

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Updating medical expenditures by smoking status in American adults

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-026592
Article Type:	Research
Date Submitted by the Author:	12-Sep-2018
Complete List of Authors:	Swedler, David; Pacific Institute for Research and Evaluation, Miller, Ted; Pacific Institute for Research and Evaluation; Curtin University - Perth City Campus Ali, Bina; Pacific Institute for Research and Evaluation Waeher, Geetha; Pacific Institute for Research and Evaluation Bernstein, Steven L.; Yale School of Medicine, Emergency Medicine
Keywords:	HEALTH ECONOMICS, PUBLIC HEALTH, STATISTICS & RESEARCH METHODS

1		
2		
3 4	1	Updating medical expenditures by smoking status in American adults
5 6	2 3	David I. Swedler, PhD ¹
7 8	4 5	Ted R. Miller, PhD ^{1,2}
9 10 11	6 7	Bina Ali, PhD^1
12 13	8 9 10	Geetha Waeher, PhD ¹
14 15 16	10 11 12	Steven L. Bernstein, MD ³
17 18	12 13 14	¹ Pacific Institute for Research and Evaluation, Calverton, MD, USA
19 20 21	15 16	² Curtin University School of Public Health, Perth, Australia
22 23	17 18	³ Department of Emergency Medicine, Yale School of Medicine; Department of Health Policy, Yale School of Public Health, New Haven, CT, USA
24 25	19	
25 26	20	
27	21	Corresponding Author: David Swedler
28	22	11720 Poltavillo Dr. Sto. 000
29	23	Colverton MD 20705 United States of America
30	24	carventon, MD 20705, Onneu States of America
31	25	from 1 201 755 2700
32 33	26	1 - 11 - 55 - 2799
34	27	<u>aswedler(<i>a</i>)pire.org</u>
35 36	28 29 20	Word Count: 2693
37 38 39	30 31 32	Reference Count: 34
40 41	33	Keywords: economics; quit status; age effects; MEPS
42 43		
45 46		
47 48 49		
50 51		
52 53 54		
55 56		
57 58		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Objectives: To assess the medical expenditures of American adults by their smoking status-Current, Former, or Never smokers. We update these expenditures controlling for personal characteristics and medical history. The impact of years-since-quitting and decade of life are also examined. Setting and participants: Weighted sample of American adults, 2011 – 2015. The National Health Interview Survey (NHIS) and Medical Expenditure Panel Survey (MEPS) are weighted representations of approximately 250 million adults, annually. Sampling of NHIS is multistage and data collected throughout the year. Primary outcome measures: Using data from NHIS and MEPS, we collected demographic data, self-reported medical history, and current smoking status. Smoking status was designated as Never, Current, and Former, along with years-since-quitting. Total medical expenditures were collected from MEPS for 2011 -2015. We used Manning's two-part model to model average expenditures per individual and marginal costs for individuals at all levels of smoking status. Results: American adults averaged 4,830 in average medical expenditures. Never smokers (4,360,95% CI = 4154.3 - 4566.3), had lower expenditures than Current (\$5,244,95% CI = 4707.9 - 5580.3) and Former (\$5,590, 95% CI = 5267.4 - 5913.5) smokers. Confidence intervals for Current and Former smokers overlapped. Results were similarly significant when controlling for disease history. Years-since-quitting did not affect expenditures. In each decade of adult life, Former smokers had the highest annual medical expenditures, followed by Current and Never smokers. Conclusions: We updated annual medical expenditures for the Obamacare-era for smoking status using the current best practice model. Former smokers had lower medical expenditures than Current smokers in all age groups. While we identify Former smokers as having higher medical expenditures than

-			
	J	,	
	1	٠	
	4	,	

1		
2		
3	1	Current smokers, we do not examine how care-seeking behavior varies between levels of each
4	-	Current sinokers, we do not examine now cure seeking benution varies between revers of each
5	2	risk factor
6	2	
7	n	Antiala Summany
8	3	Arucie Summary
9 10		
10	4	Strengths and Limitations
12		
13	5	• This is also the first study to report data on medical expenditure by smoking status while
14		
15	6	major provisions of the Affordable Care Act (a.k.a. Obamacare) were taking effect.
16		
17	7	• We use the gold standard two-part model developed by Manning to estimate medical
18		
19 20	8	expenditures from the MEPS and NHIS surveys.
20		
22	9	• We separated medical expenditures for Ever Smokers into Current and Former smokers,
23		
24	10	finding that the latter had slightly increased annual medical expenditures.
25		
26	11	• Effects of smoking status were examined across decades of life
27		
28	17	• Although we controlled for history of comorbidities, the data do not contain any
29 30	12	• Annough we controlled for history of comorbidities, the data do not contain any
31	10	information on reason for quitting among former smakers
32	12	information on reason-for-quitting among former smokers.
33	1 /	
34	14	
35		
36 27		
37 38		
39		
40		
41		
42		
43		
44		
45 46		
40 47		
48		
49		
50		
51		
52		
53		
54 57		
55 56		
50 57		
58		
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 Introduction

It is well-established that smoking can lead to medical conditions requiring acute and chronic treatment[1]. Accurate marginal costs for medical risk factors are important when conducting benefit-cost analyses for health risk behavior interventions[2-4]. The most recent national estimates of medical expenditures by smoking status have only considered a binary smoking variable: current smokers versus current non-smokers[5, 6]. Further, none of these national studies have analyzed medical expenditure data more recently than 2011. A series of state-level analyses by Max and colleagues[7-9] described medical costs in California by current, former, and never smokers.

The California studies used the attributable fraction (AF) method to allocate medical expenditures. The accuracy of the AF method is constrained by how accurately costs are allocated among diagnoses and by the availability of accurate AFs that are not confounded by co-occurring risk factors[10]. The negative outcomes that smokers experience vary widely in nature and timing. Importantly, the method does not measure the standard error for the mean estimated cost per risk-taker[11].

In analyzing the costs of medical conditions, health economics literature has largely shifted from this AF method to analyses of annual per capita medical spending of people with the condition relative to a comparison group (*c.f.* Manning *et al* [12]). This approach captures both mean and standard error. It accounts for complications that may not be coded to the underlying condition. It recognizes that medical visits for conditions related to the behavioral risk factors may displace other medical care that might be sought if an individual did not have a given risk factor. For Page 5 of 27

ge 5 of 27	BMJ Open
	5
1	example, a doctor who is scheduling quarterly visits to manage diabetes is unlikely to separately
2	schedule the annual well-care visit recommended for a healthier patient. That well-care visit gets
3	coded as a chronic care visit even though it may not raise annual medical spending[13].
4	
5	While the Manning model is now the gold standard for working with skewed outcomes like
6	medical spending, it is an imperfect tool. Although it statistically assigns costs to given risk
7	factors or medical conditions, it does not tell us the "why" behind each individual medical
8	encounter or expense. Medical spending is influenced by care-seeking behavior. Smokers may
9	avoid visiting the doctor because it is uncomfortable to report their continued smoking behavior
10	or tedious to hear the doctor urge them to change[14]. Health consciousness and associated use
11	of preventive care may be below-average for people who engage in risky behavior. Furthermore,
12	drinking heavily may be a symptom of life management issues that reduce care-seeking. Those
13	differences in health management may mask the impacts of risk behavior on medical spending.
14	
15	Purpose
16	This study updates the national estimates for annual medical expenditures of adult Americans by
17	their current smoking status. We examine medical expenditure data for 2011 – 2015 and apply
18	the cutting-edge two-stage Manning model to more accurately assess error around mean
19	expenditures.
20	
21	Methods
22	Data Collection
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

We analyzed data on smoking status from the National Health Interview Survey (NHIS)[15]. The NHIS is an annual, cross-sectional survey designed to monitor health and behaviors of civilian, non-institutionalized Americans through a nationally-representative sample. The Medical Expenditure Panel Survey (MEPS) tracks a nationally representative subsample of NHIS participants for 24 months starting in the year after their NHIS interview. MEPS collects five rounds of data per respondent on healthcare visits and expenditures [16]. It captures all payments for care, regardless of source, and models costs for visits without payment data including charity care and visits bundled into capitated care. We used 2011-2015 MEPS data on total medical expenditures from the individual perspective for adults 18-years and older and the corresponding NHIS 2009 – 2014 data. We linked data from MEPS and NHIS via the Agency for Health Care Quality Data Center, as Xu et al and An did in their analyses of smoking costs [5, 6]. Smoking status was identified through the NHIS Supplemental Adult Questionnaire (SAQ). Like earlier studies, we identified Ever smokers as participants who smoked at least 100 cigarettes in their lifetimes. We defined all others as Never smokers[6]. Ever smokers were further subdivided into those who reported quitting smoking, Former smokers, versus those who did not report quitting, Current smokers[7-9]. For Former smokers, we also identified years-since-quitting. To conduct regressions, we included the following demographic and behavioral characteristics: age, sex, race/ethnicity, marital status, education level, total family income, family size, employment status, marital status, self-reported binge drinking status, body mass index (BMI), recent pregnancy, educational, employment, and insurance data from MEPS. Age was employed as a continuous variable in the main analyses and divided into ten-year blocks in the age-specific

Page 7 of 27

1 2

BMJ Open

7

2	
ך ג	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
11	
14	
10	
10	
17	
18	
19	
20	
21	
22	
23	
24	
27	
25	
20	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
27	
27	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
<u>1</u> 2	
40	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
50	
22	
00	

sensitivity analysis. Binge drinking data were also obtained from the SAO, which used the 1 accepted binge drinking definition of men having 5 or more drinks and women having 4 or more 2 drinks. Those participants who indicated that they had 12 or more instances of binge drinking in 3 the past year were categorized as frequent binge drinkers, and those who had 1-11 instances were 4 categorized as infrequent binge drinkers. BMI data were calculated from self-reported weight 5 and height in the NHIS. We dichotomized BMI into obese for those with a BMI of 30 kg/m2 or 6 greater, and not obese for those with lower BMI. We refer to these variables collectively as 7 personal characteristics. 8 9 NHIS and MEPS had data on self-reported diagnosis history for various diseases. Using data 10

from both databases, we generated dichotomous variables for whether a participant had ever been diagnosed with the following diseases: asthma, arthritis, any cancer, cardiovascular diseases (including angina, coronary heart disease, myocardial infarction, or stroke), diabetes, and emphysema. NHIS had data on chronic obstructive pulmonary disease (COPD) available for 2013 through 2015 MEPS panels. From MEPS, we obtained scores for the Short Form 12 to measure quality of life[17], the Personal Health Questionnaire (PHQ) metric for depression[18], and the Kessler 6 questionnaire for mental illness[19]. From these variables, we were able to

code a partial list of comorbidities that Elixhauser and colleagues[20] suggest controlling forwhen using administrative medical data.

20

21 *Regression Analysis*

We used the two-stage model approach developed by Manning and Basu[12] to model discretecontinuous outcomes. The first regression in this method models whether or not an individual

had any medical expenditures in the given year. Then, the second model estimates the costs for
individuals who the first model predicted had any costs. We used an ordinary least squares
(OLS) logistic regression in the first step, followed by a generalized linear model with a
generalized Gamma distribution in the second stage. We used the Stata twopm command
developed by Belotti and colleagues to execute the two models[21]. The twopm command
allowed us to use the survey weights provided by AHRQ. Data were collected and merged using
SAS v9.4 analytical software [SAS Institute, Cary, NC]. Data management was performed in
SAS and Stata IC v15 [Stata Corp, College Station, TX]. All data analysis was conducted using
Stata.

Our main regression model (Model 1) included personal characteristics and current smoking status. We experimented with including body mass index in the model; however, the variable had near 50% missingness, so we excluded it from our final model. (Including it had negligible on estimated expenditures by smoking status.) We added the disease history to the two-stage model (Model 2). Finally, because COPD comorbidity was only available for the last three years of the study, we excluded COPD and re-ran the model on all five years of the study period. Because controlling for this co-morbidity did not noticeably affect the estimates by smoking status, we chose to report estimates based on 5 years of data, thus increasing our power to probe costs among subgroups. We replicated Model 2 to include data on years-since-quitting for former smokers at 1-, 2-, and 5-year thresholds. Because prevalence of these risk factors changes over the life course, we also examined the marginal effects of smoking on medical expenditures by decade of adult life[21]. Non-overlapping confidence intervals indicated statistically significant differences.

g
2

1 ว		
2 3	1	
4 5 6	2	Results
7 8 0	3	An average of 19.7 million adults self-identified as Current smokers in the US from 2011 to
9 10 11	4	2015. The proportion of current smokers decreased over the study period, to approximately 17.5
12 13	5	million adults in 2015. An average of 43.6 million adults in the U.S. were Ever smokers. The
14 15 16	6	proportion of former smokers increased through decades of life, peaking over 22% for those
10 17 18	7	older than 70-years-old. Tables 1a and 1b describe smoking status by study year and decade of
19 20	8	life, respectively.
21 22 22	9	
23 24 25	10	Table 2 displays the costs for American adults in 2011 – 2015 by smoking status. In Model 1,
26 27	11	mean annual medical expenditures for US adults were \$4,830. Costs for adult Never smokers
28 29	12	were below the national average (\$4,360). Former smokers had the highest annual medical
30 31 32	13	expenses, \$5,590 (28% increase over never smokers). Although Current smokers had lower
33 34	14	average costs than Former smokers at \$5,144 (18% increase over Never smokers), the 95%
35 36	15	confidence intervals (CIs) overlap for Current and Former smokers. If we combine Current and
37 38 39	16	Former smokers into Ever smokers and re-run Model 1, the average costs for someone who has
40 41	17	ever smoked is \$5,400 (95% CI = 5142 – 5659).
42 43	18	
44 45 46	19	In Table 3, a sensitivity analysis for Model 2 that includes years-since-quitting for former
40 47 48	20	smokers does not find a direct relationship between time since smoking cessation and medical
49 50	21	expenditures. The mean expenditures by cessation period have small differences, and the 95%
51 52	22	CIs greatly overlap. Table 4 identifies that the medical expenditures also are greater for Former
55 54 55 56 57 58	23	smokers at each age decade, for ages 20 through 80. The 95% CIs for Never smokers in Table 4
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2
3
4
5
6
7
/
8
9
10
11
12
12
1.0
14
15
16
17
18
19
20
20
∠ I 22
22
23
24
25
26
27
20
20
29
30
31
32
33
34
25
22
30
37
38
39
40
41
47
42 40
40
44
45
46
47
48
49
50
50
51
52
53
54
55
56
57
50
20
59

60

1

do not contain the estimate for Former smokers at each decade. The CIs for Former smokers do 1 2 not contain the estimate for Never smokers at all decades except for age 20. The 95% CIs for Current smokers at each decade include both the Never and Former smoker estimates, and the 3 4 CIs for Never and Former smokers include the estimate for Current smokers. 5 Multiplying costs by average number of smokers for 2011 - 2015, current smokers incurred 6 \$101.4 billion in average annual medical expenses, \$15 billion above the costs for a 7 demographically comparable number of Never smokers. Former smokers incurred an average of 8 \$133.6 billion in annual medical expenditures, a \$29 billion increase over comparable Never 9 smokers. Average annual medical expenditures for Ever smokers are \$235.6 billion, 10 approximately \$45 billion above the costs for a demographically comparable number of Never 11 elie 12 smokers. 13 Discussion 14 We updated the national estimates for smoking costs in American adults through 2015 using 15 state-of-the-science economic modeling techniques. Our estimates for annual medical 16 expenditures for all civilian non-institutionalized adults was 4.830 for 2011 - 2015. This 17 estimate for the study period was close to Mitchell and Machlin's [22] estimate of average total 18 medical expenditures in 2015 using MEPS data (\$4,978). Our estimate for annual expenditures 19 20 and marginal costs due to smoking are below similar estimates generated using the National Health Expenditure Assessment (NHEA) database[23, 24]. However, the NHEA is more 21 comprehensive than the MEPS in capturing Medicaid costs covering institutionalized adults[24, 22 23 25], so identifying lower estimate in MEPS is to be expected.

1	
2	
3	
4	
5	
6	
7	
/ 0	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20	
ו∠ 20	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
26	
30	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
<u>4</u> 0	
-79 50	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1	
2	We find that Former smokers have greater annual medical costs over Current and Never
3	smokers; however, the 95% confident intervals overlap for Current and Former smokers in the
4	main model. Surely, some smokers quit after diagnosis of costly health problems linked to
5	smoking, but the cost differential narrows only slightly after controlling for major chronic
6	conditions (many of which are linked to smoking). Especially at younger ages, quitting appears
7	to be more likely to sort smokers by health consciousness and associated use of medical care.
8	
9	Some older studies compared medical spending per capita among current, former, and never
10	smokers. Using data from the 1987 National Medical Expenditure Survey (NMES), Miller and
11	colleagues [1999] identified higher annual medical expenditures in former smokers over current
12	smokers. Contrasting with the national studies, two studies using local claims data[26, 27] found
13	that medial expenditures for current and former smokers were nearly identical, with a slight
14	spike in costs for former smokers immediately following quitting.
15	
16	Some current smokers may experience very high cost medical expenditures over a short period
17	before dying (and thus not incurring any further costs), while former smokers may continue to
18	amass lower cost medical encounters. These former smokers would be gaining up to 10 years of
19	survival and medical expenditures over current smokers[28]. Current smokers also may simply
20	be doctor-phobic, anxious to avoid yet another lecture about their smoking. The persistence and
21	perversity of our finding that higher medical expenditures in former smokers at all ages and
22	regardless of time-since-quitting, suggests exploring the issue using qualitative methods.
23	

2	
3	
4	
5	
6	
7	
, Q	
0	
9	
10	
11	
12	
13	
11	
14	
15	
16	
17	
18	
19	
20	
21	
∠ I วา	
22	
23	
24	
25	
26	
 27	
27 20	
28	
29	
30	
31	
32	
22	
27	
24	
35	
36	
37	
38	
39	
10	
4U	
41	
42	
43	
44	
45	
46	
47	
4/	
48	
49	
50	
51	
52	
52	
55	
54	
55	
56	
57	
58	
50	
59	
60	

15

1

1	We followed the methods of Xu and colleagues[5] and Max and colleagues[7-9] to identify
2	current, former, and never smokers in NHIS/MEPS data. Those studies examined attributable
3	fractions (AFs) for medical expenditures rather than costs to individuals. The two-part model
4	developed by Manning and colleagues has become the gold-standard for estimating costs in a
5	skewed sample, such as medical expenditures[12, 29]. It has been used to study the impact of
6	smoking on healthcare costs across a wide variety of databases[6, 30, 31]. An analysis from
7	An[6] using the two-stage model was performed on medical expenditures associated with
8	smoking status (ever vs. never) and obesity (< 30 BMI vs. $30 \ge$ BMI) using MEPS data from
9	1998 to 2011. In contrast to the present study, An's estimated expenditures did not control for
10	quit status, marital status, family income, family size, or pregnancy. Our estimated cost
11	differences between ever/never smokers and obese/non-obese individuals (data not shown) were
12	lower than in the An study. We believe that the inclusion of quit status and additional personal
13	characteristics in the two-stage models increases the precision of our estimate over this prior
14	study.

16 *Limitations and Strengths*

Many of the prior studies assessing the impact of behavioral risk factors on medical expenditures employ the traditional attributable fraction approach, which constructs costs from selected acute and chronic conditions related to the individual risk factors of interest. This method is appropriate unless a study echoes our aim to examine the marginal effects of the risk behaviors on costs to individuals. Using the two-part model[12], our study provides a different assessment of medical expenditures than the attributable fraction method. Attributable fraction studies estimate the smoking-related medical costs incurred in treated diseases that resulted from

BMJ Open

1	smoking. The two-stage modelling approach instead looks at the overall medical spending of the
2	smoking cohort. It can be strongly influenced by a difference in care-seeking propensity.
3	
4	Our estimates for prevalence of smoking (9%) are lower than those found in other surveillance
5	studies. The Behavioral Risk Factor Surveillance System (BRFSS) identified 15% of American
6	adults as current smokers in 2015[32]. This discrepancy between BRFSS and NHIS data may be
7	due to different modes of data collection. While BRFSS collects data through telephone surveys,
8	NHIS collects data via within-household, in-person interviews. Unlike NHIS, BRFSS data
9	collection is de-centralized as is the responsibility of each state health department.
10	
11	The goal of this study was to update medical expenditures for smoking to 2015. It was beyond
12	the scope of the study to assess spending by type of medical service utilized. With sufficient
13	budget, doing so might have allowed us to propose more hypotheses as to why certain risks had
14	increased costs over others, as Sturm[33] did for obesity and problem drinking.
15	
16	In a period of low inflation, we chose to control for inflation in our multi-year analysis of
17	expenditures by including dummy variables for MEPS year rather than using price adjusters that
18	assume a fixed market basket of medical services. The dummy variables should account not only
19	for year-to-year changes in costs, but for other endogenous temporal effects. Those effects
20	include the many policy features of 2010's Affordable Care Act that went into effect from 2011
21	to 2015[34].
22	
23	Conclusion
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Our data fill a niche by updating medical expenditures nationwide across current smoking status. One clear application of our estimates is in computing the medical spending foregone because behavioral risk-takers have elevated risks of morbidity and mortality. Although tobacco cessation cause declines in chronic illness, early mortality, and associated costs, it appears they may not decrease annual medical expenditures per survivor. That finding suggests studies of return on investment in smoking cessation that use attributable-fraction-based costs may yield skewed results.

Acknowledgement and Funding

The research in this paper was conducted at the CFACT Data Center, and the support of AHRQ is acknowledged. The results and conclusions in this paper are those of the authors and do not

indicate concurrence by AHRQ or the Department of Health and Human Services.

Funding for this project was provided by NHLBI grant AN: 3421751 (Implementation of HIT-

Enhanced Tobacco Treatment for Hospitalized Smokers) and NCI grant R01CA201873

(Optimizing Tobacco Dependence Treatment in the Emergency Department).

Patient and Public Involvement- Cohort Description

The data for this study were obtained from two datasets generated by the U.S. Department of

Health and Human Services: the National Health Interview Survey (NHIS) and the Medical

Expenditure Panel Survey (MEPS). Both surveys are samples of American adults that can be

used to generate weighted estimates of medical care in the U.S. These pre-existing data were not

identified to the researchers, so we could not contact them nor involve them in any aspect of the

study design and analysis.

Data Sharing-

1	-
н	5
_	-

Data used in this study are held by AHRQ and U.S. DHHS and were used by agreement with the researchers. Raw data used in this study cannot be shared. Author contributions SLB, TRM, and DIS conceived of the study. DIS, GW, and TRM designed the analysis. DIS conducted the analysis. DIS and BA wrote and edited drafts of the manuscript. All authors provided input on the manuscript and approved of the final draft. Competing interests: All authors state that they have no competing interests.

2 3	1	References
4 5 6	2	1 U.S. Department of Health and Human Services. The Health Consequences of Smoking-50
7 8	3	Years of Progress: A Report of the Surgeon General. Atlanta, GA: U.S. Department of
9 10 11	4	Health and Human Services, Centers for Disease Control and Prevention, National Center
12 13	5	for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health,
14 15	6	2014.
16 17 18	7	2 Warner KE. Cost effectiveness of smoking-cessation therapies. Pharmacoecon
19 20	8	1997;11(6):538-49. doi: 10.2165/00019053-199711060-00003
21 22	9	3 LeBlanc ES, O'Connor E, Whitlock EP, et al. Effectiveness of primary care-relevant
23 24 25	10	treatments for obesity in adults: A systematic evidence review for the U.S. Preventive
26 27	11	Services Task Force. Ann Intern Med 2011;155(7):434-47. doi: 10.7326/0003-4819-155-
28 29	12	7-201110040-00006
30 31 32	13	4 Fleming MF, Mundt MP, French MT, et al. Brief physician advice for problem drinkers: Long-
33 34	14	term efficacy and benefit-cost analysis. <i>Alcohol Clin Exp Res</i> 2002;26(1):36-43.
35 36	15	5 Xu X, Bishop EE, Kennedy SM, et al. Annual healthcare spending attributable to cigarette
37 38 30	16	smoking: an update. Am J Prev Med 2015;48(3):326-33. doi:
39 40 41	17	10.1016/j.amepre.2014.10.012 [published Online First: 2014/12/17]
42 43	18	6 An R. Health care expenses in relation to obesity and smoking among U.S. adults by gender,
44 45 46	19	race/ethnicity, and age group: 1998-2011. Public Health 2015;129(1):29-36. doi:
40 47 48	20	10.1016/j.puhe.2014.11.003 [published Online First: 2014/12/30]
49 50	21	7 Max W, Sung HY, Shi Y, et al. The cost of smoking in California. Nicotine Tob Res
51 52	22	2016;18(5):1222-9. doi: 10.1093/ntr/ntv123 [published Online First: 2015/07/15]
53 54 55		
56 57		
58 59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 17 of 27

1

BMJ Open

2		
3 4	1	8 Max W, Rice D, Sung H, et al. The economic burden of smoking in California. Tob Control
5 6	2	2004;13(3):264-67.
7 8 0	3	9 Max W, Sung H-Y, Shi Y, et al. The Cost of Smoking in California, 2009. San Francisco, CA:
9 10 11	4	Institute for Health & Aging, University of California, San Francisco, 2014.
12 13	5	10 Rockhill B, Newman B, Weinberg C. Use and misuse of population attributable fractions. Am
14 15 16	6	J Public Health 1998;88(1):15-19.
10 17 18	7	11 Lavelle TA, Kent DM, Lundquist CM, et al. Patient variability seldom assessed in cost-
19 20	8	effectiveness studies. Med Decis Making 2018;38(4):487-94.
21 22	9	12 Manning WG, Basu A, Mullahy J. Generalized modeling approaches to risk adjustment of
23 24 25	10	skewed outcomes data. J Health Econ 2005;24(3):465-88. doi:
26 27	11	10.1016/j.jhealeco.2004.09.011 [published Online First: 2005/04/07]
28 29	12	13 Jackson CA, Manning WG, Jr., Wells KB. Impact of prior and current alcohol use on use of
30 31 32	13	services by patients with depression and chronic medical illnesses. Health Serv Res
32 33 34	14	1995;30(5):687-705. [published Online First: 1995/12/01]
35 36	15	14 Butler CC, Pill R, Stott NCH. Qualitative study of patients' perceptions of doctors' advice to
37 38	16	quit smoking: implications for opportunistic health promotion. BMJ
39 40 41	17	1998;316(7148):1878-81. doi: 10.1136/bmj.316.7148.1878
42 43	18	15 National Center for Health Statistics. National Health Interview Survey 2018 [Available
44 45	19	from: https://www.cdc.gov/nchs/nhis/index.htm.
46 47 48	20	16 Agency for Healthcare Research and Quality. Medical Expenditure Panel Survey 2018
40 49 50	21	[Available from: https://meps.ahrq.gov/mepsweb/.
51 52		
53 54		
55 56		
57 58		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2		
3 4	1	17 Sengupta N, Nichol MB, Wu J, et al. Mapping the SF-12 to the HUI3 and VAS in a Managed
5 6	2	Care Population. Med Care 2004;42(9):927-37. doi:
/ 8 0	3	10.1097/01.mlr.0000135812.52570.42
9 10 11	4	18 Arroll B, Goodyear-Smith F, Crengle S, et al. Validation of PHQ-2 and PHQ-9 to screen for
12 13	5	major depression in the primary care population. Ann Fam Med 2010;8(4):348-53. doi:
14 15	6	10.1370/afm.1139 [published Online First: 2010/07/21]
16 17 18	7	19 Kessler RC, Barker PR, Colpe LJ, et al. Screening for serious mental illness in the general
19 20	8	population. Arch Gen Psychiatry 2003;60(2):184-89. doi: 10.1001/archpsyc.60.2.184
21 22	9	20 Elixhauser A, Steiner C, Harris D, et al. Comorbidity measures for use with administrative
23 24 25	10	data. Med Care 1998;36(1):8-27.
25 26 27	11	21 Belotti F, Deb P, Manning WG, et al. twopm: Two-part models. Stata J 2015;15(1):3-20.
28 29	12	22 Mitchell E, Machlin S. Concentration of health expenditures and selected characteristics of
30 31	13	high spenders, U.S. civilian noninstitutionalized population, 2015. Statistical Brief #506.
32 33 34	14	Rockville, MD: Agency for Healthcare Research and Quality, 2017.
35 36	15	23 Lassman D, Hartman M, Washington B, et al. US health spending trends by age and gender:
37 38	16	Selected years 2002–10. Health Aff 2014;33(5):815-22.
39 40 41	17	24 Finkelstein EA, Trogdon JG, Cohen JW, et al. Annual medical spending attributable to
41 42 43	18	obesity: Payer-and service-specific estimates. Health Aff 2009;28(5):w822-w31. doi:
44 45	19	10.1377/hlthaff.28.5.w822 [published Online First: 2009/07/29]
46 47	20	25 Sing M, Banthin JS, Selden TM, et al. Reconciling medical expenditure estimates from the
48 49 50	21	MEPS and NHEA, 2002. Health Care Financ Rev 2006;28(1):25-40.
51		
52 53		
54 55		
56		
57 58		
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 19 of 27

BMJ Open

	13
1	26 Fishman PA, Khan ZM, Thompson EE, et al. Health care costs among smokers, former
2	smokers, and never smokers in an HMO. <i>Health Serv Res</i> 2003;38(2):733-49. doi:
3	10.1111/1475-6773.00142
4	27 Hockenberry JM, Curry SJ, Fishman PA, et al. Healthcare costs around the time of smoking
5	cessation. Am J Prev Med 2012;42(6):596-601. doi: 10.1016/j.amepre.2012.02.019
6	28 Jha P, Ramasundarahettige C, Landsman V, et al. 21st-century hazards of smoking and
7	benefits of cessation in the United States. N Engl J Med 2013;368(4):341-50. doi:
8	10.1056/NEJMsa1211128 [published Online First: 2013/01/25]
9	29 Buntin MB, Zaslavsky AM. Too much ado about two-part models and transformation?
10	Comparing methods of modeling Medicare expenditures. J Health Econ 2004;23(3):525-
11	42.
12	30 Coughlan D, Yeh ST, O'Neill C, et al. Evaluating direct medical expenditures estimation
13	methods of adults using the medical expenditure panel survey: An example focusing on
14	head and neck cancer. Value Health 2014;17(1):90-7. doi: 10.1016/j.jval.2013.10.004
15	[published Online First: 2014/01/21]
16	31 Baumeister SE, Böger CA, Krämer BK, et al. Effect of chronic kidney disease and comorbid
17	conditions on health care costs: A 10-year observational study in a general population.
18	Am J Nephrol 2010;31(3):222-29.
19	32 Jamal A, King B, Neff L, et al. Current cigarette smoking among adults—United States,
20	2005–2015. MMWR Morb Mortal Wkly Rep 2016;65:1205–11. doi:
21	http://dx.doi.org/10.15585/mmwr.mm6544a2
22	33 Sturm R. The effects of obesity, smoking, and drinking on medical problems and costs.
23	Health Aff 2002;21(2):245-53.
	For peer review only - http://bmjopen.bmj.com/site/about/quidelines.xhtml
	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

2	_	
3 4 5	1	34 French M I, Homer J, Gumus G, et al. Key provisions of the patient protection and Affordable
5 6 7	2	Care Act (ACA): A systematic review and presentation of early research findings. Health
7 8	3	Serv Res 2016;51(5):1735-71. doi: 10.1111/1475-6773.12511
9 10	4	
11 12	5	
13 14	5	
15 16		
17 18		
19 20		
21 22		
23		
25		
26 27		
28 29		
30 31		
32 33		
34 35		
36 37		
38 39		
40 41		
42		
44		
45 46		
47 48		
49 50		
51 52		
53 54		
55 56		
57		
58 59		For near review only - http://bmionon.hmi.com/cito/about/cuidalines.yhtml
60		For peer review only - http://binjopen.binj.com/site/about/guidelines.xhtml

Table 1. Prevalence of smoking by year of MEPS data collection (a) and decade of age (b).

Average participants in each category were developed using survey weights.

		tatus by ye	ar of medi	cal expendi	iture	
	2011	2012	2013	2014	2015	n
Current	7.7%	8.7%	8.4%	7.9%	7.3%	19,716,719
Never	83.7%	81.6%	81.6%	81.6%	82.4%	206,862,703
Former	8.6%	9.7%	10.0%	10.5%	10.3%	23,900,571
Table 1b	Smoking s	tatus by d	ecade of lif	e		
	18-30	31-40	41-50	51-60	61-70	70+
Current	6.8%	9.8%	9.2%	9.6%	7.4%	4.4%
Never	90.5%	83.2%	83.8%	79.8%	76.8%	73.3%
Former	2.7%	7.0%	7.1%	10.6%	15.7%	22.3%

1	Table 2. Results	of the two-part	model for sm	oking status on mea	in medical expen	ditures per

- year, 2011 2015. Model 1 included smoking and personal characteristics only^a. Model 2
- included personal characteristics, smoking, and comorbidities ^b. (CI = Confidence interval)

	Ν	Aodel 1	Model 2		
	Mean cost	95% CI	Mean cost	95% CI	
Never Smoker	\$4,360	4154.3 - 4566.3	\$4,499	4219.6 - 4778.9	
Current Smoker	\$5,144	4707.9 - 5580.3	\$4,647	4186.9 - 5107.0	
Former Smoker	\$5,590	5267.4 - 5913.5	\$5,012	4618.4 - 5406.4	

^a Covariates included in Model 1 were age (continuous), gender, race/ethnicity (White, African American, Asian, Hispanic origin, Other), education (No high school degree, High school or some college, At least college graduate), marital status (Single/Never married, Current married, Widowed/Divorced/Separated), Pregnancy in the prior year, employment status (Unemployed, Employed, Full-time student, Never worked, Retired), logged-total family income, insurance status (Private, Any public insurance (under age 65), Medicare/Medicaid+, Uninsured), family size, year dummy variables, any binge drinking in the prior year, and BMI (Normal weight or Underweight, Overweight or Obese). ^b In addition to the variables in Model 1, a history of the following conditions were added to Model 2: any

cancer, diabetes, asthma, arthritis, cardiovascular disease (angina, coronary heart disease, myocardial

infarction, or stroke), emphysema, quality of life calculated from Short Form 12, depression calculated

from the Personal Health Questionnaire, and mental illness from the Kessler 6 questionnaire. ant,.

- **Table 3.** Results of separate runs of the two-part model of mean medical expenditures for
- Former smokers using 1-, 2-, and 5-year thresholds for years-since-quitting smoking. (CI =
- Confidence interval)

Table 4. Average annual medical expenditures in American adults for 2011 – 2015 by age for smoking status from a two-part model including personal characteristics and disease history at

2	smoking status from a two-part model including personal characteristics and disease histo
3	each decade, age $20 - 80$.

			Age					
	20		30		4	0	50	
Smoking								
status	Estimate	95% CI	Estimate	95% CI	Estimate	95% CI	Estimate	95% CI
		(2366,		(2857,		(3472,		(4160,
Never	\$2,743	3151)	\$3,214	3571)	\$3,763	4054)	\$4,401	4642)
		(2390 <i>,</i>		(2928,		(3561,		(4284 <i>,</i>
Current	\$2,909	3428)	\$3,413	3897)	\$4,000	4438)	\$4,683	5081)
		(2704,		(3301,		(3947,		(4776,
Former	\$3,208	3711)	\$3,754	4208)	\$4,390	4783)	\$5,130	5483)
				A	vge			
	6	0	7(C	8	0		
Smoking								
status	Estimate	95% Cl 🧹	Estimate	95% CI	Estimate	95% CI		
		(4846,		(5505 <i>,</i>		(6184,		
Never	\$5,143	5440)	\$6,007	6508)	\$7,010	7836)		
		(5059,		(5839,		(6627,		
Current	\$5 <i>,</i> 478	5897)	\$6,403	6968)	\$7,479	8331)		
		(5574,		(6357,		(7160,		
Former	\$5,990	6407)	\$6,990	7623)	\$8,153	9145)		

BMJ Open

Consolidated Health Economic Evaluation Reporting Standards - CHEERS Checklist 1

CHEERS Checklist

Items to include when reporting economic evaluations of health interventions

The ISPOR CHEERS Task Force Report, Consolidated Health Economic Evaluation Reporting Standards (CHEERS)—Explanation and Elaboration: A Report of the ISPOR Health Economic Evaluations Publication Guidelines Good Reporting Practices Task Force, provides examples and further discussion of the 24-item CHEERS Checklist and the CHEERS Statement. It may be accessed via the Value in Health or via the ISPOR Health Economic Evaluation Publication Guidelines – CHEERS: Good Reporting Practices webpage: <u>http://www.ispor.org/TaskForces/EconomicPubGuidelines.asp</u>

Section/item	Item No	Recommendation	Reported on page No/ line No
Title and abstract			
Title	1	Identify the study as an economic evaluation or use more specific terms such as "cost-effectiveness analysis", and describe the interventions compared.	Title Pour
Abstract	2	Provide a structured summary of objectives, perspective, setting, methods (including study design and inputs), results (including base case and uncertainty analyses), and conclusions.	P1 Line 2-
Introduction			
Background and objectives	3	Provide an explicit statement of the broader context for the study.	
		Present the study question and its relevance for health policy o practice decisions.	P1-2
Methods			e
Target population and subgroups	4	Describe characteristics of the base case population and subgroups analysed, including why they were chosen.	PUL6-16
Setting and location	5	State relevant aspects of the system(s) in which the decision(s) need(s) to be made.	NIA
Study perspective	6	Describe the perspective of the study and relate this to the costs being evaluated.	FYL7
Comparators	7	Describe the interventions or strategies being compared and state why they were chosen.	Py 11-16
Time horizon	8	State the time horizon(s) over which costs and consequences are being evaluated and say why appropriate.	B-P4
Discount rate	9	Report the choice of discount rate(s) used for costs and outcomes and say why appropriate.	P11 L16-21
Choice of health outcomes	10	Describe what outcomes were used as the measure(s) of benefit in the evaluation and their relevance for the type of analysis performed.	N/A
Measurement of effectiveness	11a	<i>Single study-based estimates:</i> Describe fully the design features of the single effectiveness study and why the single study was a sufficient source of clinical effectiveness data.	N/A

For peer review only - http://bmjouwe.bmj.com/site/about/guidelines.xhtml

Page 26 of 27

BMJ Open	

 Consolidated Health Economic Evaluation Reporting Standards - CHEERS Checklist 2

	11b	Synthesis-based estimates: Describe fully the methods used for	
		identification of included studies and synthesis of clinical effectiveness data.	NI
Measurement and valuation of preference based outcomes	12	If applicable, describe the population and methods used to elicit preferences for outcomes.	NIA
Estimating resources and costs	13a	Single study-based economic evaluation: Describe approaches used to estimate resource use associated with the alternative interventions. Describe primary or secondary research methods for valuing each resource item in terms of its unit cost. Describe any adjustments made to approximate to opportunity costs.	
	13b	<i>Model-based economic evaluation:</i> Describe approaches and data sources used to estimate resource use associated with model health states. Describe primary or secondary research methods for valuing each resource item in terms of its unit cost. Describe any adjustments made to approximate to opportunity costs.	P4-6
Currency, price date, and conversion	14	Report the dates of the estimated resource quantities and unit costs. Describe methods for adjusting estimated unit costs to the year of reported costs if necessary. Describe methods for converting costs into a common currency base and the exchange rate.	P1:
Choice of model	15	Describe and give reasons for the specific type of decision- analytical model used. Providing a figure to show model structure is strongly recommended.	R2-3
Assumptions	16	Describe all structural or other assumptions underpinning the decision-analytical model.	P236
Analytical methods	17	Describe all analytical methods supporting the evaluation. This could include methods for dealing with skewed, missing, or censored data; extrapolation methods; methods for pooling data; approaches to validate or make adjustments (such as half cycle corrections) to a model; and methods for handling population heterogeneity and uncertainty.	P2-6,
Results			, ·
Study parameters	18	Report the values, ranges, references, and, if used, probability distributions for all parameters. Report reasons or sources for distributions used to represent uncertainty where appropriate. Providing a table to show the input values is strongly recommended.	Р7, Г1
Incremental costs and outcomes	19	For each intervention, report mean values for the main categories of estimated costs and outcomes of interest, as well as mean differences between the comparator groups. If applicable, report incremental cost-effectiveness ratios.	T1
Characterising 2 uncertainty	20a	Single study-based economic evaluation: Describe the effects of sampling uncertainty for the estimated incremental cost and incremental effectiveness parameters, together with the impact	TZ-4

For peer review only - http://bmjoure.bmj.com/site/about/guidelines.xhtml

age 27 of 27			BMJ Open	
		Cor	solidated Health Economic Evaluation Reporting Standards - CHEER	S Checklist
		20ь	of methodological assumptions (such as discount rate, study perspective). <i>Model-based economic evaluation:</i> Describe the effects on the results of uncertainty for all input parameters, and uncertainty related to the structure of the model and assumptions.	
0 1 2 3	Characterising heterogeneity	21	If applicable, report differences in costs, outcomes, or cost- effectiveness that can be explained by variations between subgroups of patients with different baseline characteristics or other observed variability in effects that are not reducible by more information.	₽N/A
4 5 6 7 8 9	Discussion Study findings, limitations, generalisability, and current knowledge	22	Summarise key study findings and describe how they support the conclusions reached. Discuss limitations and the generalisability of the findings and how the findings fit with current knowledge.	PG-11
0 1 2 3	Other Source of funding	23	Describe how the study was funded and the role of the funder in the identification, design, conduct, and reporting of the analysis. Describe other non-monetary sources of support	P12
4 5 7 3 9	Conflicts of interest	24	Describe any potential for conflict of interest of study contributors in accordance with journal policy. In the absence of a journal policy, we recommend authors comply with International Committee of Medical Journal Editors recommendations.	

For consistency, the CHEERS Statement checklist format is based on the format of the CONSORT statement checklist

The **ISPOR CHEERS Task Force Report** provides examples and further discussion of the 24-item CHEERS Checklist and the CHEERS Statement. It may be accessed via the *Value in Health* link or via the ISPOR Health Economic Evaluation Publication Guidelines – CHEERS: Good Reporting Practices webpage: <u>http://www.ispor.org/TaskForces/EconomicPubGuidelines.asp</u>

The citation for the CHEERS Task Force Report is:

Husereau D, Drummond M, Petrou S, et al. Consolidated health economic evaluation reporting standards (CHEERS)—Explanation and elaboration: A report of the ISPOR health economic evaluations publication guidelines good reporting practices task force. Value Health 2013;16:231-50.

BMJ Open

National medical expenditures by smoking status in American adults: an application of Manning's two-stage model to nationally-representative data

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-026592.R1
Article Type:	Research
Date Submitted by the Author:	28-Mar-2019
Complete List of Authors:	Swedler, David; Pacific Institute for Research and Evaluation, Miller, Ted; Pacific Institute for Research and Evaluation; Curtin University - Perth City Campus Ali, Bina; Pacific Institute for Research and Evaluation Waeher, Geetha; Pacific Institute for Research and Evaluation Bernstein, Steven L.; Yale School of Medicine, Emergency Medicine
Primary Subject Heading :	Smoking and tobacco
Secondary Subject Heading:	Health economics, Health services research
Keywords:	HEALTH ECONOMICS, PUBLIC HEALTH, STATISTICS & RESEARCH METHODS

1		
2		
3	1	National medical expenditures by smoking status in American adults: an application of
4	י ב	Manning's two stags model to nationally convesentative data
5	2	Manning s two-stage model to nationally-representative data
6	3	
7	4	David I. Swedler, PhD ¹
8	5	
9	6	Ted R. Miller, PhD ^{1,2}
10	7	
11	8	Bina Ali, PhD ¹
12	9	
13	10	Geethe Weeher PhD1
14	10	Occura Wacher, ThD
15	11	
16	12	Steven L. Bernstein, MD ³
1/	13	
18	14	¹ Pacific Institute for Research and Evaluation, Calverton, MD, USA
19	15	
20	16	² Curtin University School of Public Health, Perth, Australia
21 22	17	
22	18	³ Department of Emergency Medicine, Yale School of Medicine: Department of Health Policy
23	10	Vale School of Public Health New Haven CT USA
2 4 25	19	Tale School of Tuble ficaliti, New Haven, C1, USA
25	20	
27	21	
28	22	Corresponding Author: David Swedler
29	23	Pacific Institute for Research and Evaluation
30	24	11720 Beltsville Dr., Ste. 900
31	25	Calverton, MD 20705, United States of America
32	26	phone: 1-301-755-2446
33	27	fax: 1-301-755-2799
34	20	dswedler@pire.org
35	20	<u>dswedier(d,pite.org</u>
36	29	Ward Courts 2602
37	30	word Count: 2093
38	31	
39	32	Reference Count: 34
40	33	
41	34	Keywords: economics; quit status; age effects; MEPS
42		
43		
44 45		
45 46		
40 17		
48		
49		
50		
51		
52		
53		
54		
55		
56		
57		
58		
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Objectives: To assess the medical expenditures of American adults by their smoking status-Current, Former, or Never smokers. We update these expenditures controlling for personal characteristics and medical history and also assess the impact of years-since-quitting and decade of life. Setting and participants: Weighted sample of American adults, 2011 - 2015. The linked National Health Interview Survey (NHIS) and Medical Expenditure Panel Survey (MEPS) are annual weighted representations of approximately 250 million adults. Sampling of NHIS is multistage with data collected throughout the year. Primary outcome measures: Using data from NHIS and MEPS, we collected demographic data, self-reported medical history, and current smoking status. Smoking status was designated as Never, Current, and Former, along with years-since-quitting. Total medical expenditures were collected from MEPS for 2011 – 2015. We used Manning's two-part model to estimate average expenditures per individual and marginal costs for individuals at all levels of smoking status. Results: American adults averaged 4,830 in average medical expenditures. Never smokers (4,360,95% CI = 4154.3 - 4566.3), had lower expenditures than Current (\$5,244,95% CI = 4707.9 - 5580.3) and Former (\$5,590, 95% CI = 5267.4 - 5913.5) smokers. Confidence intervals for Current and Former smokers overlapped. Results were similarly significant when controlling for disease history. Years-sincequitting did not affect expenditures. In each decade of adult life, Former smokers had the highest annual medical expenditures, followed by Current and then Never smokers. Conclusions: We updated annual medical expenditures during the Affordable Care Act-era by smoking status using the current best practice model. While we identify Former smokers as having higher medical expenditures than Current smokers, we do not examine how care-seeking behavior varies between levels of each risk factor.

1		
2 3 4	1	Article Summary
5 6	2	Strengths and Limitations
7 8	3	• This is the first study to report medical expenditure by smoking status while major
9 10 11	4	provisions of the Affordable Care Act took effect.
12 13	5	• We use the gold standard two-part model developed by Manning to estimate medical
14 15 16	6	expenditures from the MEPS and NHIS surveys.
17 18	7	• We analyzed medical expenditures for Current smokers and Former smokers- both
19 20	8	separately and combined- across decades of life.
21 22 23	9	• Although we controlled for history of comorbidities, the data do not contain any
24 25	10	information on reason-for-quitting among former smokers.
26 27	11	• The cost differences observed incorporate any differences between the groups in care-
28 29 30	12	seeking for conditions unrelated to smoking.
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57	13	
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 Introduction

It is well-established that smoking can lead to medical conditions requiring acute and chronic treatment¹. Accurate marginal costs for medical risk factors are important when conducting benefit-cost analyses for health risk behavior interventions²⁻⁴. The most recent national estimates of medical expenditures by smoking status have only considered a binary smoking variable: current smokers versus current non-smokers⁵⁶. Further, none of these national studies have analyzed medical expenditure data more recently than 2011. A series of state-level analyses by Max and colleagues⁷⁻⁹ described medical costs in California by current, former, and never smokers.

The California studies used the attributable fraction (AF) method to allocate medical expenditures. In their review of the AF method, Rockhill and colleagues define attributable fraction and similarly-phrased terms to be "the proportion of disease risk in a population that can be attributed to the causal effects of a risk factor or set of factors," (p. 15)¹⁰. Rockhill et al find that the AF method has limitations, including that it is constrained by how accurately costs are allocated among diagnoses and by the availability of accurate AFs that are not confounded by co-occurring risk factors¹⁰. The negative outcomes that smokers experience vary widely in nature and timing. Importantly, the method does not measure the standard error for the mean estimated cost per risk-taker¹¹.

In analyzing the costs of medical conditions, health economics literature has largely shifted from
 this AF method to analyses of annual per capita medical spending of people with the condition
 relative to a comparison group¹²⁻¹⁵. This approach, pioneered by Willard Manning ¹⁶ captures

Page 5 of 27

BMJ Open

both mean and standard error and it accounts for complications that may not be coded to the underlying condition. That is, these equations take a more holistic view of medical care and expenditures associated with risk factors' coefficients than would a process seeking to attribute specified treatment costs to specified factors. It allows that medical visits for conditions related to the behavioral risk factors may displace other medical care that might be sought if an individual did not have a given risk factor. For example, a doctor who is scheduling quarterly visits to manage diabetes is unlikely to separately schedule the annual well-care visit recommended for a healthier patient. That well-care visit gets coded as a chronic care visit even though it may not raise annual medical spending¹⁷. While the Manning model is now the gold standard for working with skewed outcomes like medical spending, it is an imperfect tool. Although it statistically assigns costs to given risk factors or medical conditions, it does not tell us the "why" behind each individual medical encounter or expense. Medical spending is influenced by care-seeking behavior. Smokers may avoid visiting the doctor because it is uncomfortable to report their continued smoking behavior or tedious to hear the doctor urge them to change¹⁸. Health consciousness and associated use of preventive care may be below-average for people who engage in risky behavior. Furthermore, drinking heavily may be a symptom of life management issues that reduce care-seeking. Those differences in health management may mask the impacts of risk behavior on medical spending. Purpose This study updates the national estimates for annual medical expenditures of adult Americans by their current smoking status. We examine medical expenditure data for 2011 - 2015 and apply

the cutting-edge two-stage Manning model to more accurately assess error around mean
 expenditures.

4 Methods

5 Data Collection

We analyzed data on smoking status from the National Health Interview Survey (NHIS)¹⁹. The NHIS is an annual, cross-sectional survey designed to monitor health and behaviors of civilian, non-institutionalized Americans through a nationally-representative sample. The Medical Expenditure Panel Survey (MEPS) tracks a nationally representative subsample of NHIS participants for 24 months starting in the year after their NHIS interview. MEPS collects five rounds of data per respondent on healthcare visits and expenditures²⁰. It captures all payments for care, regardless of source, and models costs for visits without payment data including charity care and visits bundled into capitated care. We used 2011-2015 MEPS data on total medical expenditures from the individual perspective for adults 18-years and older and the corresponding NHIS 2009 – 2014 data. Annual medical expenditures were inflated to 2015 US dollars (USD) using the Personal Consumption Expenditures- Medical Care. We linked data from MEPS and NHIS via the Agency for Health Care Quality Data Center, as Xu et al⁵ did in their analyses of smoking costs⁶. Because our use of the publicly-available data adhered to the government's privacy restrictions, the project was given an Exemption by the Institutional Review Board of the Pacific Institute for Research and Evaluation prior to data analysis.

Smoking status was identified through the NHIS Supplemental Adult Questionnaire (SAQ). Like
earlier studies, we identified Ever smokers as participants who smoked at least 100 cigarettes in
Page 7 of 27

1

BMJ Open

7

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20 21	
י ∡ ר 2	
∠∠)2	
23 74	
24	
25	
20	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
57 58	
50	
73	
00	

their lifetimes. We defined all others as Never smokers⁶. Ever smokers were further subdivided 1 into those who reported quitting smoking, Former smokers, versus those who did not report 2 quitting, Current smokers⁷⁻⁹. For Former smokers, we also identified years-since-quitting. 3 4 To conduct regressions, we included the following demographic and behavioral characteristics: 5 6 age, sex, race/ethnicity, marital status, total family income, family size, employment status, 7 marital status, self-reported binge drinking status, body mass index (BMI), recent pregnancy, 8 education level, employment, and insurance data from MEPS. Age was employed as a 9 continuous variable in the main analyses and divided into ten-year blocks in the age-specific sensitivity analysis. Binge drinking data were also obtained from the SAQ, which used the 10 accepted binge drinking definition of men having 5 or more drinks and women having 4 or more 11 drinks. Those participants who indicated that they had 12 or more instances of binge drinking in 12 the past year were categorized as frequent binge drinkers, and those who had 1-11 instances were 13 14 categorized as infrequent binge drinkers. BMI data were calculated from self-reported weight and height in the NHIS. We dichotomized BMI into obese for those with a BMI of 30 kg/m2 or 15 greater, and not obese for those with lower BMI. We refer to these variables collectively as 16 17 personal characteristics.

18

NHIS and MEPS had data on self-reported diagnosis history for various diseases. Using data
from both databases, we generated dichotomous variables for whether a participant had ever
been diagnosed with the following diseases: asthma, arthritis, any cancer, cardiovascular diseases
(including angina, coronary heart disease, myocardial infarction, or stroke), diabetes, and
emphysema. NHIS had data on chronic obstructive pulmonary disease (COPD) available for

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2013 through 2015 MEPS panels. From MEPS, we obtained scores for the Short Form 12 to measure quality of life²¹, the Personal Health Questionnaire (PHQ) metric for depression²², and the Kessler 6 questionnaire for mental illness²³. From these variables, we were able to code a partial list of comorbidities that Elixhauser and colleagues²⁴ suggest controlling for when using administrative medical data.

Regression Analysis

We used the two-stage model approach developed by Manning and Basu¹⁶ to model discrete-continuous outcomes. The first regression in this method models whether or not an individual had any medical expenditures in the given year. Then, the second model estimates the costs for individuals who the first model predicted had any costs. We used an ordinary least squares (OLS) logistic probit regression in the first step, followed by a generalized linear model with a generalized Gamma distribution and log link in the second stage. We used the Stata twopm command developed by Belotti and colleagues to execute the two models²⁵. The twopm command allowed us to use the survey weights provided by AHRQ. Data were collected and merged using SAS v9.4 analytical software [SAS Institute, Cary, NC]. Data management was performed in SAS and Stata IC v15 [Stata Corp, College Station, TX]. All data analysis was conducted using Stata.

Our main regression model (Model 1) included personal characteristics and current smoking
status. We experimented with including body mass index in the model; however, the variable had
near 50% missingness, so we excluded it from our final model. (Further sensitivity analysis
indicated that body mass had negligible impact on estimated expenditures by smoking status).

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 9 of 27

BMJ Open

1	We added the disease history to the two-stage model (Model 2). Finally, because COPD
2	comorbidity was only available for the last three years of the study, we excluded COPD and re-
3	ran the model on all five years of the study period. Because controlling for this co-morbidity did
4	not noticeably affect the estimates by smoking status, we chose to report estimates based on 5
5	years of data, thus increasing our power to probe costs among subgroups. We further expanded
6	Model 2 to include data on years-since-quitting for Former smokers at 1-, 2-, and 5-year
7	thresholds. Because prevalence of these risk factors changes over the life course, we also
8	examined the marginal effects of smoking on medical expenditures by decade of adult life ²⁵ .
9	Non-overlapping confidence intervals indicated statistically significant differences.
10	
11	Results
12	An average of 19.7 million adults self-identified as Current smokers in the US from 2011 to
13	2015. The proportion of current smokers decreased over the study period, to approximately 17.5
14	million adults in 2015. An average of 43.6 million adults in the U.S. were Ever smokers. The
15	proportion of former smokers increased through decades of life, peaking over 22% for those
16	older than 70-years-old. Tables 1a and 1b describe smoking status by study year and decade of
17	life, respectively. Among the 23.9 million Former smokers, only 4.3% quit within the prior year,
18	8.7% quit within the prior 2 years, and 24.4% quit within the 5 years prior to the survey.
19	
20	Table 2 displays the costs for American adults in 2011 – 2015 by smoking status. In Model 1,
21	mean annual medical expenditures for US adults were \$4,830. Costs for adult Never smokers
22	were below the national average (\$4,360). Former smokers had the highest annual medical
23	expenses, \$5,590 (28% increase over never smokers). Although Current smokers had lower

average costs than Former smokers at \$5,144 (18% increase over Never smokers), the 95%
confidence intervals (CIs) overlap for Current and Former smokers. If we combine Current and
Former smokers into Ever smokers and re-run Model 1, the average costs for someone who has
ever smoked is \$5,400 (95% CI = 5142 - 5659).
In Table 3, a sensitivity analysis for Model 2 that includes years-since-quitting for former
smokers does not find a direct relationship between time since smoking cessation and medical
expenditures. The mean expenditures by cessation period have small differences, and the 95%
CIs greatly overlap. Table 4 identifies displays how medical expenditures vary across decades of
life by smoking status. The 95% CIs for Never smokers in Table 4 do not contain the estimate

for Former smokers at each decade. The CIs for Former smokers do not contain the estimate for Never smokers at all decades except for age 20. The 95% CIs for Current smokers at each decade include both the Never and Former smoker estimates, and the CIs for Never and Former smokers include the estimate for Current smokers.

Multiplying costs by average number of smokers for 2011 - 2015, Current smokers incurred \$101.4 billion in average annual medical expenses (95% CI = 12.6 billion – 14.1 billion), \$15 billion above the costs for a demographically comparable number of Never smokers. Former smokers incurred an average of \$133.6 billion in annual medical expenditures (95% CI = 9.28billion – 110 billion), a \$29 billion increase over comparable Never smokers. Average annual medical expenditures for Ever smokers are \$235.6 billion (95% CI = 224 billion – 247 billion), approximately \$45 billion above the costs for a demographically comparable number of Never smokers.

Page 11	of 27	BMJ Open
1		1
2 3	1	
4 5	-	
6	2	Discussion
, 8 9	3	We updated the national estimates for smoking costs in American adults through 2015 using
10 11	4	state-of-the-science economic modeling techniques. Our estimates for annual medical
12 13	5	expenditures for all civilian non-institutionalized adults was \$4,830 for 2011 – 2015, in 2015
14 15	6	USD. This estimate for the study period was close to Mitchell and Machlin's ²⁶ estimate of
16 17 18	7	average total medical expenditures in 2015 using MEPS data (\$4,978). Our estimate for annual
19 20	8	expenditures and marginal costs due to smoking are below similar estimates generated using the
21 22	9	National Health Expenditure Assessment (NHEA) database ^{27 28} . However, the NHEA is more
23 24	10	comprehensive than the MEPS in capturing Medicaid costs covering institutionalized adults
25 26 27	11	(including those in nursing homes), active-duty military, and foreign visitors to the US ^{28 29} , so
28 29	12	we expected MEPS to yield lower estimates.
30 31	13	
32 33 34	14	We find that Former smokers have greater annual medical costs over Current and Never
35 36	15	smokers; however, the 95% confident intervals overlap for Current and Former smokers in the
37 38	16	main model. Surely, some smokers quit after diagnosis of costly health problems linked to
39 40 41	17	smoking, but the cost differential narrows only slightly after controlling for major chronic
41 42 43	18	conditions (many of which are linked to smoking). Especially at younger ages, quitting appears
44 45	19	to be more likely to sort smokers by health consciousness and associated use of medical care.
46 47	20	
48 49 50	21	Some older studies compared medical spending per capita among current, former, and never
50 51 52	22	smokers. Using data from the 1987 National Medical Expenditure Survey (NMES), Miller and
53 54 55 56	23	colleagues [1999] identified higher annual medical expenditures in former smokers over current
57 58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

smokers. Contrasting with the national studies, two studies using local claims data^{30 31} found that
medial expenditures for current and former smokers were nearly identical, with a slight spike in
costs for former smokers immediately following quitting.

Some current smokers may experience very high cost medical expenditures over a short period before dying (and thus not incurring any further costs), while former smokers may continue to amass lower cost medical encounters. These former smokers would be gaining up to 10 years of survival and medical expenditures over current smokers³². Current smokers also may simply be doctor-phobic, anxious to avoid yet another lecture about their smoking. The persistence and perversity of our finding that higher medical expenditures in former smokers at all ages and regardless of time-since-quitting, suggests exploring the issue using qualitative methods.

We followed the methods of Xu and colleagues⁵ and Max and colleagues⁷⁻⁹ to identify current, former, and never smokers in NHIS/MEPS data. Those studies examined attributable fractions (AFs) for medical expenditures rather than costs to individuals. The two-part model developed by Manning and colleagues has become the gold-standard for estimating costs in a skewed sample, such as medical expenditures^{16 33}. It has been used to study the impact of smoking on healthcare costs across a wide variety of databases^{6 34 35}. An analysis from An⁶ using the two-stage model was performed on medical expenditures associated with smoking status (ever vs. never) and obesity (< 30 BMI vs. $30 \ge$ BMI) using MEPS data from 1998 to 2011. In contrast to the present study, An's estimated expenditures did not control for quit status, marital status, family income, family size, or pregnancy. Our estimated cost differences between ever/never smokers and obese/non-obese individuals (data not shown) were lower than in the An study. We

BMJ Open

1	believe that the inclusion of quit status and additional personal characteristics in the two-stage
2	models increases the precision of our estimate over this prior study.
3	
4	Limitations and Strengths
5	Many of the prior studies assessing the impact of behavioral risk factors on medical expenditures
6	employ the traditional attributable fraction approach, which constructs costs from selected acute
7	and chronic conditions related to the individual risk factors of interest. This method is
8	appropriate unless a study echoes our aim to examine the marginal effects of the risk behaviors
9	on costs to individuals. Using the two-part model ¹⁶ , our study provides a different assessment of
10	medical expenditures than the attributable fraction method. Attributable fraction studies estimate
11	the smoking-related medical costs incurred in treated diseases that resulted from smoking. The
12	two-stage modelling approach instead looks at the overall medical spending of the smoking
13	cohort. It can be strongly influenced by a difference in care-seeking propensity.
14	
15	Our estimates for prevalence of smoking (9%) are lower than those found in other surveillance
16	studies. The Behavioral Risk Factor Surveillance System (BRFSS) identified 15% of American
17	adults as current smokers in 2015 ³⁶ . This discrepancy between BRFSS and NHIS data may be
18	due to different modes of data collection. While BRFSS collects data through telephone surveys,
19	NHIS collects data via within-household, in-person interviews. Unlike NHIS, BRFSS data
20	collection is de-centralized as is the responsibility of each state health department.
21	
22	The goal of this study was to update medical expenditures for smoking to 2015. It was beyond
23	the scope of the study to assess spending by type of medical service utilized. With sufficient

budget, doing so might have allowed us to propose more hypotheses as to why certain risks had increased costs over others, as Sturm³⁷ did for obesity and problem drinking.

In a period of low inflation, we chose to control for inflation in our multi-year analysis of expenditures by including dummy variables for MEPS year rather than using price adjusters that assume a fixed market basket of medical services. The dummy variables should account not only for year-to-year changes in costs, but for other endogenous temporal effects. Those effects include the many policy features of 2010's Affordable Care Act that went into effect from 2011 to 2015³⁸.

Conclusion

Our data fill a niche by updating medical expenditures nationwide across current smoking status.
One clear application of our estimates is in computing the medical spending foregone because
behavioral risk-takers have elevated risks of morbidity and mortality. Although tobacco cessation
cause declines in chronic illness, early mortality, and associated costs, it appears they may not
decrease annual medical expenditures per survivor. That finding suggests studies of return on
investment in smoking cessation that use attributable-fraction-based costs may yield skewed
results.

20 Acknowledgement and Funding

The research in this paper was conducted at the CFACT Data Center, and the support of AHRQ is acknowledged. The results and conclusions in this paper are those of the authors and do not indicate concurrence by AHRQ or the Department of Health and Human Services. Page 15 of 27

BMJ Open

1		10					
2							
3 4	1	Funding for this project was provided by NHLBI grant AN: 3421751 (Implementation of HIT-					
5 6	2	Enhanced Tobacco Treatment for Hospitalized Smokers) and NCI grant R01CA201873					
/ 8 9	3	(Optimizing Tobacco Dependence Treatment in the Emergency Department).					
10 11	4	Patient and Public Involvement- Cohort Description					
12 13	5	The data for this study were obtained from two datasets generated by the U.S. Department of					
14 15	6	Health and Human Services: The National Health Interview Survey (NHIS) and the Medical					
16 17 18	7	Expenditure Panel Survey (MEPS). Both surveys are samples of American adults that can be					
19 20	8	used to generate weighted estimates of medical care in the U.S. These pre-existing data were not					
21 22	9	identified to the researchers, so we could not contact them nor involve them in any aspect of the					
23 24 25	10	study design and analysis.					
25 26 27	11	Data Sharing-					
28 29	12	Data used in this study are held by AHRQ and U.S. DHHS and were used by agreement with the					
30 31 22	13	researchers. Raw data used in this study cannot be shared.					
32 33 34	14	Author contributions					
35 36	15	SLB, TRM, and DIS conceived of the study. DIS, GW, and TRM designed the analysis. DIS					
37 38	16	conducted the analysis. DIS and BA wrote and edited drafts of the manuscript. All authors					
39 40 41	17	provided input on the manuscript and approved of the final draft.					
42 43	18	Competing interests:					
44 45	19	All authors state that they have no competing interests.					
46 47							
48							
49 50							
50 51							
52							
53							
54							
55 56							
57							
58							
59							

Page 16 of 27

BMJ Open

References

2	
3	1. U.S. Department of Health and Human Services. The Health Consequences of Smoking-50
4	Years of Progress: A Report of the Surgeon General. Atlanta, GA: U.S. Department of
5	Health and Human Services, Centers for Disease Control and Prevention, National Center
6	for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health,
7	2014.
8	2. Warner KE. Cost effectiveness of smoking-cessation therapies. <i>PharmacoEconomics</i>
9	1997;11(6):538-49. doi: 10.2165/00019053-199711060-00003
10	3. LeBlanc ES, O'Connor E, Whitlock EP, et al. Effectiveness of primary care-relevant
11	treatments for obesity in adults: A systematic evidence review for the U.S. Preventive
12	Services Task Force. Annals of Internal Medicine 2011;155(7):434-47. doi:
13	10.7326/0003-4819-155-7-201110040-00006
14	4. Fleming MF, Mundt MP, French MT, et al. Brief physician advice for problem drinkers:
15	Long-term efficacy and benefit-cost analysis. Alcohol Clin Exp Res 2002;26(1):36-43.
16	5. Xu X, Bishop EE, Kennedy SM, et al. Annual healthcare spending attributable to cigarette
17	smoking: an update. Am J Prev Med 2015;48(3):326-33. doi:
18	10.1016/j.amepre.2014.10.012 [published Online First: 2014/12/17]
19	6. An R. Health care expenses in relation to obesity and smoking among U.S. adults by gender,
20	race/ethnicity, and age group: 1998-2011. Public Health 2015;129(1):29-36. doi:
21	10.1016/j.puhe.2014.11.003 [published Online First: 2014/12/30]
	For neer review only - http://bmionen.hmi.com/site/about/quidelines.yhtml
	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1		17
2 3 4	1	7. Max W, Sung HY, Shi Y, et al. The cost of smoking in California. Nicotine & Tobacco
5 6	2	Research 2016;18(5):1222-9. doi: 10.1093/ntr/ntv123 [published Online First:
7 8	3	2015/07/15]
9 10 11	4	8. Max W, Rice D, Sung H, et al. The economic burden of smoking in California. Tob Control
12 13	5	2004;13(3):264-67.
14 15	6	9. Max W, Sung H-Y, Shi Y, et al. The Cost of Smoking in California, 2009. San Francisco, CA:
16 17	7	Institute for Health & Aging, University of California, San Francisco, 2014.
18 19 20	8	10. Rockhill B, Newman B, Weinberg C. Use and misuse of population attributable fractions.
20 21 22	9	AJPH 1998;88(1):15-19.
23 24	10	11. Lavelle TA, Kent DM, Lundquist CM, et al. Patient variability seldom assessed in cost-
25 26 27	11	effectiveness studies. Med Decis Making 2018;38(4):487-94.
27 28 29	12	12. Trogdon JG, Finkelstein EA, Hoefler TJ. Research Breif: Use of econometric models to
30 31	13	estimate expenditure shares. <i>Health Services Research</i> 2008;43:4(4):1442-52. doi:
32 33	14	10.1111/j.1475-6773.2007.00827.x
34 35 36	15	13. Tangka FK, Trogdon JG, Richardson LC, et al. Cancer treatment cost in the United States:
37 38	16	has the burden shifted over time? Cancer 2010;116(14):3477-84. doi:
39 40	17	10.1002/cncr.25150 [published Online First: 2010/06/22]
41 42	18	14. Heidenreich PA, Trogdon JG, Khavjou OA, et al. Forecasting the future of cardiovascular
43 44 45	19	disease in the United States: A policy statement from the American Heart Association.
46 47	20	<i>Circulation</i> 2011;123(8):933-44. doi: 10.1161/CIR.0b013e31820a55f5,
48 49	21	CIR.0b013e31820a55f5 [pii] [published Online First: 2011/01/26]
50 51 52	22	15. Florence CS, Zhou C, Luo F, et al. The economic burden of prescription opioid overdose,
52 53 54	23	abuse, and dependence in the United States, 2013. <i>Medical Care</i> 2016;54(10):901-06.
55 56	_~	
57 58		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		10
2 3 4	1	doi: 10.1097/MLR.000000000000625, 00005650-201610000-00002 [pii] [published
5 6	2	Online First: 2016/09/14]
7 8	3	16. Manning WG, Basu A, Mullahy J. Generalized modeling approaches to risk adjustment of
9 10 11	4	skewed outcomes data. Journal of Health Economics 2005;24(3):465-88. doi:
12 13	5	10.1016/j.jhealeco.2004.09.011 [published Online First: 2005/04/07]
14 15	6	17. Jackson CA, Manning WG, Jr., Wells KB. Impact of prior and current alcohol use on use of
16 17 19	7	services by patients with depression and chronic medical illnesses. Health Serv Res
19 20	8	1995;30(5):687-705. [published Online First: 1995/12/01]
21 22	9	18. Butler CC, Pill R, Stott NCH. Qualitative study of patients' perceptions of doctors' advice to
23 24 25	10	quit smoking: implications for opportunistic health promotion. BMJ
25 26 27	11	1998;316(7148):1878-81. doi: 10.1136/bmj.316.7148.1878
28 29	12	19. National Center for Health Statistics. National Health Interview Survey 2018 [Available
30 31	13	from: https://www.cdc.gov/nchs/nhis/index.htm.
32 33 34	14	20. Agency for Healthcare Research and Quality. Medical Expenditure Panel Survey 2018
35 36	15	[Available from: <u>https://meps.ahrq.gov/mepsweb/</u> .
37 38	16	21. Sengupta N, Nichol MB, Wu J, et al. Mapping the SF-12 to the HUI3 and VAS in a Managed
39 40 41	17	Care Population. Medical Care 2004;42(9):927-37. doi:
42 43	18	10.1097/01.mlr.0000135812.52570.42
44 45	19	22. Arroll B, Goodyear-Smith F, Crengle S, et al. Validation of PHQ-2 and PHQ-9 to screen for
46 47 48	20	major depression in the primary care population. Ann Fam Med 2010;8(4):348-53. doi:
49 50	21	10.1370/afm.1139 [published Online First: 2010/07/21]
51 52		
53 54		
55		
57		
58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 19 of 27

BMJ Open

1		13
2		
3 4	1	23. Kessler RC, Barker PR, Colpe LJ, et al. Screening for serious mental illness in the general
5 6 7	2	population. Archives of General Psychiatry 2003;60(2):184-89. doi:
7 8 9	3	10.1001/archpsyc.60.2.184
10 11	4	24. Elixhauser A, Steiner C, Harris D, et al. Comorbidity measures for use with administrative
12 13	5	data. Medical Care 1998;36(1):8-27.
14 15 16	6	25. Belotti F, Deb P, Manning WG, et al. twopm: Two-part models. Stata J 2015;15(1):3-20.
10 17 18	7	26. Mitchell E, Machlin S. Concentration of health expenditures and selected characteristics of
19 20	8	high spenders, U.S. civilian noninstitutionalized population, 2015. Statistical Brief #506.
21 22 23	9	Rockville, MD: Agency for Healthcare Research and Quality, 2017.
23 24 25	10	27. Lassman D, Hartman M, Washington B, et al. US health spending trends by age and gender:
26 27	11	Selected years 2002–10. Health Affairs 2014;33(5):815-22.
28 29	12	28. Finkelstein EA, Trogdon JG, Cohen JW, et al. Annual medical spending attributable to
30 31 32	13	obesity: Payer-and service-specific estimates. <i>Health Aff</i> 2009;28(5):w822-w31. doi:
33 34	14	10.1377/hlthaff.28.5.w822 [published Online First: 2009/07/29]
35 36	15	29. Sing M, Banthin JS, Selden TM, et al. Reconciling medical expenditure estimates from the
37 38 39	16	MEPS and NHEA, 2002. Health Care Financing Review 2006;28(1):25-40.
40 41	17	30. Fishman PA, Khan ZM, Thompson EE, et al. Health care costs among smokers, former
42 43	18	smokers, and never smokers in an HMO. Health Services Research 2003;38(2):733-49.
44 45 46	19	doi: 10.1111/1475-6773.00142
47 48	20	31. Hockenberry JM, Curry SJ, Fishman PA, et al. Healthcare costs around the time of smoking
49 50 51	21	cessation. Am J Prev Med 2012;42(6):596-601. doi: 10.1016/j.amepre.2012.02.019
52 53 54		
55 56 57		
58		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2 3	1	32 Jha P Ramasundarahettige C Landsman V et al 21st-century hazards of smoking and								
4 5	_									
6 7	2	benefits of cessation in the United States. New England J Med 2013;368(4):341-50. do								
8 3 10.1056/NEJMsa1211128 [published Online First: 2013/01/25]										
 4 33. Buntin MB, Zaslavsky AM. Too much ado about two-part models and transformation 										
12 13	5	Comparing methods of modeling Medicare expenditures. Journal of Health Economics								
14 15	6	2004;23(3):525-42.								
16 17 19	7	34. Coughlan D, Yeh ST, O'Neill C, et al. Evaluating direct medical expenditures estimation								
18 19 20	8	methods of adults using the medical expenditure panel survey: An example focusing on								
21 22	9	head and neck cancer. Value Health 2014;17(1):90-7. doi: 10.1016/j.jval.2013.10.004								
23 24	10	[published Online First: 2014/01/21]								
25 26 27	11	35. Baumeister SE, Böger CA, Krämer BK, et al. Effect of chronic kidney disease and comorbid								
27 28 29	conditions on health care costs: A 10-year observational study in a general population.									
30 31 13 <i>Am J Nephrol</i> 2010;31(3):222-29.										
32 33	14	36. Jamal A, King B, Neff L, et al. Current cigarette smoking among adults—United States,								
35 36	15	2005–2015. MMWR 2016;65:1205–11. doi: http://dx.doi.org/10.15585/mmwr.mm6544a2								
37 38	16	37. Sturm R. The effects of obesity, smoking, and drinking on medical problems and costs.								
39 40	17	Health Affairs 2002;21(2):245-53.								
41 42 43	18	38. French MT, Homer J, Gumus G, et al. Key provisions of the patient protection and								
44 45	19	Affordable Care Act (ACA): A systematic review and presentation of early research								
46 47	20	findings. Health Services Research 2016;51(5):1735-71. doi: 10.1111/1475-6773.12511								
48 49	21									
50 51 52										
52 53										
54 55										
56 57										
58										
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml								

Table 1. Prevalence of smoking by year of MEPS data collection (a) and decade of age (b).

Average participants in each category were developed using survey weights.

Table 1a Smoking status by year of medical expenditure						
	2011	2012	2013	2014	2015	n
Current	7.7%	8.7%	8.4%	7.9%	7.3%	19,716,719
Never	83.7%	81.6%	81.6%	81.6%	82.4%	206,862,703
Former	8.6%	9.7%	10.0%	10.5%	10.3%	23,900,571
Table 1b	Smoking s	status by d	ecade of lif	e		
	18-30	31-40	41-50	51-60	61-70	70+
Current	6.8%	9.8%	9.2%	9.6%	7.4%	4.4%
Never	90.5%	83.2%	83.8%	79.8%	76.8%	73.3%
Former	2.7%	7.0%	7.1%	10.6%	15.7%	22.3%

Table 2. Results of the two-part model for smoking status on mean medical expenditures per

2 year, 2011 – 2015, in 2015 US\$. Model 1 included smoking and personal characteristics only ^a.

Model 2 included personal characteristics, smoking, and comorbidities ^b. (CI = Confidence
 interval)

	Ν	Nodel 1	Model 2		
	Mean cost	95% CI	Mean cost	95% CI	
Never Smoker	\$4,360	4154.3 - 4566.3	\$4,499	4219.6 - 4778.9	
Current Smoker	\$5,144	4707.9 - 5580.3	\$4,647	4186.9 - 5107.0	
Former Smoker	\$5,590	5267.4 - 5913.5	\$5,012	4618.4 - 5406.4	

^a Covariates included in Model 1 were age (continuous), gender, race/ethnicity (White, African American,
Asian, Hispanic origin, Other), education (No high school degree, High school or some college, At least
college graduate), marital status (Single/Never married, Current married, Widowed/Divorced/Separated),
Pregnancy in the prior year, employment status (Unemployed, Employed, Full-time student, Never
worked, Retired), logged-total family income, insurance status (Private, Any public insurance (under age
65), Medicare/Medicaid+, Uninsured), family size, year dummy variables, any binge drinking in the prior
year, and BMI (Normal weight or Underweight, Overweight or Obese).

^b In addition to the variables in Model 1, a history of the following conditions were added to Model 2: any
 cancer, diabetes, asthma, arthritis, cardiovascular disease (angina, coronary heart disease, myocardial

14 infarction, or stroke), emphysema, quality of life calculated from Short Form 12, depression calculated

15 from the Personal Health Questionnaire, and mental illness from the Kessler 6 questionnaire.16

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

- **Table 3.** Results of separate runs of the two-part model of mean medical expenditures for
- 2 Former smokers using 1-, 2-, and 5-year thresholds for years-since-quitting smoking. (CI =
- 3 Confidence interval) in 2015 US\$.

Table 4. Average annual medical expenditures in 2011 – 2015 for American adults of selected
 ages by smoking status, from a two-part model including personal characteristics and disease
 history at each decade of life ages 20 – 80, in 2015 US\$.

BMJ Open

Consolidated Health Economic Evaluation Reporting Standards - CHEERS Checklist 1

CHEERS Checklist

Items to include when reporting economic evaluations of health interventions

The ISPOR CHEERS Task Force Report, Consolidated Health Economic Evaluation Reporting Standards (CHEERS)—Explanation and Elaboration: A Report of the ISPOR Health Economic Evaluations Publication Guidelines Good Reporting Practices Task Force, provides examples and further discussion of the 24-item CHEERS Checklist and the CHEERS Statement. It may be accessed via the Value in Health or via the ISPOR Health Economic Evaluation Publication Guidelines – CHEERS: Good Reporting Practices webpage: <u>http://www.ispor.org/TaskForces/EconomicPubGuidelines.asp</u>

Section/item	Item No	Recommendation	Reported on page No/ line No
Title and abstract			
Title	1	Identify the study as an economic evaluation or use more specific terms such as "cost-effectiveness analysis", and describe the interventions compared.	Title Pour
Abstract	2	Provide a structured summary of objectives, perspective, setting, methods (including study design and inputs), results (including base case and uncertainty analyses), and conclusions.	P1 Line 2-
Introduction			
Background and objectives	3	Provide an explicit statement of the broader context for the study.	
		Present the study question and its relevance for health policy o practice decisions.	P1-2
Methods			e
Target population and subgroups	4	Describe characteristics of the base case population and subgroups analysed, including why they were chosen.	PUL6-16
Setting and location	5	State relevant aspects of the system(s) in which the decision(s) need(s) to be made.	NIA
Study perspective	6	Describe the perspective of the study and relate this to the costs being evaluated.	FYL7
Comparators	7	Describe the interventions or strategies being compared and state why they were chosen.	Py 11-16
Time horizon	8	State the time horizon(s) over which costs and consequences are being evaluated and say why appropriate.	B-P4
Discount rate	9	Report the choice of discount rate(s) used for costs and outcomes and say why appropriate.	P11 L16-21
Choice of health outcomes	10	Describe what outcomes were used as the measure(s) of benefit in the evaluation and their relevance for the type of analysis performed.	N/A
Measurement of effectiveness	11a	<i>Single study-based estimates:</i> Describe fully the design features of the single effectiveness study and why the single study was a sufficient source of clinical effectiveness data.	N/A

For peer review only - http://bmjouwe.bmj.com/site/about/guidelines.xhtml

Page 26 of 27

 Consolidated Health Economic Evaluation Reporting Standards - CHEERS Checklist 2

	11b	Synthesis-based estimates: Describe fully the methods used for	
		identification of included studies and synthesis of clinical effectiveness data.	NI
Measurement and valuation of preference based outcomes	12	If applicable, describe the population and methods used to elicit preferences for outcomes.	NIA
Estimating resources and costs	13a	Single study-based economic evaluation: Describe approaches used to estimate resource use associated with the alternative interventions. Describe primary or secondary research methods for valuing each resource item in terms of its unit cost. Describe any adjustments made to approximate to opportunity costs.	
	13b	<i>Model-based economic evaluation:</i> Describe approaches and data sources used to estimate resource use associated with model health states. Describe primary or secondary research methods for valuing each resource item in terms of its unit cost. Describe any adjustments made to approximate to opportunity costs.	P4-6
Currency, price date, and conversion	14	Report the dates of the estimated resource quantities and unit costs. Describe methods for adjusting estimated unit costs to the year of reported costs if necessary. Describe methods for converting costs into a common currency base and the exchange rate.	P1:
Choice of model	15	Describe and give reasons for the specific type of decision- analytical model used. Providing a figure to show model structure is strongly recommended.	R2-3
Assumptions	16	Describe all structural or other assumptions underpinning the decision-analytical model.	P236
Analytical methods	17	Describe all analytical methods supporting the evaluation. This could include methods for dealing with skewed, missing, or censored data; extrapolation methods; methods for pooling data; approaches to validate or make adjustments (such as half cycle corrections) to a model; and methods for handling population heterogeneity and uncertainty.	P2-6,
Results			, ·
Study parameters	18	Report the values, ranges, references, and, if used, probability distributions for all parameters. Report reasons or sources for distributions used to represent uncertainty where appropriate. Providing a table to show the input values is strongly recommended.	Р7, Г1
Incremental costs and outcomes	19	For each intervention, report mean values for the main categories of estimated costs and outcomes of interest, as well as mean differences between the comparator groups. If applicable, report incremental cost-effectiveness ratios.	T1
Characterising uncertainty	20a	Single study-based economic evaluation: Describe the effects of sampling uncertainty for the estimated incremental cost and incremental effectiveness parameters, together with the impact	<u>13-4</u>

For peer review only - http://bmjoure.bmj.com/site/about/guidelines.xhtml

age 27 of 27			BMJ Open	
		Cor	solidated Health Economic Evaluation Reporting Standards - CHEER	S Checklist
		20ь	of methodological assumptions (such as discount rate, study perspective). <i>Model-based economic evaluation:</i> Describe the effects on the results of uncertainty for all input parameters, and uncertainty related to the structure of the model and assumptions.	
0 1 2 3	Characterising heterogeneity	21	If applicable, report differences in costs, outcomes, or cost- effectiveness that can be explained by variations between subgroups of patients with different baseline characteristics or other observed variability in effects that are not reducible by more information.	₽N/A
4 5 6 7 8 9	Discussion Study findings, limitations, generalisability, and current knowledge	22	Summarise key study findings and describe how they support the conclusions reached. Discuss limitations and the generalisability of the findings and how the findings fit with current knowledge.	PG-11
0 1 2 3	Other Source of funding	23	Describe how the study was funded and the role of the funder in the identification, design, conduct, and reporting of the analysis. Describe other non-monetary sources of support	P12
4 5 7 3 9	Conflicts of interest	24	Describe any potential for conflict of interest of study contributors in accordance with journal policy. In the absence of a journal policy, we recommend authors comply with International Committee of Medical Journal Editors recommendations.	

For consistency, the CHEERS Statement checklist format is based on the format of the CONSORT statement checklist

The **ISPOR CHEERS Task Force Report** provides examples and further discussion of the 24-item CHEERS Checklist and the CHEERS Statement. It may be accessed via the *Value in Health* link or via the ISPOR Health Economic Evaluation Publication Guidelines – CHEERS: Good Reporting Practices webpage: <u>http://www.ispor.org/TaskForces/EconomicPubGuidelines.asp</u>

The citation for the CHEERS Task Force Report is:

Husereau D, Drummond M, Petrou S, et al. Consolidated health economic evaluation reporting standards (CHEERS)—Explanation and elaboration: A report of the ISPOR health economic evaluations publication guidelines good reporting practices task force. Value Health 2013;16:231-50.

BMJ Open

National medical expenditures by smoking status in American adults: an application of Manning's two-stage model to nationally-representative data

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-026592.R2
Article Type:	Research
Date Submitted by the Author:	11-Jun-2019
Complete List of Authors:	Swedler, David; Pacific Institute for Research and Evaluation, Miller, Ted; Pacific Institute for Research and Evaluation; Curtin University - Perth City Campus Ali, Bina; Pacific Institute for Research and Evaluation Waeher, Geetha; Pacific Institute for Research and Evaluation Bernstein, Steven L.; Yale School of Medicine, Emergency Medicine
Primary Subject Heading :	Smoking and tobacco
Secondary Subject Heading:	Health economics, Health services research
Keywords:	HEALTH ECONOMICS, PUBLIC HEALTH, STATISTICS & RESEARCH METHODS, Affordable Care Act

SCHOLARONE[™] Manuscripts

1		
2		
3	1	National medical expenditures by smoking status in American adults: an application of
4	2	Manning's two-stage model to nationally-representative data
5	3	
6 7	4	David I Swedler PhD ¹
/ 0	5	David I. Swedier, The
0	5	Tod D Millor DhD12
10	0	I eu K. Miller, FilD
11	/	
12	8	Bina Ali, PhD ¹
13	9	
14	10	Geetha Waeher, PhD ¹
15	11	
16	12	Steven L. Bernstein, MD ³
17	13	
18	14	¹ Pacific Institute for Research and Evaluation, Calverton, MD, USA
19	15	
20	16	² Curtin University School of Public Health, Perth, Australia
21	17	
22	18	³ Department of Emergency Medicine, Yale School of Medicine: Department of Health Policy
23	10	Vale School of Public Health New Haven CT USA
25	20	Tale benoof of Tuble Health, New Haven, C1, Obr
26	20	
27	21	Company on time Arethan Devid Severallan
28	22	Corresponding Author: David Swedier
29	23	Pacific Institute for Research and Evaluation
30	24	11720 Beltsville Dr., Ste. 900
31	25	Calverton, MD 20705, United States of America
32	26	phone: 1-301-755-2446
33	27	fax: 1-301-755-2799
34 25	28	dswedler@pire.org
35 36	29	
30	30	Word Count: 2693
38	31	
39	32	Reference Count: 38
40	33	
41	34	Keywords: economics: quit status: age effects: MEPS
42	51	Reywords: coononnos, quit suitus, ugo enocus, mili s
43		
44		
45		
46		
47 79		
40 49		
50		
51		
52		
53		
54		
55		
56		
57		
58		
59		For peer review only - http://bmiopen.hmi.com/site/about/quidelines.yhtml
υu		repeated any inclusion period state about guidelines. And

Objectives: To assess the medical expenditures of American adults by their smoking status-Current, Former, or Never smokers. We update these expenditures through 2015 controlling for personal characteristics and medical history and assess the impact of years-since-quitting and decade of life. Setting and participants: Weighted sample of American adults, 2011 – 2015. The linked National Health Interview Survey (NHIS) and Medical Expenditure Panel Survey (MEPS) are annual weighted representations of approximately 250 million adults. Sampling of NHIS is multistage with data collected throughout the year. Primary outcome measures: Using data from NHIS and MEPS, we collected demographic data, self-reported medical history, and current smoking status. Smoking status was designated as Never, Current, and Former, along with years-since-quitting. Total medical expenditures were collected from MEPS for 2011 – 2015. We used Manning's two-part model to estimate average expenditures per individual and marginal costs for individuals at all levels of smoking status. Results: American adults averaged 4,830 in average medical expenditures. Never smokers (4,360,95% CI = 4154.3 - 4566.3), had lower expenditures than Current (\$5,244,95% CI = 4707.9 - 5580.3) and Former (\$5,590, 95% CI = 5267.4 - 5913.5) smokers. Confidence intervals for Current and Former smokers overlapped. Results were similarly significant when controlling for disease history. Years-sincequitting did not affect expenditures. In each decade of adult life, Former smokers had the highest annual medical expenditures, followed by Current and then Never smokers. Conclusions: We updated annual medical expenditures during the Affordable Care Act-era by smoking status using the current best practice model. While we identify Former smokers as having higher medical expenditures than Current smokers, we do not examine how care-seeking behavior varies between levels of each risk factor.

1 2		
2 3 4	1	Article Summary
5 6	2	Strengths and Limitations
7 8 9	3	• By using data from $2011 - 2015$, this is the first study to report medical expenditure by
10 11	4	smoking status while major provisions of the Affordable Care Act took effect.
12 13	5	• We use the gold standard two-part model developed by Manning to estimate medical
14 15 16	6	expenditures from the MEPS and NHIS surveys.
17 18	7	• We analyzed medical expenditures for Current smokers and Former smokers- both
19 20	8	separately and combined- across decades of life.
21 22 23	9	• Although we controlled for history of comorbidities, the data do not contain any
24 25	10	information on reason-for-quitting among former smokers.
26 27	11	• The cost differences observed incorporate any differences between the groups in care-
28 29 30	12	seeking for conditions unrelated to smoking.
 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 	13	
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 Introduction

It is well-established that smoking can lead to medical conditions requiring acute and chronic
treatment¹. Accurate marginal costs for medical risk factors are important when conducting
benefit-cost analyses for health risk behavior interventions²⁻⁴. The most recent national estimates
of medical expenditures by smoking status have only considered a binary smoking variable:
current smokers versus current non-smokers^{5 6}. Further, none of these national studies have
analyzed medical expenditure data more recently than 2011. Since that time, major reforms have
been implemented to the medical care systems in the United State (US). ⁷

A series of state-level analyses by Max and colleagues⁸⁻¹⁰ described medical costs in California by current, former, and never smokers. The California studies used the attributable fraction (AF) method to allocate medical expenditures. In their review of the AF method, Rockhill and colleagues define attributable fraction and similarly-phrased terms to be "the proportion of disease risk in a population that can be attributed to the causal effects of a risk factor or set of factors," (p. 15)¹¹. Rockhill *et al* find that the AF method has limitations, including that it is constrained by how accurately costs are allocated among diagnoses and by the availability of accurate AFs that are not confounded by co-occurring risk factors¹¹. The negative outcomes that smokers experience vary widely in nature and timing. Importantly, the method does not measure the standard error for the mean estimated cost per risk-taker¹².

In summary, the AF method has too much uncertainty in risk factor allocation as well as
calculation of standard errors. In analyzing the costs of medical conditions, health economics
literature has largely shifted from this AF method to analyses of annual per capita medical

Page 5 of 28

1

BMJ Open

5

2		
3 4	1	sp
5 6	2	pi
7 8	3	co
9 10	4	m
11 12	5	tha
13 14 15	6	th
15 16 17	-	-
17	/	ca
19 20	8	wl
21 22	9	an
23 24 25	10	ch
23 26 27	11	
28 29	12	W
30 31	13	m
32 33	14	fa
34 35 36	15	en
37 38	16	av
39 40	17	or
41 42 42	18	pr
43 44 45	19	dr
46 47	20	di
48	20	un
49 50	21	
51 52	22	Ρı
53 54		
55 56		
57		
58 59		
60		

bending of people with the condition relative to a comparison group $^{13-16}$. This approach, oneered by Willard Manning ¹⁷ captures both mean and standard error and it accounts for implications that may not be coded to the underlying condition. That is, these equations take a ore holistic view of medical care and expenditures associated with risk factors' coefficients an would a process seeking to attribute specified treatment costs to specified factors. It allows at medical visits for conditions related to the behavioral risk factors may displace other medical re that might be sought if an individual did not have a given risk factor. For example, a doctor ho is scheduling quarterly visits to manage diabetes is unlikely to separately schedule the nual well-care visit recommended for a healthier patient. That well-care visit gets coded as a pronic care visit even though it may not raise annual medical spending¹⁸. hile the Manning model is now the gold standard for working with skewed outcomes like edical spending, it is an imperfect tool. Although it statistically assigns costs to given risk ctors or medical conditions, it does not tell us the "why" behind each individual medical counter or expense. Medical spending is influenced by care-seeking behavior. Smokers may oid visiting the doctor because it is uncomfortable to report their continued smoking behavior tedious to hear the doctor urge them to change¹⁹. Health consciousness and associated use of eventive care may be below-average for people who engage in risky behavior. Furthermore, inking heavily may be a symptom of life management issues that reduce care-seeking. Those fferences in health management may mask the impacts of risk behavior on medical spending. urpose

This study updates the national estimates during the implementation of many major provisions of the Patient Protection and Affordable Care Act (ACA) for annual medical expenditures of adult Americans by their current smoking status. We examine medical expenditure data for 2011 – 2015 and apply the cutting-edge two-stage Manning model to more accurately assess error around mean expenditures.

- Methods
- 8 Data Collection

We analyzed data on smoking status from the National Health Interview Survey (NHIS)²⁰. The NHIS is an annual, cross-sectional survey designed to monitor health and behaviors of civilian, non-institutionalized Americans through a nationally-representative sample. The Medical Expenditure Panel Survey (MEPS) tracks a nationally representative subsample of NHIS participants for 24 months starting in the year after their NHIS interview. MEPS collects five rounds of data per respondent on healthcare visits and expenditures²¹. It captures all payments for care, regardless of source, and models costs for visits without payment data including charity care and visits bundled into capitated care. We used 2011-2015 MEPS data on total medical expenditures from the individual perspective for adults 18-years and older and the corresponding NHIS 2009 – 2014 data. Annual medical expenditures were inflated to 2015 US dollars (USD) using the Personal Consumption Expenditures- Medical Care. We linked data from MEPS and NHIS via the Agency for Health Care Quality Data Center, as Xu et al⁵ did in their analyses of smoking costs⁶. Because our use of the publicly-available data adhered to the government's privacy restrictions, the project was given an Exemption by the Institutional Review Board of the Pacific Institute for Research and Evaluation prior to data analysis.

BMJ Open

Smoking status was identified through the NHIS Supplemental Adult Questionnaire (SAQ). Like earlier studies, we identified Ever smokers as participants who smoked at least 100 cigarettes in their lifetimes. We defined all others as Never smokers⁶. Ever smokers were further subdivided into those who reported quitting smoking, Former smokers, versus those who did not report quitting, Current smokers⁸⁻¹⁰. For Former smokers, we also identified years-since-quitting. To conduct regressions, we included the following demographic and behavioral characteristics: age, sex, race/ethnicity, marital status, total family income, family size, employment status, marital status, self-reported binge drinking status, body mass index (BMI), recent pregnancy, education level, employment, and insurance data from MEPS. Age was employed as a continuous variable in the main analyses and divided into ten-year blocks in the age-specific sensitivity analysis. Binge drinking data were also obtained from the SAQ, which used the accepted binge drinking definition of men having 5 or more drinks and women having 4 or more drinks. Those participants who indicated that they had 12 or more instances of binge drinking in the past year were categorized as frequent binge drinkers, and those who had 1-11 instances were categorized as infrequent binge drinkers. BMI data were calculated from self-reported weight and height in the NHIS. We dichotomized BMI into obese for those with a BMI of 30 kg/m2 or greater, and not obese for those with lower BMI. We refer to these variables collectively as personal characteristics.

NHIS and MEPS had data on self-reported diagnosis history for various diseases. Using data
from both databases, we generated dichotomous variables for whether a participant had ever

been diagnosed with the following diseases: asthma, arthritis, any cancer, cardiovascular diseases (including angina, coronary heart disease, myocardial infarction, or stroke), diabetes, and emphysema. NHIS had data on chronic obstructive pulmonary disease (COPD) available for 2013 through 2015 MEPS panels. From MEPS, we obtained scores for the Short Form 12 to measure quality of life²², the Personal Health Questionnaire (PHQ) metric for depression²³, and the Kessler 6 questionnaire for mental illness²⁴. From these variables, we were able to code a partial list of comorbidities that Elixhauser and colleagues²⁵ suggest controlling for when using administrative medical data.

Regression Analysis

We used the two-stage model approach developed by Manning and Basu¹⁷ to model discrete-continuous outcomes. The first regression in this method models whether or not an individual had any medical expenditures in the given year. Then, the second model estimates the costs for individuals who the first model predicted had any costs. We used an ordinary least squares (OLS) logistic probit regression in the first step, followed by a generalized linear model with a generalized Gamma distribution and log link in the second stage. We used the Stata twopm command developed by Belotti and colleagues to execute the two models²⁶. The twopm command allowed us to use the survey weights provided by AHRQ. Data were collected and merged using SAS v9.4 analytical software [SAS Institute, Cary, NC]. Data management was performed in SAS and Stata IC v15 [Stata Corp, College Station, TX]. All data analysis was conducted using Stata.

Page 9 of 28

BMJ Open

2		
3 4	1	Our main regression model (Model 1) included personal characteristics and current smoking
5 6	2	status. We experimented with including body mass index in the model; however, the variable had
/ 8 0	3	near 50% missingness, so we excluded it from our final model. (Further sensitivity analysis
9 10 11	4	indicated that body mass had negligible impact on estimated expenditures by smoking status).
12 13	5	We added the disease history to the two-stage model (Model 2). Finally, because COPD
14 15	6	comorbidity was only available for the last three years of the study, we excluded COPD and re-
16 17 18	7	ran the model on all five years of the study period. Because controlling for this co-morbidity did
19 20	8	not noticeably affect the estimates by smoking status, we chose to report estimates based on 5
21 22	9	years of data, thus increasing our power to probe costs among subgroups. We further expanded
23 24 25	10	Model 2 to include data on years-since-quitting for Former smokers at 1-, 2-, and 5-year
26 27	11	thresholds. Because prevalence of these risk factors changes over the life course, we also
28 29	12	examined the marginal effects of smoking on medical expenditures by decade of adult life ²⁶ .
30 31 32	13	Non-overlapping confidence intervals indicated statistically significant differences.
32 33 34	14	
35 36	15	Results
37 38	16	An average of 19.7 million adults self-identified as Current smokers in the US from 2011 to
39 40 41	17	2015. The proportion of current smokers decreased over the study period, to approximately 17.5
42 43	18	million adults in 2015. An average of 43.6 million adults in the U.S. were Ever smokers. The
44 45	19	proportion of former smokers increased through decades of life, peaking over 22% for those
46 47 48	20	older than 70-years-old. Tables 1a and 1b describe smoking status by study year and decade of
49 50	21	life, respectively. Among the 23.9 million Former smokers, only 4.3% quit within the prior year,
51 52	22	8.7% quit within the prior 2 years, and 24.4% quit within the 5 years prior to the survey.
53 54 55 56 57 58	23	

Table 2 displays the costs for American adults in 2011 - 2015 by smoking status. In Model 1, mean annual medical expenditures for US adults were \$4,830. Costs for adult Never smokers were below the national average (\$4,360). Former smokers had the highest annual medical expenses, \$5,590 (28% increase over never smokers). Although Current smokers had lower average costs than Former smokers at \$5,144 (18% increase over Never smokers), the 95% confidence intervals (CIs) overlap for Current and Former smokers. If we combine Current and Former smokers into Ever smokers and re-run Model 1, the average costs for someone who has ever smoked is 5,400 (95% CI = 5142 - 5659).

In Table 3, a sensitivity analysis for Model 2 that includes years-since-quitting for former smokers does not find a direct relationship between time since smoking cessation and medical expenditures. The mean expenditures by cessation period have small differences, and the 95% CIs greatly overlap. Table 4 identifies displays how medical expenditures vary across decades of life by smoking status. The 95% CIs for Never smokers in Table 4 do not contain the estimate for Former smokers at each decade. The CIs for Former smokers do not contain the estimate for Never smokers at all decades except for age 20. The 95% CIs for Current smokers at each decade include both the Never and Former smoker estimates, and the CIs for Never and Former smokers include the estimate for Current smokers.

Multiplying costs by average number of smokers for 2011 – 2015, Current smokers incurred
\$101.4 billion in average annual medical expenses (95% CI = 12.6 billion – 14.1 billion), \$15
billion above the costs for a demographically comparable number of Never smokers. Former
smokers incurred an average of \$133.6 billion in annual medical expenditures (95% CI = 9.28)

Page 11 of 28

BMJ Open

billion – 110 billion), a \$29 billion increase over comparable Never smokers. Average annual
medical expenditures for Ever smokers are \$235.6 billion (95% CI = 224 billion – 247 billion),
approximately \$45 billion above the costs for a demographically comparable number of Never
smokers.

6 Discussion

We updated the national estimates for smoking costs in American adults through 2015 using state-of-the-science economic modeling techniques. This was a period when major provisions of the ACA were being enacted, e.g., state Medicaid expansion; the "individual mandate" in 2014.⁷ Our estimates for annual medical expenditures for all civilian non-institutionalized adults was \$4,830 for 2011 – 2015, in 2015 USD. This estimate for the study period was close to Mitchell and Machlin's²⁷ estimate of average total medical expenditures in 2015 using MEPS data (\$4,978). Our estimate for annual expenditures and marginal costs due to smoking are below similar estimates generated using the National Health Expenditure Assessment (NHEA) database^{28 29}. However, the NHEA is more comprehensive than the MEPS in capturing Medicaid costs covering institutionalized adults (including those in nursing homes), active-duty military, and foreign visitors to the US²⁹³⁰, so we expected MEPS to yield lower estimates.

We find that Former smokers have greater annual medical costs over Current and Never smokers; however, the 95% confident intervals overlap for Current and Former smokers in the main model. Surely, some smokers quit after diagnosis of costly health problems linked to smoking, but the cost differential narrows only slightly after controlling for major chronic

2	
3	
4	
5	
6	
7	
, 0	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
17	
10	
19	
20	
21	
22	
23	
24	
25	
26	
27	
27 28	
20	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
30	
10	
4U 41	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
22	
54 57	
55	
56	
57	
58	
59	
60	

18

1

conditions (many of which are linked to smoking). Especially at younger ages, quitting appears 1 to be more likely to sort smokers by health consciousness and associated use of medical care. 2 3 Some older studies compared medical spending per capita among current, former, and never 4 smokers. Using data from the 1987 National Medical Expenditure Survey (NMES), Miller and 5 6 colleagues [1999] identified higher annual medical expenditures in former smokers over current smokers. Contrasting with the national studies, two studies using local claims data^{31 32} found that 7 medial expenditures for current and former smokers were nearly identical, with a slight spike in 8 9 costs for former smokers immediately following quitting. 10 Some current smokers may experience very high cost medical expenditures over a short period 11 before dying (and thus not incurring any further costs), while former smokers may continue to 12

amass lower cost medical encounters. These former smokers would be gaining up to 10 years of
survival and medical expenditures over current smokers³³. Current smokers also may simply be
doctor-phobic, anxious to avoid yet another lecture about their smoking. The persistence and
perversity of our finding that higher medical expenditures in former smokers at all ages and
regardless of time-since-quitting, suggests exploring the issue using qualitative methods.

We followed the methods of Xu and colleagues⁵ and Max and colleagues⁸⁻¹⁰ to identify current,
former, and never smokers in NHIS/MEPS data. Those studies examined attributable fractions
(AFs) for medical expenditures rather than costs to individuals. The two-part model developed
by Manning and colleagues has become the gold-standard for estimating costs in a skewed
sample, such as medical expenditures^{17 34}. It has been used to study the impact of smoking on

healthcare costs across a wide variety of databases^{6 35 36}. An analysis from An⁶ using the two-stage model was performed on medical expenditures associated with smoking status (ever vs. never) and obesity (< 30 BMI vs. $30 \ge$ BMI) using MEPS data from 1998 to 2011. In contrast to the present study, An's estimated expenditures did not control for quit status, marital status, family income, family size, or pregnancy. Our estimated cost differences between ever/never smokers and obese/non-obese individuals (data not shown) were lower than in the An study. We believe that the inclusion of quit status and additional personal characteristics in the two-stage models increases the precision of our estimate over this prior study.

Limitations and Strengths

Many of the prior studies assessing the impact of behavioral risk factors on medical expenditures employ the traditional attributable fraction approach, which constructs costs from selected acute and chronic conditions related to the individual risk factors of interest. This method is appropriate unless a study echoes our aim to examine the marginal effects of the risk behaviors on costs to individuals. Using the two-part model¹⁷, our study provides a different assessment of medical expenditures than the attributable fraction method. Attributable fraction studies estimate the smoking-related medical costs incurred in treated diseases that resulted from smoking. The two-stage modelling approach instead looks at the overall medical spending of the smoking cohort. It can be strongly influenced by a difference in care-seeking propensity.

Our estimates for prevalence of smoking (9%) are lower than those found in other surveillance studies. The Behavioral Risk Factor Surveillance System (BRFSS) identified 15% of American adults as current smokers in 2015³⁷. This discrepancy between BRFSS and NHIS data may be

1	due to different modes of data collection. While BRFSS collects data through telephone surveys,
2	NHIS collects data via within-household, in-person interviews. Unlike NHIS, BRFSS data
3	collection is de-centralized as is the responsibility of each state health department.
4	
5	The goal of this study was to update medical expenditures for smoking to 2015. It was beyond
6	the scope of the study to assess spending by type of medical service utilized. With sufficient
7	budget, doing so might have allowed us to propose more hypotheses as to why certain risks had
8	increased costs over others, as Sturm ³⁸ did for obesity and problem drinking.
9	
10	In a period of low inflation, we chose to control for inflation in our multi-year analysis of
11	expenditures by including dummy variables for MEPS year rather than using price adjusters that
12	assume a fixed market basket of medical services. The dummy variables should account not only
13	for year-to-year changes in costs, but for other endogenous temporal effects. Those effects
14	include the many policy features of 2010's Affordable Care Act that went into effect from 2011
15	to 20157. Further analysis of the impacts of all components of the ACA on medical expenditures
16	is warranted.
17	
18	Conclusion
19	Our data are the most recent examination of medical expenditures nationwide across current
20	smoking status. One clear application of our estimates is in computing the medical spending
21	foregone because behavioral risk-takers have elevated risks of morbidity and mortality. Although
22	tobacco cessation cause declines in chronic illness, early mortality, and associated costs, it
23	appears they may not decrease annual medical expenditures per survivor. That finding suggests

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
BMJ Open

2		
3 4	1	studies of return on investment in smoking cessation that use attributable-fraction-based costs
5 6	2	may yield skewed results.
7 8	3	
9 10 11	4	Acknowledgement and Funding
12 13	5	The research in this paper was conducted at the CFACT Data Center, and the support of AHRQ
14 15	6	is acknowledged. The results and conclusions in this paper are those of the authors and do not
16 17	7	indicate concurrence by AHRQ or the Department of Health and Human Services.
18 19 20	8	Funding for this project was provided by NHLBI grant AN: 3421751 (Implementation of HIT-
20 21 22	9	Enhanced Tobacco Treatment for Hospitalized Smokers) and NCI grant R01CA201873
23 24	10	(Optimizing Tobacco Dependence Treatment in the Emergency Department).
25 26	11	Patient and Public Involvement- Cohort Description
27 28 29	12	The data for this study were obtained from two datasets generated by the U.S. Department of
30 31	13	Health and Human Services: The National Health Interview Survey (NHIS) and the Medical
32 33	14	Expenditure Panel Survey (MEPS). Both surveys are samples of American adults that can be
34 35	15	used to generate weighted estimates of medical care in the U.S. These pre-existing data were not
36 37		
38	16	identified to the researchers, so we could not contact them nor involve them in any aspect of the
39 40 41	17	study design and analysis.
42 43	18	Data Sharing-
44 45	19	Data used in this study are held by AHRQ and U.S. DHHS and were used by agreement with the
46 47 48	20	researchers. Raw data used in this study cannot be shared.
48 49 50	21	Author contributions
51 52		
53		
54		
55 56		
57		
58		
59 60		For peer review only - http://bmjopen.bmi.com/site/about/guidelines.xhtml
00		

- 1 SLB, TRM, and DIS conceived of the study. DIS, GW, and TRM designed the analysis. DIS
- 2 conducted the analysis. DIS and BA wrote and edited drafts of the manuscript. All authors
- 3 provided input on the manuscript and approved of the final draft.
- *Competing interests*:
- 5 All authors state that they have no competing interests.

to occurrent on the second

1		17
2 3	1	Rafarances
4	T	Keterences
6	2	
7 8 9	3	1. U.S. Department of Health and Human Services. The Health Consequences of Smoking-50
10 11	4	Years of Progress: A Report of the Surgeon General. Atlanta, GA: U.S. Department of
12 13	5	Health and Human Services, Centers for Disease Control and Prevention, National Center
14 15 16	6	for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health,
17 18	7	2014.
19 20	8	2. Warner KE. Cost effectiveness of smoking-cessation therapies. <i>PharmacoEconomics</i>
21 22 23	9	1997;11(6):538-49. doi: 10.2165/00019053-199711060-00003
24 25	10	3. LeBlanc ES, O'Connor E, Whitlock EP, et al. Effectiveness of primary care-relevant
26 27	11	treatments for obesity in adults: A systematic evidence review for the U.S. Preventive
28 29 20	12	Services Task Force. Annals of Internal Medicine 2011;155(7):434-47. doi:
30 31 32	13	10.7326/0003-4819-155-7-201110040-00006
33 34	14	4. Fleming MF, Mundt MP, French MT, et al. Brief physician advice for problem drinkers:
35 36	15	Long-term efficacy and benefit-cost analysis. Alcohol Clin Exp Res 2002;26(1):36-43.
37 38 39	16	5. Xu X, Bishop EE, Kennedy SM, et al. Annual healthcare spending attributable to cigarette
40 41	17	smoking: an update. <i>Am J Prev Med</i> 2015;48(3):326-33. doi:
42 43	18	10.1016/j.amepre.2014.10.012 [published Online First: 2014/12/17]
44 45 46	19	6. An R. Health care expenses in relation to obesity and smoking among U.S. adults by gender,
47 48	20	race/ethnicity, and age group: 1998-2011. Public Health 2015;129(1):29-36. doi:
49 50	21	10.1016/j.puhe.2014.11.003 [published Online First: 2014/12/30]
51 52		
53 54		
55 56		
57		
58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2		
3 4	1	7. French MT, Homer J, Gumus G, et al. Key provisions of the patient protection and Affordable
5 6	2	Care Act (ACA): A systematic review and presentation of early research findings. Health
7 8	3	Services Research 2016;51(5):1735-71. doi: 10.1111/1475-6773.12511
9 10 11	4	8. Max W, Sung HY, Shi Y, et al. The cost of smoking in California. Nicotine & Tobacco
12 13	5	Research 2016;18(5):1222-9. doi: 10.1093/ntr/ntv123 [published Online First:
14 15	6	2015/07/15]
16 17	7	9. Max W, Rice D, Sung H, et al. The economic burden of smoking in California. Tob Control
18 19 20	8	2004;13(3):264-67.
20 21 22	9	10. Max W, Sung H-Y, Shi Y, et al. The Cost of Smoking in California, 2009. San Francisco,
23 24	10	CA: Institute for Health & Aging, University of California, San Francisco, 2014.
25 26	11	11. Rockhill B, Newman B, Weinberg C. Use and misuse of population attributable fractions.
27 28 20	12	AJPH 1998;88(1):15-19.
29 30 31	13	12. Lavelle TA. Kent DM. Lundquist CM. et al. Patient variability seldom assessed in cost-
32 33	14	effectiveness studies Med Decis Making 2018:38(4):487-94
34 35	15	13 Trondon IG. Einkelstein FA. Hoefler TI. Research Breif. Use of econometric models to
36 37	15	
38 39	16	estimate expenditure shares. <i>Health Services Research</i> 2008;43:4(4):1442-52. doi:
40 41	17	10.1111/j.1475-6773.2007.00827.x
42 43	18	14. Tangka FK, Trogdon JG, Richardson LC, et al. Cancer treatment cost in the United States:
44 45	19	has the burden shifted over time? Cancer 2010;116(14):3477-84. doi:
46 47 48	20	10.1002/cncr.25150 [published Online First: 2010/06/22]
49 50	21	15. Heidenreich PA, Trogdon JG, Khavjou OA, et al. Forecasting the future of cardiovascular
51 52	22	disease in the United States: A policy statement from the American Heart Association.
53 54		
55 56		
57 58		
59 60		For peer review only - http://bmiopen.bmi.com/site/about/quidelines.xhtml
00		· ····································

BMJ Open

2		
3 4	1	Circulation 2011;123(8):933-44. doi: 10.1161/CIR.0b013e31820a55f5,
5 6	2	CIR.0b013e31820a55f5 [pii] [published Online First: 2011/01/26]
7 8 0	3	16. Florence CS, Zhou C, Luo F, et al. The economic burden of prescription opioid overdose,
9 10 11	4	abuse, and dependence in the United States, 2013. Medical Care 2016;54(10):901-06.
12 13	5	doi: 10.1097/MLR.00000000000625, 00005650-201610000-00002 [pii] [published
14 15 16	6	Online First: 2016/09/14]
17 18	7	17. Manning WG, Basu A, Mullahy J. Generalized modeling approaches to risk adjustment of
19 20	8	skewed outcomes data. Journal of Health Economics 2005;24(3):465-88. doi:
21 22 22	9	10.1016/j.jhealeco.2004.09.011 [published Online First: 2005/04/07]
25 24 25	10	18. Jackson CA, Manning WG, Jr., Wells KB. Impact of prior and current alcohol use on use of
26 27	11	services by patients with depression and chronic medical illnesses. Health Serv Res
28 29 20	12	1995;30(5):687-705. [published Online First: 1995/12/01]
30 31 32	13	19. Butler CC, Pill R, Stott NCH. Qualitative study of patients' perceptions of doctors' advice to
33 34	14	quit smoking: implications for opportunistic health promotion. BMJ
35 36 27	15	1998;316(7148):1878-81. doi: 10.1136/bmj.316.7148.1878
37 38 39	16	20. National Center for Health Statistics. National Health Interview Survey 2018 [Available
40 41	17	from: https://www.cdc.gov/nchs/nhis/index.htm.
42 43	18	21. Agency for Healthcare Research and Quality. Medical Expenditure Panel Survey 2018
44 45 46	19	[Available from: <u>https://meps.ahrq.gov/mepsweb/</u> .
47 48	20	22. Sengupta N, Nichol MB, Wu J, et al. Mapping the SF-12 to the HUI3 and VAS in a Managed
49 50	21	Care Population. Medical Care 2004;42(9):927-37. doi:
51 52 53 54 55 56 57 58	22	10.1097/01.mlr.0000135812.52570.42
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2		
3 4	1	23. Arroll B, Goodyear-Smith F, Crengle S, et al. Validation of PHQ-2 and PHQ-9 to screen for
5 6	2	major depression in the primary care population. Ann Fam Med 2010;8(4):348-53. doi:
7 8	3	10.1370/afm.1139 [published Online First: 2010/07/21]
9 10 11	4	24. Kessler RC, Barker PR, Colpe LJ, et al. Screening for serious mental illness in the general
12 13	5	population. Archives of General Psychiatry 2003;60(2):184-89. doi:
14 15	6	10.1001/archpsyc.60.2.184
16 17	7	25. Elixhauser A, Steiner C, Harris D, et al. Comorbidity measures for use with administrative
18 19 20	8	data. Medical Care 1998;36(1):8-27.
21 22	9	26. Belotti F, Deb P, Manning WG, et al. twopm: Two-part models. Stata J 2015;15(1):3-20.
23 24	10	27. Mitchell E, Machlin S. Concentration of health expenditures and selected characteristics of
25 26 27	11	high spenders, U.S. civilian noninstitutionalized population, 2015. Statistical Brief #506.
27 28 29	12	Rockville, MD: Agency for Healthcare Research and Quality, 2017.
30 31	13	28. Lassman D, Hartman M, Washington B, et al. US health spending trends by age and gender:
32 33	14	Selected years 2002–10. Health Affairs 2014;33(5):815-22.
34 35 36	15	29. Finkelstein EA, Trogdon JG, Cohen JW, et al. Annual medical spending attributable to
37 38	16	obesity: Payer-and service-specific estimates. Health Aff 2009;28(5):w822-w31. doi:
39 40	17	10.1377/hlthaff.28.5.w822 [published Online First: 2009/07/29]
41 42 43	18	30. Sing M, Banthin JS, Selden TM, et al. Reconciling medical expenditure estimates from the
44 45	19	MEPS and NHEA, 2002. Health Care Financing Review 2006;28(1):25-40.
46 47	20	31. Fishman PA, Khan ZM, Thompson EE, et al. Health care costs among smokers, former
48 49 50	21	smokers, and never smokers in an HMO. Health Services Research 2003;38(2):733-49.
50 51 52	22	doi: 10.1111/1475-6773.00142
53		
54 55		
56		
57 58		
59		

2	1
,	
_	_

1		
2 3 4	1	32. Hockenberry JM, Curry SJ, Fishman PA, et al. Healthcare costs around the time of smoking
5 6	2	cessation. Am J Prev Med 2012;42(6):596-601. doi: 10.1016/j.amepre.2012.02.019
7 8	3	33. Jha P, Ramasundarahettige C, Landsman V, et al. 21st-century hazards of smoking and
9 10 11	4	benefits of cessation in the United States. New England J Med 2013;368(4):341-50. doi:
12 13	5	10.1056/NEJMsa1211128 [published Online First: 2013/01/25]
14 15	6	34. Buntin MB, Zaslavsky AM. Too much ado about two-part models and transformation?
16 17 10	7	Comparing methods of modeling Medicare expenditures. Journal of Health Economics
18 19 20	8	2004;23(3):525-42.
21 22	9	35. Coughlan D, Yeh ST, O'Neill C, et al. Evaluating direct medical expenditures estimation
23 24 25	10	methods of adults using the medical expenditure panel survey: An example focusing on
25 26 27	11	head and neck cancer. Value Health 2014;17(1):90-7. doi: 10.1016/j.jval.2013.10.004
28 29	12	[published Online First: 2014/01/21]
30 31	13	36. Baumeister SE, Böger CA, Krämer BK, et al. Effect of chronic kidney disease and comorbid
32 33 34	14	conditions on health care costs: A 10-year observational study in a general population.
35 36	15	Am J Nephrol 2010;31(3):222-29.
37 38	16	37. Jamal A, King B, Neff L, et al. Current cigarette smoking among adults—United States,
39 40 41	17	2005–2015. MMWR 2016;65:1205–11. doi: http://dx.doi.org/10.15585/mmwr.mm6544a2
42 43	18	38. Sturm R. The effects of obesity, smoking, and drinking on medical problems and costs.
44 45	19	Health Affairs 2002;21(2):245-53.
46 47 49	20	
40 49 50		
51 52		
53 54		
55 56 57		
58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Table 1. Prevalence of smoking by year of MEPS data collection (a) and decade of age (b).

verage pa Table 1a	Smoking s	tatus bv ve	ear of medi	cal expend	ILUIE	
10	2011	2012	2013	2014	2015	n
Current	7.7%	8.7%	8.4%	7.9%	7.3%	19,716,719
Never	83.7%	81.6%	81.6%	81.6%	82.4%	206,862,703
Former	8.6%	9.7%	10.0%	10.5%	10.3%	23,900,571
Table 1b	Smoking	ecade of lif	e			
	18-30	31-40	41-50	51-60	61-70	70+
Current	6.8%	9.8%	9.2%	9.6%	7.4%	4.4%
Never	90.5%	83.2%	83.8%	79.8%	76.8%	73.3%
Former	2.7%	7.0%	7.1%	10.6%	15.7%	22.3%

Table 2. Results of the two-part model for smoking status on mean medical expenditures per
 year, 2011 – 2015, in 2015 US\$. Model 1 included smoking and personal characteristics only ^a.

Model 2 included personal characteristics, smoking, and comorbidities ^b. (CI = Confidence
 interval)

	Model 1		Model 2		
	Mean cost	an cost 95% Cl Mean cost 95% Cl		95% CI	
Never Smoker	\$4,360	4154.3 - 4566.3	\$4,499	4219.6 - 4778.9	
Current Smoker	\$5,144	4707.9 - 5580.3	\$4,647	4186.9 - 5107.0	
Former Smoker	\$5,590	5267.4 - 5913.5	\$5,012	4618.4 - 5406.4	

^aCovariates included in Model 1 were age (continuous), gender, race/ethnicity (White, African American,
Asian, Hispanic origin, Other), education (No high school degree, High school or some college, At least
college graduate), marital status (Single/Never married, Current married, Widowed/Divorced/Separated),
Pregnancy in the prior year, employment status (Unemployed, Employed, Full-time student, Never
worked, Retired), logged-total family income, insurance status (Private, Any public insurance (under age
65), Medicare/Medicaid+, Uninsured), family size, year dummy variables, any binge drinking in the prior
year, and BMI (Normal weight or Underweight, Overweight or Obese).

^b In addition to the variables in Model 1, a history of the following conditions were added to Model 2: any
 cancer, diabetes, asthma, arthritis, cardiovascular disease (angina, coronary heart disease, myocardial

real cancer, diabetes, astimuta, artificitis, cardiovascular disease (angina, coronary near disease, myocardiar infarction, or stroke), emphysema, quality of life calculated from Short Form 12, depression calculated

15 from the Personal Health Questionnaire, and mental illness from the Kessler 6 questionnaire.

- **1 Table 3.** Results of separate runs of the two-part model of mean medical expenditures for
- 2 Former smokers using 1-, 2-, and 5-year thresholds for years-since-quitting smoking. (CI =
- 3 Confidence interval) in 2015 US\$.

Years since quitting	Mean	95% CI	
1 or fewer years	\$5 <i>,</i> 036	3604.4 - 6646.6	
More than 1 year	\$5 <i>,</i> 006	4588.8 - 5422.3	
2 or fewer years	\$5,132	4035.0 - 6229.6	
More than 2 years	\$4,986	4543.6 - 5429.1	
5 or fewer years	\$4,957	4182.8 - 5730.7	
More than 5 years	\$5,028	4551.1 - 5505.2	

Table 4. Average annual medical expenditures in 2011 – 2015 for American adults of selected ages by smoking status from a two-part model including personal characteristics and disease

Z	ages by smoking status, nom a two-part model including personal characteristics
3	history at each decade of life ages $20 - 80$, in 2015 US\$.

					18C			
	20		30		4	40		0
Smoking								
status	Estimate	95% CI	Estimate	95% CI	Estimate	95% CI	Estimate	95% CI
		(2366,		(2857,		(3472,		(4160,
Never	\$2,743	3151)	\$3,214	3571)	\$3,763	4054)	\$4,401	4642)
		(2390,		(2928,		(3561,		(4284,
Current	\$2,909	3428)	\$3,413	3897)	\$4,000	4438)	\$4,683	5081)
		(2704,		(3301,		(3947,		(4776,
Former	\$3,208	3711)	\$3,754	4208)	\$4,390	4783)	\$5,130	5483)
				A	\ge			
	6	0	7(כ	8	0		
Smoking								
status	Estimate	95% CI	Estimate	95% CI	Estimate	95% CI		
		(4846,		(5505 <i>,</i>		(6184,		
Never	\$5,143	5440)	\$6,007	6508)	\$7,010	7836)		
		(5059,		(5839,		(6627,		
Current	\$5,478	5897)	\$6,403	6968)	\$7,479	8331)		
		(5574,		(6357,		(7160,		
Former	\$5,990	6407)	\$6,990	7623)	\$8,153	9145)		

CHEERS Checklist

Items to include when reporting economic evaluations of health interventions

The ISPOR CHEERS Task Force Report, Consolidated Health Economic Evaluation Reporting Standards (CHEERS)—Explanation and Elaboration: A Report of the ISPOR Health Economic Evaluations Publication Guidelines Good Reporting Practices Task Force, provides examples and further discussion of the 24-item CHEERS Checklist and the CHEERS Statement. It may be accessed via the Value in Health or via the ISPOR Health Economic Evaluation Publication Guidelines – CHEERS: Good Reporting Practices webpage: http://www.ispor.org/TaskForces/EconomicPubGuidelines.asp

Section/item	Item No	Recommendation	Reported on page No/ line No
Title and abstract			
Title	1	Identify the study as an economic evaluation or use more specific terms such as "cost-effectiveness analysis", and describe the interventions compared.	Title Pues
Abstract	2	Provide a structured summary of objectives, perspective, setting, methods (including study design and inputs), results (including base case and uncertainty analyses), and conclusions.	P1 Line 2-1
Introduction			
Background and objectives	3	Provide an explicit statement of the broader context for the study. Present the study question and its relevance for health policy of	r
		practice decisions.	P1-2
Methods			đ
Target population and subgroups	4	Describe characteristics of the base case population and subgroups analysed, including why they were chosen.	PULG-16
Setting and location	5	State relevant aspects of the system(s) in which the decision(s) need(s) to be made.	NIA
Study perspective	6	Describe the perspective of the study and relate this to the costs being evaluated.	FYL7
Comparators	7	Describe the interventions or strategies being compared and state why they were chosen.	Py 11-16
Time horizon	8	State the time horizon(s) over which costs and consequences are being evaluated and say why appropriate.	B-P4
Discount rate	9	Report the choice of discount rate(s) used for costs and outcomes and say why appropriate.	P11 L16-21
Choice of health outcomes	10	Describe what outcomes were used as the measure(s) of benefit in the evaluation and their relevance for the type of analysis performed.	N/A
Measurement of effectiveness	11a	Single study-based estimates: Describe fully the design features of the single effectiveness study and why the single study was a sufficient source of clinical effectiveness data.	N/A

For peer review only - http://bmjouwe.bmj.com/site/about/guidelines.xhtml

Page	27	of	28
------	----	----	----

BMJ Open

Consolidated Health Economic Evaluation Reporting Standards – CHEERS Checklist 2

	11b	<i>Synthesis-based estimates:</i> Describe fully the methods used for identification of included studies and synthesis of clinical effectiveness data.	NA
Measurement and valuation of preference based outcomes	12	If applicable, describe the population and methods used to elicit preferences for outcomes.	NIA
Estimating resources and costs	13a	Single study-based economic evaluation: Describe approaches used to estimate resource use associated with the alternative interventions. Describe primary or secondary research methods for valuing each resource item in terms of its unit cost. Describe any adjustments made to approximate to opportunity costs.	
	13b	<i>Model-based economic evaluation:</i> Describe approaches and data sources used to estimate resource use associated with model health states. Describe primary or secondary research methods for valuing each resource item in terms of its unit cost. Describe any adjustments made to approximate to	P4-6
Currency, price date, and conversion	14	Report the dates of the estimated resource quantities and unit costs. Describe methods for adjusting estimated unit costs to the year of reported costs if necessary. Describe methods for converting costs into a common currency base and the exchange rate.	P11
Choice of model	15	Describe and give reasons for the specific type of decision- analytical model used. Providing a figure to show model structure is strongly recommended.	R2-3
Assumptions	16	Describe all structural or other assumptions underpinning the decision-analytical model	0236
Analytical methods	17	Describe all analytical methods supporting the evaluation. This could include methods for dealing with skewed, missing, or censored data; extrapolation methods; methods for pooling data; approaches to validate or make adjustments (such as half cycle corrections) to a model; and methods for handling population heterogeneity and uncertainty.	P2-6.1011
Results			<u> </u>
Study parameters	18	Report the values, ranges, references, and, if used, probability distributions for all parameters. Report reasons or sources for distributions used to represent uncertainty where appropriate. Providing a table to show the input values is strongly recommended.	P7. T1
Incremental costs and outcomes	19	For each intervention, report mean values for the main categories of estimated costs and outcomes of interest, as well as mean differences between the comparator groups. If applicable, report incremental cost-effectiveness ratios.	T1
Characterising uncertainty	20a	Single study-based economic evaluation: Describe the effects of sampling uncertainty for the estimated incremental cost and incremental effectiveness parameters, together with the impact	13-4

For peer review only - http://bmjouce.bmj.com/site/about/guidelines.xhtml

P	aq	e	28	of	28

		of methodological assumptions (such as discount rate, study perspective).	
	20Ъ	<i>Model-based economic evaluation:</i> Describe the effects on the results of uncertainty for all input parameters, and uncertainty related to the structure of the model and assumptions.	
Characterising heterogeneity	21	If applicable, report differences in costs, outcomes, or cost- effectiveness that can be explained by variations between subgroups of patients with different baseline characteristics or other observed variability in effects that are not reducible by more information.	R.N.I.
Discussion Study findings, limitations, generalisability, and current knowledge	22	Summarise key study findings and describe how they support the conclusions reached. Discuss limitations and the generalisability of the findings and how the findings fit with current knowledge.	<u> P4-1</u>
Other			
Source of funding	23	Describe how the study was funded and the role of the funder in the identification, design, conduct, and reporting of the analysis. Describe other non-monetary sources of support.	P12
Conflicts of interest	24	Describe any potential for conflict of interest of study contributors in accordance with journal policy. In the absence of a journal policy, we recommend authors comply with International Committee of Medical Journal Editors recommendations.	

For consistency, the CHEERS Statement checklist format is based on the format of the CONSORT statement checklist

The **ISPOR CHEERS Task Force Report** provides examples and further discussion of the 24-item CHEERS Checklist and the CHEERS Statement. It may be accessed via the *Value in Health* link or via the ISPOR Health Economic Evaluation Publication Guidelines – CHEERS: Good Reporting Practices webpage: <u>http://www.ispor.org/TaskForces/EconomicPubGuidelines.asp</u>

The citation for the CHEERS Task Force Report is:

Husereau D, Drummond M, Petrou S, et al. Consolidated health economic evaluation reporting standards (CHEERS)—Explanation and elaboration: A report of the ISPOR health economic evaluations publication guidelines good reporting practices task force. Value Health 2013;16:231-50.