercoraria	KM200724.1	16223
Mammal	Cervus elaphus	Cervus elaphus	AB245427.2	16357
Mammal	Crocidura russula	Crocidura russula	NC_006893.1	17202
Mammal	Chionomys nivalis	Microtus fortis	JF261174.1	16310
Mammal	Mirounga leonina	Mirounga leonina	AM181023.1	16079
Mammal	Ovis aries	Ovis aries	NC_001941.1	16616
Reptile	Anolis sagrei	Anolis carolinensis	EU747728.2	17223
Reptile	Lacerta agilis	Lacerta agilis	NC_021766.1	17089
Reptile	Nerodia sipedon	Nerodia sipedon	JF964960.1	17706
-	-	-		

Table S1. Taxa included in the phylogenetic analysis, with GenBank accession numbers.

Table S2. Full output from the meta-analytical models reported in the main text (Models 1 and 2), relating (2a) selection gradients and (2b) selection differentials to annual mean temperature. See Methods for full details of the model, which is set out in equation (2). Because effects of temperature may vary between study populations, we consider variation in slopes with temperature within each data-set, but there is no indication of any such variance in either gradients of differentials. Values shown are means of posterior distributions along with their 95% credible intervals.

Table S3a Selection gradients				
Terms	Intercepts	Slopes (on temperature)		
Random effects	variance	covariance/variance		
data-set	$\sigma_a^2 = 0.00078$	$\sigma_{a,b} = -0.00051$		
	(0.00015, 0.001572)	(-0.00109, 0.00002)		
		$\sigma_b^2 = 0.0010560$		
		(0.00026, 0.00202)		
species	$\sigma_s^2 = 0.01449 \ (0.00362, \ 0.02889)$			
residual	$\sigma_e^2 = 0.01179 \ (0.01044, \ 0.01328)$			
Fixed effects				
Intercept (A)	0.10784 (0.05084 , 0.16778)			
Slope (B)	-0.00384 (-0.02012, 0.00879)			

Table S2b Selection differentials

Terms	Intercepts	Slopes (on temperature)
Random effects	variance	covariance/variance
data-set	$\sigma_a^2 = 0.00033$ (0.00000, 0.00081)	$\sigma_{a,b} = -0.00001$ (-0.00023,0.00020)
		$\sigma_b^2 = 0.00009$
		(0.00000, 0.00033)
species	$\sigma_s^2 = 0.03038 \ (0.00908, \ 0.0)$	5885)
residual	$\sigma_e^2 = 0.00249 \ (0.001925, 0.001$	00316)
Fixed effects		
Intercept (A)	0.15618 (0.07347, 0.2539)	8)
Slope (B)	0.00017 (-0.00868, 0.0082	29)

Table S3. Results from the full meta-analytical phylogenetic random regression model relating (3a) selection gradients and (3b) selection differentials to annual mean temperature. For each of the three random effects of data-set, phylogenetic species effect ('species:phylo') and non-phylogenetic species effect ('species:non-phylo'), the table shows the variance-covariance values for intercepts and slopes. Values shown are means of posterior distributions along with their 95% credible intervals.

Terms	Intercepts	Slopes (on temperature)
Random effects	variance	covariance/variance
data-set	$\sigma_a^2 = 0.000811 \\ (0.00000, 0.001862)$	$\sigma_{a,b} = -0.000507$ (-0.001351, 0.000256)
		$\sigma_b^2 = 0.001456$ (0.000262, 0.002883)
species:phylo	$\sigma_{sp}^2 = 0.013811$ (0.00000, 0.055788)	$\sigma_{sp,sp_b} = -0.003459$ (-0.024228, 0.010307)
		$\sigma_{sp_b}^2 = 0.008642$ (0.00000, 0.034667)
species:non-phylo	$\sigma_{sn}^2 = 0.015104$ (0.001359, 0.031904)	$\sigma_{sn,sn_b} = -0.006676$ (-0.023249, 0.002748)
		$\sigma_{sn_b}^2 = 0.007585$ (0.00000, 0.028581)
residual	$\sigma_e^2 = 0.015418$ (0.013401, 0.017394)	
Fixed effects		
Intercept (A)	0.129 (-0.057, 0.280)	
Slope (B)	0.079 (-0.229, 0.056)	

Table S3a Selection gradients

Terms	Intercepts	Slopes (on temperature)
Random effects	variance	covariance/variance
data-set	$\sigma_a^2 = 0.\ 000416 \\ (0.00000,\ 0.\ 001003)$	$\sigma_{a,b} = 0.\ 000004$ (-0. 000212, 0. 000219)
		$\sigma_b^2 = 0.\ 000071$ (0.\ 000000, 0.\ 000266)
species:phylo	$\sigma_{sp}^2 = 0.\ 069346$ (0.00000, 0. 21254)	$\sigma_{sp,sp_b} = -0.\ 006309$ (-0. 072251, 0. 028905)
		$\sigma_{sp_b}^2 = 0.024197$ (0.00000, 0.096782)
species:non-phylo	$\sigma_{sn}^2 = 0.\ 023494$ (0.000002, 0. 067463)	$\sigma_{sn,sn_b} = -0.\ 002173$ (-0. 023711, 0. 016987)
		$\sigma_{sn_b}^2 = 0.00014379$ (0.00000, 0. 053242)
residual	$\sigma_e^2 = 0.\ 001832 \\ (0.\ 001318, \ 0.\ 00233)$	
Fixed effects		
Intercept (A)	0.221 (-0.087, 0.635)	
Slope (B)	0.025 (-0.239, 0.185)	

Table S3b Selection differentials

Supplementary Figures

Figure S1. Funnel plots for selection gradients and differentials in the full data sets (a and b, gradients and differentials, respectively), and with large outliners removed to show more of the data (c and d, gradient and differentials, respectively. In all cases, there is no strong evidence for publication bias as the distributions of selection coefficients and their standard errors generate funnels that are all largely symmetrical. Each point is an individual selection coefficient and its corresponding standard error.

Figure S2. The full data set from figure 1 in the main text, showing large outliers.

Figure S3. The full data set from figure 2 in the main text, showing large outliers.

Figure S4. The full data set from figure 3 in the main text, showing large outliers.

References

- 1. Hadfield, J., and S. Nakagawa. 2010. General quantitative genetic methods for comparative biology: phylogenies, taxonomies and multi-trait models for continuous and categorical characters. Journal of Evolutionary Biology **23**:494-508.
- 2. Nakagawa, S., and E. S. Santos. 2012. Methodological issues and advances in biological meta-analysis. Evolutionary Ecology **26**:1253-1274.
- 3. Katoh, K. & Standley, D. M. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. *Mol. Biol. Evol.* **30**, 772–780.
- Kearse, M. et al. 2012. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28: 1647– 1649. <u>https://doi.org/10.1093/bioinformatics/bts199</u>
- Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T., Calcott, B. 2017. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution 34(3):772-773. https://DOI: dx.doi.org/10.1093/molbev/msw260
- Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu C-H, Xie D, et al. (2014) BEAST 2: A Software Platform for Bayesian Evolutionary Analysis. PLoS Comput Biol 10(4): e1003537. <u>https://doi.org/10.1371/journal.pcbi.1003537</u>
- 7. Miller, M. A., Pfeiffer, W. & Schwartz, T. 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In *Proceedings of the Gateway Computing Environments Worksho p* (GCE) 1–8 (IEEE, New Orleans, LA, USA).
- 8. Paradis, E., Claude, J. & Strimmer, K. 2004. APE: analyses of phylogenetics and evolution in R language. Bioinformatics **20**, pp.289-290.
- 9. Hadfield, J. D. 2010. MCMC methods for multi-response Generalised Linear Mixed Models: the MCMCglmm R package. J. Stat. Softw. **33**, 1-22