

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Prevalence and determinants of raised blood glucose among adults in Bangladesh: results from a population-based national survey

Journal:	BMJ Open
Manuscript ID	bmjopen-2019-029674
Article Type:	Research
Date Submitted by the Author:	05-Feb-2019
Complete List of Authors:	Islam, Jessica; World Health Organization Country Office for Bangladesh, ; University of North Carolina at Chapel Hill Gillings School of Global Public Health, Department of Epidemiology Zaman, MM; World Health Organization, Dhaka, Bangladesh, Bhuiyan, Mahfuz; World Health Organization Country Office for Bangladesh Haq, Syed; Bangabandhu Sheikh Mujib Medical University, Rheumatology Ahmed, Shamim; Bangabandhu Sheikh Mujib Medical University Al-Qadir, Zahid; Bangabandhu Sheikh Mujib Medical University
Keywords:	non-communicable diseases, chronic disease, raised blood glucose, Bangladesh

1		
2 3	1	Prevalence and determinants of raised blood alucose among adults in Bangladesh: results from
4	T	Prevalence and determinants of raised blood glucose among addits in Dangiadesh. results nom
5 6	2	a population-based national survey
/ 8 9	3	Jessica Y. Islam ^{1,2} , M. Mostafa Zaman* ² , Mahfuzur Rahman Bhuiyan ² , Syed Atiqul Haq ³ ,
10 11	4	Shamim Ahmed ³ , Zahid- Al- Quadir ³
12 13 14	5	¹ Department of Epidemiology, UNC Gillings School of Global Public Health, Chapel Hill, NC;
15 16	6	Email: islamjy@email.unc.edu
17 18 19	7	² World Health Organization, Dhaka, Bangladesh; Email: <u>zamanm@who.int</u> ; Email:
20 21	8	mahfuzdoc@gmail.com
22 23 24	9	³ Department of Rheumatology, Bangabandhu Sheikh Mujib Medical University, Shahbag,
25	10	Dhaka, Bangladesh. Email: <u>haqsyedatiqul@gmail.com</u> ; Email: <u>dr_shamim_ahmed@yahoo.com</u> ;
20 27 28	11	Email: drzahid1981@yahoo.com
29 30	12	*Corresponding Author:
31	13	
32	14	Email : <u>zamanm@who.int</u> (MMZ)
33 34	15 16	
35	10	
36	17	
37 38 39	18	
40	19	
41 42	20	
43	21	
44 45	22	
46 47	23	
48 49	24	
50 51	25	
52	26	
55 54	27	
55 56	28	
57	-	
58		1
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Z 2	
3 4	29
5	30
7 8	31
9 10	32
11 12	33
13 14	34
15 16	35
17 18	36
19 20	27
20 21 22	57
23	38
24 25	39
26 27	40
28 29	41
30 31	42
32 33	43
34 35	44
36 37	45
38 39	46
40 41	17
42 43	40
44 45	48
46	49
47	50
49 50	51
51	52
53 54	53
55 56	54
57 58	
59 60	

9 Abstract

Objectives: With the increasing burden of non-communicable diseases in low- and middleincome countries, biological risk factors such as raised blood glucose are a major public health
concern in Bangladesh. Nationally representative data of raised blood glucose prevalence
starting from age ≥18 years are currently unavailable for Bangladeshi adults. The objective of
this study was to assess the prevalence and determinants of raised blood glucose among adults
in Bangladesh aged ≥18 years.

- 37 Study Design: Cross-sectional, population-based study
- Setting and Participants: Data for this analysis were collected from a population-based
 nationally representative sample of 1843 adults, aged ≥18 years, from both urban and rural
 areas of Bangladesh. Demographic information, capillary blood glucose, blood pressure, height,
- 42 weight, waist circumference, and treatment history were recorded.
- Primary Outcome Measures: Raised blood glucose was defined as a random capillary blood
 glucose level of ≥11.1mmol/L or currently taking medication to control diabetes, based on selfreport.

Results: Overall, the prevalence of raised blood glucose was 5.5% (95% CI: 4.5-6.6) and was significantly higher among urban (9.8%, 95%CI: 7.7-12.2) than rural residents (2.8%, 95% CI: 1.9 - 3.9). The age-standardized prevalence of raised blood glucose was 5.6% (95% CI: 4.6 – 6.8). Among both urban and rural residents, associated determinants of raised blood glucose included hypertension, and abdominal obesity. About 5% of the total population self-reported to have been previously diagnosed with diabetes; among these adults, over 25% were not taking medications to control their diabetes.

1 2		
- 3 4	55	Conclusions: Our study found that about 1 out of 20 Bangladeshi adults aged ≥18 years have
5 6	56	raised blood glucose. To control and prevent the development of diabetes, data from this study
7 8	57	can be used to inform public health programming and provide descriptive information on
9 10	58	surveillance of progress towards controlling diabetes in Bangladesh.
11 12	59	
13 14 15	60	Keywords: non-communicable diseases, Bangladesh, raised blood glucose, diabetes, chronic
15 16 17	61	disease
18 19	62	
20 21	63	
22 23	64	
24 25	65	
26 27	66	
28 29	67	
30 31 22	68	
32 33 34	69	
35 36	70	
37 38	71	
39 40	72	
41 42	73	
43 44	74	
45 46	75	
47 48 40	76	
49 50 51	77	
52 53	78	
54 55	79	
56 57	80	
58 59		3
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2		
3 4	81 82	Article Summary
 Strengths and Limitations of the Study 84 		
8 9	85	This study utilized a multistage, geographically clustered, probability-based sampling
10 11	86	approach to produce nationally representative data for Bangladesh.
12 13	87	
14 15	88	We included Bangladeshi adults aged 18 to 29 years to obtain novel data on the
16 17	89	prevalence of diabetes and relevant non-communicable disease risk factors starting from
18 19	90	this age group.
20 21 22	91	
22 23 24	92	We were able to estimate the prevalence of raised blood glucose using capillary blood
25 26	93	glucose measured at random. However, we were unable to measure the prevalence of
27 28	94	prediabetes and diabetes as we did not obtain blood sugar levels using standardized
29 30	95	methods, such as fasting blood glucose or 2-hour post-prandial measurements.
31 32	96	
33 34	97	Due to the cross-sectional nature of the study design, we were unable to assess
35 36 27	98	temporality of risk factors identified and our outcomes of interest.
38 39	99	
40 41	100	We assessed diabetes medication history based on self-report, however, we were
42 43	101	unable to obtain medical records or prescription records of participants to confirm the
44 45	102	self-reported data.
46 47	103	
48 49 50	104	
50 51 52	105	
53 54	106	
55 56	107	
57 58		4
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 5 of 34

BMJ Open

Background Globally, diabetes mellitus (DM), characterized by raised blood glucose, is a leading cause of premature mortality and disability¹. The global prevalence of DM has been on the rise over the past several decades¹². Recent estimates reflect the global prevalence of diabetes has nearly doubled among adults aged 18 years and above, rising from 4.7% in 1980 to 8.5% in 2014³. This growing burden is most prominent in low- and middle-income countries⁴ particularly

the Indian sub-continent ⁵. South and Southeast Asia accounts for close to one-fifth of all
 diabetes cases worldwide and the prevalence of diabetes in this region is projected to increase
 by 71% by 2035⁶. In Bangladesh, specifically, the International Diabetes Federation projects the
 prevalence of diabetes will increase to more than 50% in the next 15 years⁶.

The increase in prevalence of diabetes among Bangladeshi adults over the past few decades has been documented: Based on a meta-analysis of studies conducted from 1995 -2010, the prevalence of diabetes among Bangladeshi adults aged 30 years and above increased from 4% in 1995 to 2000 and 5% in 2001 to 2005 to 9% in 2006 to 2010⁷. Studies to assess the burden of diabetes has been conducted in Bangladesh in both urban and rural populations over the last decades⁸. However, national data on the prevalence of diabetes or raised blood glucose starting at age 18 years are currently unavailable⁸⁻¹¹. These data are valuable for monitoring progress made towards one of the nine global non-communicable disease (NCD) targets of the year 2025, set forth by the World Health Organization's (WHO) NCD Global Monitoring Framework: To observe a 0% increase in age-standardized prevalence of raised blood glucose or diabetes among persons aged ≥ 18 years¹². As such in response to the WHO Global Action Plan for the Prevention and Control of NCDs¹³, descriptive epidemiological data on the burden of raised blood glucose among adults starting at 18 years are needed to monitor national progress of interventions implemented to reduce the burden of DM in Bangladesh¹⁴⁻¹⁶. Here, using a nationally representative sample, we present data on prevalence and determinants of raised blood glucose by various sociodemographic factors such

as age, sex, and area of residence among Bangladeshi adults aged 18 years and above, residing in both urban and rural areas of the country. Additionally, we explore treatment patterns, and control of raised blood glucose among participants in our sample of Bangladeshi adults. Methods Data for this analysis were collected as part of a national assessment of the burden of musculoskeletal disorders in Bangladesh conducted by investigators from the Bangabandhu Sheikh Mujib Medical University (BSMMU) with technical assistance from the WHO Country Office for Bangladesh, as previously described¹⁷. The study was a population-based cross-sectional study carried out from November to December 2015 and followed the WHO STEP-wise approach to Surveillance of NCD risk factors (STEPS)¹⁸. The target population of this survey was men and women aged \geq 18 years residing in rural and urban areas of Bangladesh. The exclusion criteria included, tourists and the institutionalized, including residents of hospitals, prisons, nursing homes, and army barracks. Sampling Methods To obtain a population-based sample of Bangladesh, this survey adopted a multistage, geographically clustered, probability-based sampling approach. Population statistics were obtained using the updated national census conducted by Bangladesh Bureau of Statistics (BBS) in 2009¹⁹. To obtain our primary sampling unit (PSU), we utilized the following geographical distribution described: In Bangladesh, there are seven divisions, which are the largest administrative units of the country. Each division is divided into several districts (Zila) and within each district, there are several sub-districts (Upazila). Within sub-districts, mauzas and mahallas (commonly known as neighborhoods or blocks) are the smallest units within defined territories in rural and urban areas respectively. Mauzas and mahallas were considered the PSU for the study's sampling approach. The households within the mauzas and mahallas

Page 7 of 34

BMJ Open

were the secondary sampling units. We utilized the BBS' definition of household which is as
follows: "a dwelling in which persons either related or unrelated were living together and taking
food from the same kitchen"¹⁹.

The power analysis and sample size calculations were completed based on the standardized approach outlined in WHO STEPS methodology ¹⁸. Using the WHO STEPS methodology, the minimum number of participants required was 296 in each group (rural males, rural females, urban males, and urban females). Assuming a design effect of 1.5 adjusted within cluster population homogeneity, the necessary sample size was 1776. We assumed a response rate of 90% and determined we would need to contact at least 1973 adults. For simplicity, our target sample size was 2000. Twenty PSUs (8 urban and 12 rural) were randomly selected from 7 divisions of the country, with the probability proportional to the population size of each division. In each PSU, 100 consecutive households were selected. The even numbered households were designated as a "male household" and odd numbered households as a "female household." Finally, one male or female was approached to participate from each respective household as designated.

175 Data collection

Through a structured survey, we collected data on the following topics: musculoskeletal disorders²⁰, health history, and demographic data such as age, area of residence, education, current (last 12 month) occupation, tobacco use and physical activity. Physical measurements such as height, weight, waist circumference, blood glucose levels, and blood pressure were collected. To measure blood glucose levels, we obtained random blood glucose samples ³, per the clinical guidelines of diabetes diagnostic criteria of Bangladesh²¹. Capillary blood samples were consistently taken from the index finger of the right arm using a glucometer, namely Accu-chek Advantage (Roche Diagnostics Division, Grenzacherstrasse, Switzerland). Each participant's history of diabetes was assessed based on self-report. Specifically,

participants were asked: 1. Have you ever been diagnosed with diabetes by a health care

professional? 2. If yes, are you receiving treatment for diabetes? Treatment history of diabetes was confirmed by prescription, including medicine strips or insulin injection vials, or medical record when possible. Medicine strips or injection vials were checked when possible. The questionnaire was translated from English to Bengali, adapted and validated as per standard procedure. Data collection procedures were standardized across study sites through coordinated training of field staff conducted by epidemiologists, study physicians, and WHO staff members.

Blood pressure was measured by a trained field interviewer using the LifeSource UA-767+ blood pressure monitor, as recommended by the WHO, and appropriately sized arm cuffs. Blood pressure measurements were consistently taken on each participant's right arm at the level of the heart and elbow-assisted. The initial measurement was performed after five minutes of rest. After two minutes, the second measurement was taken. The mean of these two blood pressure readings was utilized as the final blood pressure for each participant.

Following data collection, participants were scheduled a visit with the study research physician within the following five-days. The research physician assessed the participant's medical history, either through self-report or using medical records when possible. Study physicians examined each participant to confirm the results of data collection through classical symptom assessment. When necessary, the participant was also evaluated by the divisional investigator for a second opinion of relevant diagnoses.

205 Outcome definitions

Our primary outcome of interest was prevalence of raised blood glucose. We utilized the American Diabetes Association (ADA) guidelines to define a diagnosis of raised blood glucose using random or casual plasma glucose test and symptom review by the study physician ²². An individual was considered to have raised blood glucose if the plasma glucose level was 11.1 mmol/L or higher with classic symptoms of hyperglycemia, and/or if they self-reported to take medication to control their diabetes. Our secondary outcome of interest was prevalence of self-

BMJ Open

1 2		
3 4	212	reported diabetes mellitus. An individual was categorized as diabetic if they self-reported to
5 6	213	have been previously diagnosed with diabetes by a health care provider.
7 8	214	Covariates
9 10	215	The following variables were assessed as covariates for analysis: area of residence,
11 12	216	sex, age, education, occupation, wealth index, body mass index (BMI), BP, and waist
13 14	217	circumference. Education was categorized into four groups: no education, primary education
15 16	218	(completed grade \leq 5), secondary education (completed \leq grade 10), and above secondary
17 18	219	education (completed ≥ grade 12). Occupation was categorized into five groups. These groups
19 20 21	220	included: professional employment (field staff, police officer, guard, doctor, engineer,
21 22 23	221	professional, business man, desk job), unemployed or retired, industrial worker or day laborer,
24 25	222	housewife, and other (shop keeper, weaver, driver, student, beggar, cook, carpenter, tailor,
26 27	223	migrant workers and fishermen).
28 29	224	Data on physical activity was collected based on self-report. First, respondents were
30 31	225	asked the number of days they engaged in in vigorous, moderate, or light physical activity
32 33	226	throughout a typical week. The following definitions were used to define (1) vigorous, (2)
34 35	227	moderate, and (3) light physical activity, respectively: (1)vigorous activity was defined as any
36 37	228	activity that causes large increases in breathing or heart rate, if continued for at least 10 minutes
38 39	229	(e.g. running, carrying heavy loads, digging or construction work); (2) Moderate activity was
40 41 42	230	defined as any activity that causes small increase in breathing or heart rate, if continued for at
43 44	231	least 10 minutes (brisk walking or carrying light loads); and (3) Light physical activity was
44 45 46	232	defined as activities such as office work. Next, we asked participants to estimate how many
47 48	233	minutes per day they engaged in the activity. MET-minute was calculated using the STEPS
49 50	234	protocol ²³ as follows: one minute of light activity was equivalent to 1 MET-minute; one minute in
51 52	235	moderate-intensity activity related activities was equivalent to 4 MET-minutes, and one minute
53 54	236	of vigorous-intensity was equivalent to 8 MET-minutes. Physical activity was then categorized
55 56	237	based on total MET-minutes per week. Participants who spent 3000 or more MET-minutes per
57 58		9

week were categorized in the vigorous physical activity group, 600-3000 MET-minutes were
categorized as moderate physical activity, and <600 MET-minutes were categorized as low
physical activity.

The wealth index was constructed using principal component analysis. Asset information collected covered information on household ownership of nineteen items, including: electricity, flush toilet, land telephone, cell phone, television, radio, refrigerator, car, motorcycle, washing machine, bicycle, sewing machine, wardrobe, table, bed or cot, chair or bench, watch or clock. Additionally, we assessed the main type of material used to build each participant's home (i.e. cement, tin, bamboo, or thatched straw). Each asset was assigned a weight (factor score) generated through principal components analysis, and the resulting asset scores were standardized to a normal distribution with a mean of zero and standard deviation of one. Each household was then assigned a score for each asset, and the scores were summed up; individuals were ranked according to the total score of the household in which they resided. The sample was then divided into quartiles from quartile one (lowest) to quartile four (highest). Using height (centimeters) and weight (kilograms) measurements, we calculated BMI (height/weight²). BMI was categorized in the following groups: underweight (\leq 18.5), normal (<25), overweight (25.1-30) and obese (>30). Waist circumference was measured in centimeters (cm). Participants were categorized as abdominally obese if waist circumference was 90 cm and above for men, or 80 cm and above for women. Prehypertension was defined as SBP ≥120 mmHg but < 140 mmHg and/or DBP \geq 80 mmHg but <90 mmHg and not taking anti-hypertensive medication at the time of the survey. We utilized the WHO's guidelines for cut-off points to define hypertension²⁴. An individual was considered to have hypertension if systolic blood pressure (SBP) was ≥140 mmHg (millimeters of mercury) and/or, diastolic blood pressure $(DBP) \ge 90 \text{ mmHg}$, and/or taking anti-hypertensive medication based on self-report.

263 Age-Standardized Prevalence Estimates

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 11 of 34

60

1 2		
- 3 4	264	To facilitate comparison of overall raised blood glucose among Bangladeshi adults
5 6	265	across global populations with different age compositions we calculated age-standardized
7 8	266	prevalence estimates with 95% confidence intervals (CIs) using the WHO's World Standard
9 10	267	Population ²⁵ . The World Standards database (WHO 2000-2025) provided population estimates
11 12	268	for 18 and 19 age groups, as well as single year ages. To derive single ages from the 5-year
13 14	269	age group proportions publically available, we used the Beers "Ordinary" Formula ²⁶ . The
15 16	270	following formula was utilized for standardization:
17 18	271	$\sum pi^*w_i / \sum w_i$, where p = observed prevalence and w = world population weight.
19 20	272	
21 22	273	Data Analysis
23 24 25	274	Sociodemographic variables were presented with mean and standard deviation (SD) for
25 26 27	275	continuous variables, and using proportions for categorical variables. For bivariate analyses,
28 29	276	study participants were divided by sex and into four age groups (18-29, 30-44, 45-54 and ≥55
30 31	277	years). We calculated the prevalence of our primary outcome by key demographic variables and
32 33	278	calculated 95% CIs using the binomial exact method.
34 35	279	To estimate determinants of raised blood glucose, we computed prevalence ratios with
36 37	280	Poisson regression using robust estimation of standard errors ²⁷⁻²⁹ . Potential variables for
38 39	281	inclusion in the model were assessed using prior published literature and bivariate Poisson
40 41	282	regression analysis; an arbitrary p-value of <0.10 was used as criteria to include the variable in
42 43	283	the multivariable Poisson regression model to control for confounding effects. For multivariable
44 45 46	284	Poisson regression models, adjusted prevalence ratios (aPR), and 95% CIs for each
40 47 48	285	independent variable were calculated. Additionally, <0.05 was used as the level of significance.
49 50	286	Multivariable Poisson regression models were generated separately for urban and rural
51 52	287	participants to account for possible effect measure modification. Collinearity was assessed
53 54	288	using the variance inflation factor to ensure a strong linear relationship among independent
55 56		
57 58		11
59		

1 2

3 4	289	variables included in the model was not present. All statistical procedures were performed using
5 6	290	Stata/SE 15.0 (StataCorp LP, Texas, USA) software package.
7 8	291	
9 10	292	Results
11 12 12	293	Background Characteristics
15 14 15	294	Of the 2000 adults approached, 1843 agreed to participate in our study leading to a
16 17	295	response rate of 92.1%. Twenty-four female participants were pregnant and were dropped from
18 19	296	subsequent analyses to ensure those with gestational diabetes were not included. There were
20 21	297	892 (49.0%) male and 927 (50.9%) female respondents (Table 1). Age of our participants
22 23	298	ranged from 18 to 90 years. The mean age and education level of participants was 40.5
24 25	299	(SD=14.7) years and 5.7 (SD=5.1) years, respectively. The majority of the population was
26 27	300	married (88.0%) and employed as either an industrial worker/day laborer (26.5%) or housewife
28 29	301	(39.9%). Almost half of the population never used some form of tobacco. The majority of
30 31	302	participants engaged in vigorous physical activity over an average week (69.3%). The mean
32 33	303	BMI was 22.1 (SD = 4.1) and mean waist circumference was 78.4 cm (SD = 11.6). Overall, the
34 35 26	304	mean systolic blood pressure was 116.1 mmHg (SD = 17.1) and diastolic blood pressure was
37 38	305	76.1 mmHg (SD=10.5). The mean blood glucose level was 6.4 mmol/L (SD = 2.4). Figure 1
39 40	306	presents the distribution of blood glucose levels by various demographic factors.
41 42	307	
43 44	308	Prevalence and Risk Factors for Raised Blood Glucose
45 46	309	The prevalence of raised blood glucose was 5.5% (95% CI: 4.5-6.6). This prevalence
47 48	310	was significantly higher among urban participants (9.8%, 95%CI: 7.7-12.2) than rural
49 50	311	participants (2.8%, 95% CI: 1.9 – 3.9) (Table 2) and increased as age increased (Figure 2). The
51 52	312	highest prevalence of raised blood glucose was observed among those aged ≥55 years, at
53 54	313	8.2% (95% CI: 4.6-13.1) among men and 9.4% (95% CI: 5.4-14.8) among women. The age-
55 56	314	standardized prevalence of raised blood glucose was 5.6% (95% CI: 4.6 – 6.8). The age-
57 58 59		12
נו		

3 4	315	standardized prevalence of raised blood glucose among urban and rural residents was 10.5%
5 6	316	(95% CI: 9.2-12.1) and 2.8% (95% CI: 2.1-3.7), respectively. Among men and women, the age-
7 8	317	standardized prevalence of raised blood glucosewas 4.9% (95% CI: 3.9-6.0) and 6.0% (95% CI:
9 10	318	4.9-7.2), respectively.
11 12	319	
13 14	320	Self-Reported Diabetes Mellitus and Raised Blood Glucose
15 16	321	Ninety-five participants (5.2%) self-reported to have been previously diagnosed with
17 18 10	322	diabetes by a health care provider. However, 25 of these individuals did not meet our criteria of
19 20 21	323	diagnosis ofraised blood glucose as they did not take medication to control their diabetes and
21 22 23	324	their plasma glucose was below 11.1 mmol/L. Therefore, 69.3% of those with raised blood
23 24 25	325	glucose, per the study definition, were previously diagnosed with diabetes by a health care
26 27	326	provider. The proportion of men and women who were previously diagnosed with diabetes by a
28 29	327	health care based on self-report was higher among urban residents (men: 8.4%; women: 9,1%)
30 31	328	than among rural residents (men: 2.9%; women: 3.0%) (Figure 3a). However, overall, the large
32 33	329	majority (81.8%) reported they did not know if they had been previously diagnosed with
34 35	330	diabetes; this proportion was higher among rural residents (87.8%) than urban residents
36 37	331	(72.2%). Among participants previously diagnosed with diabetes based on self-report, 72.6%
38 39	332	reported to take medication to control their diabetes. Urban women more frequently (96.7%)
40 41 42	333	self-reported to take diabetes medication than urban men (62.1%) (Figure 3b).
42 43 44	334	Among participants who were diagnosed with raised blood glucose at study
45 46	335	measurement, over one-third (37.9%), of urban men self-reported to have diabetes, however,
47 48	336	did not take any medication to control their diabetes. Among rural participants, the proportion of
49 50	337	women who did not take medication to control their self-reported diabetes was higher (52.9%)
51 52	338	than men (31.3%). Although three quarters of self-reported diabetic participants reported to take
53 54	339	medication to control their diabetes, 31% continued to have high blood sugar levels indicating
55 56	340	uncontrolled diabetes at study measurement (Figure 4).
57 58		13
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
3 4	341	
5 6	342	Determinants of Raised Blood Glucose
7 8	343	Table 2 presents results of multivariable Poisson regression with robust variance
9 10	344	analyses to identify determinants of raised blood glucose. Among urban participants, those of
11 12	345	older age, lowest wealth quartile, hypertension, low physical activity, and with abdominal obesity
13 14	346	based on waist circumference, were more likely to have raised blood glucose. The prevalence
15 16 17	347	of raised blood glucose was significantly highest among those aged ≥55 years (aPR 3.92, 95%
17 18 19	348	CI:1.48 – 10.39) compared to individuals aged 18-29 years of age. When compared to those in
20 21	349	the 4 th (highest) wealth quartile, urban residents in the first (lowest) wealth quartile had 3.18
22 23	350	times the prevalence of raised blood glucose. For urban individuals with hypertension, the
24 25	351	prevalence of raised blood glucose was 2.65 (95% CI: 1.30-5.38) times that of individuals
26 27	352	without hypertension. The prevalence of raised blood glucose among those with low physical
28 29	353	activity was 3.01 (95% CI: 1.42- 6.38) times that of urban participants with vigorous physical
30 31	354	activity. Abdominal obesity also significantly increased the prevalence of raised blood glucose
32 33	355	among urban participants (aOR: 2.54, 95% CI: 1.35-4.77). Among rural participants, the only
34 35 26	356	observed determinants of raised blood glucose were hypertension (aPR: 5.39, 95% CI: 1.94 -
30 37 38	357	14.96) and abdominal obesity (aPR: 2.95, 95% CI: 1.32 – 6.58).
39 40	358	
41 42	359	Discussion
43 44	360	Using data from this nationally representative sample, we estimate that about one in
45 46	361	twenty Bangladeshi adults aged ≥18 years have raised blood glucose. The prevalence of raised
47 48	362	blood glucose was higher among urban residents (9.8%), than rural residents (2.8%).
49 50	363	Prevalence of raised blood glucose increased with age, urban residence, abdominal obesity,
51 52	364	low physical activity, and hypertension. As diabetes is characterized by raised blood glucose,
53 54 55	365	targeting high-risk groups identified in this analysis could be prioritized for organized diabetes
55 56 57	366	preventive programs in Bangladesh. Bangladesh has adopted the goals and targets set forth by
57 58 59		14

1	
2	
3	
4	
5	
6	
7	
, o	
0	
9	
10	
11	
12	
13	
14	
15	
10	
10	
17	
18	
19	
20	
21	
22	
22	
23	
24	
25	
26	
27	
28	
29	
30	
21	
21	
32	
33	
34	
35	
36	
37	
20	
20	
39	
40	
41	
42	
43	
44	
45	
46	
40	
4/	
48	
49	
50	
51	
52	
52	
55	
54 57	
55	
56	
57	
58	
59	

60

the WHO's Global Monitoring Framework for the Prevention and Control of NCDs for the year 2025¹². One of these targets is to ensure there is a 0% increase in the age-standardized prevalence of raised blood glucose among adults aged \geq 18 years by the year 2025. To our knowledge, the present study is the first to report national estimates on prevalence of raised blood glucose starting at age 18 years in both urban and rural areas of Bangladesh. Data gathered from this national-level study are critical towards the measurement of progress towards the nine global targets for Bangladesh for 2025.

374 In our study, the age-standardized prevalence of raised blood glucose was 5.6%, and 375 was significantly higher in urban areas than rural areas. This may be due to differences in life style factors such as physical activity, diet, and tobacco use. These findings are similar to prior 376 studies conducted to measure the prevalence of diabetes among adults in Bangladesh^{8 10 11 30 31}. 377 A recently published review, identified about 22 studies conducted to estimate the prevalence of 378 379 diabetes in different settings, including rural and urban, and varying age groups including ≥ 20 years, \geq 30 years, and \geq 35 years⁸. Estimates of diabetes prevalence ranged from 4.5% and 380 35%, however, the pooled estimate was 7.4% (95% CI: 7.2-7.6). The pooled estimate is higher 381 than our study's findings, however, our cohort is generally younger and this may lead to the 382 383 lower prevalence estimate.

Significant determinants of raised blood gluocse in both urban and rural areas of our 384 assessment included hypertension, low physical activity, and abdominal obesity. Interestingly, 385 386 there was no association of diabetes identified for increasing body mass index (BMI). This 387 indicates that abdominal obesity may be a more significant factor to consider than BMI. Prior studies conducted in Bangladesh have also identified a positive association of central (or 388 abdominal) obesity with diabetes³². Interestingly, our assessment found a decrease in odds of 389 390 diabetes with increasing wealth quartile. Prior studies have conflicting findings on the risk of 391 diabetes and other NCDs, among the wealthy based on demographic features such as area of residence. One prior study conducted in Bangladesh found that people from the highest wealth 392

Page 16 of 34

BMJ Open

guintile are significantly more likely to have diabetes than people from the lowest wealth quintile³³. However, another found a high burden of selected NCDs, including diabetes, among the lowest wealth quintile populations in rural areas and wealthy populations in urban areas³⁴. Further study is warranted to assess the reliability of wealth indices as a measurement of socioeconomic status and wealth among Bangladeshi adults. In our study, a high proportion (\sim 70%) of those with raised blood glucose self-reported to have bene previously diagnosed with diabetes and therefore, aware of their condition. Additionally, 72% reported to take medication to control their diabetes. However, we found that almost one-third of those who self-reported to take medication for their diabetes, continued to have raised blood glucose. Efforts should be made to ensure diabetics in Bangladesh are treated for their condition and secondary prevention of complications of diabetes, such as diabetic retinopathy. This is of particular concern in developing countries where resources are limited and cost-effective solutions for chronic disease treatment should be prioritized. A recently published study found that healthcare expenditure in persons with diabetes in Bangladesh is six times higher than in persons without diabetes ¹⁵. Prevention and management of diabetes is likely to be a cost-saving approach for Bangladesh through the utilization of community health workers adequately trained to effectively screen for, and identify, people with diabetes ³⁵. This study has several strengths. Data collected for our study was of a nationally

representative sample indicating our results are highly generalizable to the total population of Bangladeshis aged 18 years and above. Our sample of 1843 allowed us to do an effective analysis of further subgroups.. However, several limitations should also be considered when interpreting the results of this analysis. We assessed blood glucose levels using random capillary blood samples, however, we did not assess history of classical symptoms of hyperglycemia, which is necessary to diagnose diabetes according to the ADA guidelines²². Additionally, we were unable to measure factors such as family history of diabetes, and obtain

Page 17 of 34

1

BMJ Open

blood glucose samples in fasting or two-hour post-prandial status to also assess prediabetes.

Future studies should consider the addition of glycosylated hemoglobin measurement when

diagnosis of diabetes mellitus. As such, we have an adequate sample size to measure

assessing the prevalence of diabetes as this method could provide more long-term and stable

prevalence of diabetes. Finally, due to the cross-sectional nature of this study, we were unable

to define temporality of certain determinants of raised blood glucose identified and therefore,

Data from this nationally-representative sample of Bangladeshi adults aged 18 years

and above will be critical to inform the progress of NCD control in Bangladesh per the WHO's

Bangladeshi adults aged ≥18 years have raised blood glucose. Among urban residents, we

found that about one in ten Bangladeshi adults aged ≥18 years have raised blood glucose.

development of diabetes and should be targeted for routine screening for diabetes. Preventive

methods such as lifestyle changes and medication should be recommended by primary care

control the prevalence of raised blood glucose, and reduce the burden of diabetes and

providers in Bangladesh to avoid the future development of CVDs among this group. In order to

associated risk factors, national initiatives such as training community health workers to deliver

primary care and implementing universal health coverage should be implemented to curb the

Bangladeshi adults with hypertension and abdominal obesity are high-risk groups for the

Global Monitoring Framework and goals for 2025. We found that about one in twenty

2	
3 4	419
5	420
7 8	421
9 10	422
10 11 12	423
12 13 14	424
14 15 16	425
10	425
18 19	426
20 21	427
22 23	428
24 25	429
26 27	430
28 29	431
30 31	432
32 33	433
34 35	434
36 37	435
38 39	436
40 41	130
41	437
43 44	438
45 46	439
47 48	440
49 50	441
51 52	442
53 54	443
55 55	
56 57	444
58 59	

60

unable to assess causality.

spread of NCDs in Bangladesh.

Conclusion

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2									
2 3 4	445	Figures							
5 6	446	Figure 1: Urban and Rural differences in distribution of blood glucose levels based on random							
7 8	447	capillary blood measurement among (A) All Participants, and (B) Men and Women (n = 1819) Figure 2: Prevalence of raised blood glucose among Bangladeshi adults aged 18 years and							
9 10	448								
11 12	449 above by sex and age group, 2015 (n = 1819)								
13 14	450	Figure 3: Bangladeshi adults aged 18 years and above with (A) self-reported diabetes and (B)							
15 16 17 18 19 20 21	451	self-reported diabetics on diabetes medications, 2015							
	452	Figure 4: Self-reported diabetics aged 18 years or older who take diabetes medication with							
	453	raised blood glucose on study measurement (≥11.0mmol/L)							
21 22 23	454								
23 24 25 26 27	455								
	456								
28 29	457								
30 31	458								
32 33	459								
34 35	460								
36 37 38	461								
39 40	462								
41 42	463								
43 44	464								
45 46	465								
47 48	466								
49 50	467								
51 52	468								
53 54	469								
55 56	470								
57 58 59		18							
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml							

1 2									
- 3 4	471	Abbreviations							
5 6	472	WHO: World Health Organization							
7 8	473	ADA: American Diabetes Association							
9 10	474	aPR: Adjusted prevalence ratio							
11 12	475	BBS: Bangladesh Bureau of Statistics							
13 14	476	BMI: Body mass index							
15 16 17	477	BP: Blood pressure							
17 18 10	478	BSMMU: Bangabandhu Sheikh Mujib Medical University							
19 20 21	479	CI: Confidence interval							
22 23	480	CVD: Cardiovascular disease							
24 25	481	MET: Metabolic equivalent							
26 27 28 29	482	mmHg: Millimeter of mercury							
	483	mmol/L: Millimoles per litre							
30 31	484	NCD: Non-communicable disease							
32 33	485	SBP: Systolic blood pressure							
34 35 26	486	DBP: Diastolic blood pressure							
30 37 38	487	PSU: Primary sampling unit							
39 40	488	SD: Standard deviation							
41 42	489	STEPS: STEPwise approach to surveillance							
43 44	490								
45 46	491								
47 48	492								
49 50	493								
51 52	494								
53 54	495								
55 56 57	496								
58 59									
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml							

2 3	497	Footnotes					
4 5 6	498	Ethics approval and consent to participate: Ethical guidelines as outlined by the Declaration of					
0 7 8	499	Helsinki were followed throughout the study. Ethical clearance was obtained from Institutional					
9 10 11 12 13 14 15 16 17 18	500	Review Board of Bangabandhu Sheikh Mujib Medical University (BSMMU). We obtained					
	501	permission from the relevant administrative units of the surveyed districts. Orientations with					
	502	community leaders (elected representatives of the local government offices) were conducted					
	503	prior to data collection for community engagement in the study's implementation process.					
	504	Written (or thumb impression if unable to write) consent was obtained from the respondents in					
19 20 21	505	Bangla as per BSMMU Institutional Review Board (IRB) guidelines.					
21 22 23	506	Consent to publish: All authors consent to the publication of this manuscript.					
24 25	507	Availability of data and materials: The datasets used and/or analyzed during the current study					
26 27	508	are available from the corresponding author on reasonable request.					
28 29	509	Competing Interests: The authors declare no competing interests. The authors alone are					
30 31	510	responsible for views expressed in this article and they do not necessarily represent the views,					
32 33	511	decisions or policies of the institutions with which they are affiliated.					
34 35	512	Funding: The study was conducted with technical and financial assistance of the World Health					
36 37 38	513	Organization Country Office for Bangladesh.					
39 40	514	Authors contributions: JYI: analyzed data, interpreted results, and drafted the manuscript. MMZ:					
41 42	515	designed the study, interpreted results critically, conceptualized the manuscript, guided					
43 44	516	manuscript writing, and critically reviewed it. MRB, SAH, SA, ZAQ: trained the field team,					
45 46	517	implemented the survey, processed and analyzed data, and reviewed the manuscript.					
47 48	518	Acknowledgements: The authors thank Mr. Hassanuzzaman Khan for his efforts on data					
49 50	519	management.					
51 52	520						
53 54	521						
55 56 57	522						
58 59		20					
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml					

Page 21 of 34

1 ว		
2 3 4	523	References
5 6 7	524	1. Lozano R, Naghavi M, Foreman K, et al. Global and regional mortality from 235 causes of
, 8 9	525	death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden
10 11	526	of Disease Study 2010. Lancet (London, England) 2012;380(9859):2095-128. doi:
12 13	527	10.1016/S0140-6736(12)61728-0
14 15	528	2. Murray CJ, Vos T, Lozano R, et al. Disability-adjusted life years (DALYs) for 291 diseases
16 17	529	and injuries in 21 regions, 1990-2010: a systematic analysis for the Global Burden of
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39	530	Disease Study 2010. Lancet (London, England) 2012;380(9859):2197-223. doi:
	531	10.1016/S0140-6736(12)61689-4
22 23	532	3. Global report on diabetes. Geneva, Switzerland: World Health Organization 2016.
24 25	533	4. Wild S, Roglic G, Green A, et al. Global prevalence of diabetes: estimates for the year 2000
26 27 28	534	and projections for 2030. Diabetes care 2004;27(5):1047-53.
28 29 30	535	5. Jayawardena R, Ranasinghe P, Byrne NM, et al. Prevalence and trends of the diabetes
31 32	536	epidemic in South Asia: a systematic review and meta-analysis. BMC public health
33 34	537	2012;12:380. doi: 10.1186/1471-2458-12-380
35 36	538	6. IDF diabetes atlas sixth edition Brussels, Belgium Interational Diabetes Federation, 2013.
30 37 38 39 40	539	7. Saquib N, Saquib J, Ahmed T, et al. Cardiovascular diseases and type 2 diabetes in
	540	Bangladesh: a systematic review and meta-analysis of studies between 1995 and 2010.
41 42	541	BMC public health 2012;12:434. doi: 10.1186/1471-2458-12-434
43 44	542	8. Biswas T, Islam A, Rawal LB, et al. Increasing prevalence of diabetes in Bangladesh: a
45 46 47	543	scoping review. Public health 2016;138:4-11. doi: 10.1016/j.puhe.2016.03.025
47 48 40	544	9. Rahman MS, Akter S, Abe SK, et al. Awareness, treatment, and control of diabetes in
50 51	545	Bangladesh: a nationwide population-based study. <i>PloS one</i> 2015;10(2):e0118365. doi:
52 53	546	10.1371/journal.pone.0118365
54 55		
56 57		
58 59		21
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

23	F 4 7	40 Alter C. Debreen MMA Abe CK, et al. Drevelance of disbetes and mediabetes and their risk
5 4 5	547	10. Akter S, Rahman MM, Abe SK, et al. Prevalence of diabetes and prediabetes and their risk
5 6 7	548	factors among Bangladeshi adults: a nationwide survey. Bulletin of the World Health
, 8 9 10 11 12 13 14 15 16 17 18 9 20 21 22 23 24 25 26 27 28 29 30 132 33 4 5 36 37 8 9 40 41 42 44 42 44	549	Organization 2014;92(3):204-13, 13A. doi: 10.2471/BLT.13.128371
	550	11. Zaman MM, Choudhury SR, Ahmed J, et al. Blood glucose and cholesterol levels in adult
	551	population of Bangladesh: Results from STEPS 2006 survey. Indian heart journal
	552	2016;68(1):52-6. doi: 10.1016/j.ihj.2015.06.031
	553	12. NCD Global Monitoring Framework: World Health Organization; 2017 [Available from:
	554	http://www.who.int/nmh/global_monitoring_framework/en/ accessed 09/29 2017.
	555	13. Global action plan for the prevention and control of noncommunicable diseases 2013-2020.
	556	Geneva, Switzerland: World Health Organization, 2013.
	557	14. Siddique MKB, Islam SMS, Banik PC, et al. Diabetes knowledge and utilization of
	558	healthcare services among patients with type 2 diabetes mellitus in Dhaka, Bangladesh.
	559	BMC health services research 2017;17(1):586. doi: 10.1186/s12913-017-2542-3
	560	15. Shariful Islam SM, Lechner A, Ferrari U, et al. Healthcare use and expenditure for diabetes
	561	in Bangladesh. <i>BMJ Glob Health</i> 2017;2(1):e000033. doi: 10.1136/bmjgh-2016-000033
	562	16. Haghparast-Bidgoli H, Shaha SK, Kuddus A, et al. Protocol of economic evaluation and
	563	equity impact analysis of mHealth and community groups for prevention and control of
	564	diabetes in rural Bangladesh in a three-arm cluster randomised controlled trial. BMJ
	565	open 2018;8(8):e022035. doi: 10.1136/bmjopen-2018-022035
	566	17. Islam JY, Zaman MM, Haq SA, et al. Epidemiology of hypertension among Bangladeshi
45 46	567	adults using the 2017 ACC/AHA Hypertension Clinical Practice Guidelines and Joint
47 48	568	National Committee 7 Guidelines. Journal of human hypertension 2018;32(10):668-80.
49 50	569	doi: 10.1038/s41371-018-0087-5
51 52	570	18. Chronic Disease and Health Promotion: STEP wise approach to surveillance (STEPS).
53 54	571	Geneva: World Health Organization.
55 56		
57 58		22
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2								
- 3 4	572	19. Population and Housing Census 2001, updated in 2009. Dhaka, Bangladesh: Bangladesh						
5 6	573	Bureau of Statistics 2009.						
7 8	574	20. Goycochea-Robles MV, Sanin LH, Moreno-Montoya J, et al. Validity of the COPCORD core						
9 10	575	questionnaire as a classification tool for rheumatic diseases. J Rheumatol Suppl						
 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 	576	2011;86:31-5. doi: 10.3899/jrheum.100955						
	577 21. Guidelines for Care of Type 2 Diabetes Mellitus in Bangaldesh. Dhaka, Bangladesh							
	578	BIRDEM Clinical Research Group, 2003.						
	579	22. American Diabetes A. 2. Classification and Diagnosis of Diabetes. Diabetes care						
	580	2017;40(Suppl 1):S11-S24. doi: 10.2337/dc17-S005						
	581	23. Moniruzzaman M, Mostafa Zaman M, Islalm MS, et al. Physical activity levels in						
	582	2 Bangladeshi adults: results from STEPS survey 2010. <i>Public health</i> 2016;137:131-8. c						
	583	10.1016/j.puhe.2016.02.028						
	584	24. A global brief on Hypertension: Silent Killer, global public health crisis. Geneva, Switzerland:						
	585	World Health Organization, 2013.						
	586	25. Ahmad OB, Boschi-Pinto C, Lopez AD, et al. Age Standardization of Rates: A New WHO						
34 35	587	Standard. GPE Discussion Paper Series: No31 Geneva, Switzerland: World Health						
36 37	588	Organization, 2001.						
38 39	589	26. World (WHO 2000-2025) Standard Rockville, MD: National Cancer Institute: Surveillance,						
40 41 42	590	Epidemiology, and End Results Program; 2017 [Available from:						
43 44	591	https://seer.cancer.gov/stdpopulations/world.who.html accessed December 17 2017.						
45 46	592	27. Coutinho LM, Scazufca M, Menezes PR. Methods for estimating prevalence ratios in cross-						
47 48	593	sectional studies. Revista de saude publica 2008;42(6):992-8.						
49 50	594	28. Behrens T, Taeger D, Wellmann J, et al. Different methods to calculate effect estimates in						
51 52	595	cross-sectional studies. A comparison between prevalence odds ratio and prevalence						
53 54	596	ratio. <i>Methods Inf Med</i> 2004;43(5):505-9.						
55 56								
57 58		23						
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml						

3 4	597	29. Barros AJ, Hirakata VN. Alternatives for logistic regression in cross-sectional studies: an
5 6	598	empirical comparison of models that directly estimate the prevalence ratio. BMC medical
7 8	599	research methodology 2003;3:21. doi: 10.1186/1471-2288-3-21
9 10	600	30. Hussain A, Rahim MA, Azad Khan AK, et al. Type 2 diabetes in rural and urban population:
11 12	601	diverse prevalence and associated risk factors in Bangladesh. Diabetic medicine : a
3 4 5 6 7 8 9 10 11 22 33 4 5 6 7 8 9 10 11 22 33 4 5 6 7 8 9 10 11 22 33 4 5 6 7 8 9 10 11 22 32 4 25 26 27 28 9 30 31 22 33 4 35 36 37 8 9 0 11 22 32 4 25 26 27 28 9 30 31 22 33 4 35 36 37 8 9 0 11 22 32 4 25 26 27 28 9 30 31 22 33 4 35 36 37 8 9 0 11 22 32 4 25 26 27 28 9 30 31 22 33 4 35 36 37 8 9 0 11 22 32 4 25 26 27 28 29 30 31 22 33 4 35 36 37 8 9 0 11 22 32 4 25 26 27 28 29 30 31 22 33 4 35 36 37 8 9 0 11 22 32 4 25 26 27 28 29 30 31 22 33 4 35 36 37 8 9 0 41 42 43 44 5 5 6 5 7 8 9 40 41 42 43 44 5 5 6 5 7 8 9 40 41 42 5 3 6 37 3 34 5 5 6 5 7 8 9 9 0 1 22 33 34 5 5 6 5 7 8 9 0 1 22 3 3 4 5 5 6 5 7 8 9 40 41 42 5 5 6 5 7 8 9 40 41 42 5 5 5 6 5 7 8 9 40 41 42 5 5 5 6 5 7 8 9 40 41 42 5 5 5 5 5 7 8 9 40 41 42 5 5 5 5 5 7 8 9 40 41 42 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	602	journal of the British Diabetic Association 2005;22(7):931-6. doi: 10.1111/j.1464-
	603	5491.2005.01558.x
17 18	604	31. Rahman M, Zaman MM, Islam JY, et al. Prevalence, treatment patterns, and risk factors of
3 4 5 6 7 8 9 10 11 21 31 41 51 61 71 81 92 01 22 32 42 52 62 72 82 93 01 32 33 43 53 60 71 42 43 44 54 64 74 84 91 42 64 74 84 91 42 64 74 84 91 42 64 74 84 91 100 100 100 100 100 100 100 100 100	605	hypertension and pre-hypertension among Bangladeshi adults. Journal of human
21 22 23	606	hypertension 2017 doi: 10.1038/s41371-017-0018-x
23 24 25	607	32. Alam DS, Talukder SH, Chowdhury MA, et al. Overweight and abdominal obesity as
26 27	608	determinants of undiagnosed diabetes and pre-diabetes in Bangladesh. BMC Obes
28 29 30 31 32 33 34 35 36	609	2016;3:19. doi: 10.1186/s40608-016-0099-z
	610	33. Tareque MI, Koshio A, Tiedt AD, et al. Are the rates of hypertension and diabetes higher in
	611	people from lower socioeconomic status in Bangladesh? Results from a nationally
	612	representative survey. <i>PloS one</i> 2015;10(5):e0127954. doi:
36 37 38	613	10.1371/journal.pone.0127954
38 39 40	614	34. Biswas T, Islam MS, Linton N, et al. Socio-Economic Inequality of Chronic Non-
40 41 42	615	Communicable Diseases in Bangladesh. <i>PloS one</i> 2016;11(11):e0167140. doi:
43 44	616	10.1371/journal.pone.0167140
45 46	617	35. Gaziano TA, Abrahams-Gessel S, Denman CA, et al. An assessment of community health
47 48	618	workers' ability to screen for cardiovascular disease risk with a simple, non-invasive risk
49 50	619	assessment instrument in Bangladesh, Guatemala, Mexico, and South Africa: an
51 52	620	observational study. The Lancet Global health 2015;3(9):e556-63. doi: 10.1016/S2214-
53 54	621	109X(15)00143-6
55 56		
57 58 50		24
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 25 of 34

BMJ Open

1
2
3
4
5
6
7
2 0
0
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
25
20
27
20
29
20 21
21
2∠ 22
33 24
34 25
35
36
3/
38
39
40
41
42
43

	Total_(n =	Total (n = 1819)			n = 708	5)	Rural (n = 1111)		
Characteristic	Mean (SD)	n	%	Mean (SD)	n	%	Mean (SD)	n	%
Gender									
Male		892	49.0		345	48.7		547	49.
Female		927	50.9		363	51.3		564	50.
Age(years)	40.5 (14.7)			39.1 (13.9)			41.4 (15.1)		
Education (Years) ^a	5 (0 - 9)			8 (3-12)			4 (0-8)		
Marital Status				, , , , , , , , , , , , , , , , , , ,					
Never Married		110	6.1		54	7.6		56	4.9
Married		1601	88.0		619	87.4		982	88
Separated/Divorced/Widowed		108	5.9		35	4.9		73	6.
Occupation									
Professional employment ^b		279	15.2		189	26.7		90	8.
Unemployed/retired		98	5.3		43	6.1		55	4.9
Industrial worker/Day Laborer		483	26.6		120	16.9		363	32.
Housewife		726	39.9		247	34.9		479	43.
Other ^c		232	12.8		109	15.4		123	11.
Wealth Index d									
1st Wealth Quartile		407	22.4		110	15.5		297	26.
2nd Wealth Quartile		533	29.3		171	24.2		362	32
3rd Wealth Quartile		429	23.6		179	25.3		250	22.
4th Wealth Quartile		450	24.7		248	35.0		202	18
Tobacco Use ^e						•			
Never		859	47.2		389	54.9		470	42
Current Use		821	45.1		268	37.9		553	49.
Past Use		139	7.6		51	7.2		88	7.9
Smoking Tobacco Use ^f									
Every day / Occasionally		494	27.2		169	23.9		325	29.
Past Use		104	5.7		38	5.4		66	5.9
Never		1221	67.1		501	70.8		720	64.
Smokeless Tobacco Use ^g									
Every day / Occasionally		529	29.1		150	21.2		379	34
Past Use		51	2.8		21	2.9		30	2.
Never		1239	68.1		537	75.9		702	63
Physical Activity ^h								-	
Vigorous		1268	69.7		445	62.9		823	74
Moderate		464	25.5		234	33.1		230	20
		07	47			4 4			

Body Mass Index ⁱ	22.1 (4.1)	23.3 (4.5)	21.3 (3.7)
Waist Circumference (cm)	78.4 (Ì1.6́)	81.8 (Ì2.6́)	76.2 (10.3)
Blood Pressure	χ, γ		
Systolic Blood Pressure (mmHg)	116.1 (17.1)	117.9 (16.6)	115.0 (17.3)
Diastolic Blood Pressure (mmHg)	76.1 (10.5)	77.9 (10.9)	74.9 (10.1)
Blood Glucose Level (mmol/l)	6.4 (2.4)	6.6 (2.9)	6.3 (2.1)

Abbreviations: SD, standard deviation

 ^a Calculated median and interquartile range for education as the data are skewed

^b Professional occupation includes: Field staff, police officer, guard, doctor, engineer, professional, business man, desk job

^c Other occupation includes: Shop keeper, weavers, driver, student, beggar, cook, carpenter, tailor, migrant workers and fishermen

^d Wealth index was calculated using principal component analysis using data collected on household ownership of the following items: electricity,

flushable toilet, land phone, cell phone, television, radio, refrigerator, private car, motor cycle, washing machine, bicycle, sewing machine,

almirah/wardrobe, table, bed, chair/bench, watch/clock, as well as, type of main material used to build their homes roof, walls and floor

e Includes both smokeless tobacco and smoke tobacco

16 ^f Smoking tobacco use includes cigarettes, biri, hookah, etc.

17 ^g Smokeless tobacco use includes jodda, paan, white leaf, etc.

^h Measured in MET-minutes; 1 MET stands for the amount of oxygen you consume and the number of calories you burn at rest.

ⁱ Body mass index (BMI) calculated by weight in kilogram divided by height in meter squared

	Tota	al (n = 1819)	Urba	n (n = 708)	Rural (n = 1111)		
	Diabetes ^a Prevalence %	Adjusted PR ^b (95% CI)	Diabetes ^a Prevalence %	Adjusted OR ^b (95% CI)	Diabetes ^a Prevalence %	Adjusted OR [♭] (95% CI)	
Characteristic							
Area							
Urban	9.8	Ref.	-	-	-	-	
Rural	2.8	0.44 (0.28 – 0.68)	-	-	-	-	
Gender							
Male	4.9	Ref.	7.5	Ref.	3.3	Ref.	
Female	5.9	1.05 (0.71 – 1.54)	11.9	1.26 (0.80 – 1.99)	2.2	0.61 (0.29 – 1.2	
Age (years)							
18 - 29	2.5	Ref.	2.5	Ref.	2.5	Ref.	
30 - 44	4.9	1.48 (0.78 – 2.79)	8.4	2.55 (1.01 – 6.41)	2.5	0.76 (0.30 – 1.9	
45 - 54	7.4	2.18 (1.10– 4.31)	15.5	4.38 (1.62 – 11.59)	2.8	0.67 (0.25 – 1.8	
≥ 55	8.8	1.92 (0.95 – 3.86)	19.3	3.92 (1.48 – 10.39)	3.4	0.53 (0.17 – 1.6	
Educational Status							
No Education	3.4	Ref.	7.0	Ref.	2.1	Ref.	
Primary Education	3.7	1.00 (0.53 – 1.86)	7.6	1.00 (0.44 – 2.30)	2.1	0.84 (0.30 – 2.3	
Secondary Education	6.9	1.67 (0.95 – 2.93)	12.1	1.94 (0.95 - 3.97)	2.9	1.01 (0.40 – 2.5	
Above Secondary Education	9.8	1.48 (0.77 – 2.84)	10.4	1.54 (0.71 – 3.33)	8.1	2.24 (0.68 – 7.4	
Wealth Index ^c							
1st Wealth Quartile	7.7	2.58 (1.57 – 4.24)	18.9	3.18 (1.80 – 5.62)	3.6	1.37 (0.53 – 3.4	
2nd Wealth Quartile	4.3	1.23 (0.71 – 2.14)	9.4	1.50 (0.82 – 2.77)	1.9	0.70 (0.24 – 2.0	
3rd Wealth Quartile	3.7	0.86 (0.47 – 1.58)	6.0	0.96 (0.48 – 1.92)	2.0	0.55 (0.18 – 1.7	
4th Wealth Quartile	6.6	Ref.	8.8	Ref.	3.9	Ref.	
Blood Pressure							
Normal Blood Pressure	1.9	Ref.	3.5	Ref.	1.1	Ref.	
Pre-Hypertension d	5.7	1.74 (1.00 – 3.01)	8.3	1.37 (0.69 – 2.74)	3.8	2.32(0.91 - 5.9	
Hypertension ^e	18.9	3.57 (2.01 – 6.34)	27.4	2.65 (1.30 – 5.38)	8.8	5.39(1.94 - 14.9	
Physical Activity							
Vigorous	3.9	Ref.	6.9	Ref.	2.3	Ref.	
Moderate	8.2	1.18 (0.78 – 1.77)	13.8	1.22 (0.77 – 1.93)	2.1	0.65 (0.22 – 1.8	
Low	14.9	3.04 (1.69 – 5.47)	20.7	3.01 (1.42 – 6.38)	12.1	2.58 (0.95 – 7.0	
Body Mass Index ^f	-	· · · · · · · · · · · · · · · · · · ·	-			`	
Lindenweight (<18.5)	1 1	0 37 (0 12 _ 1 13)	1.8	0 38 (0 07 - 1 95)	0.7	0 42 (0 00 - 2 (
	1 1.1	0.07 (0.12 - 1.13)	1.0	0.00(0.07 - 1.00)	0.7	0.72 (0.03 - 2.0	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1				1			
2	Normal (18.5 - 25)	4.7	Ref.	8.2	Ref.	2.8	Ref.
3	Overweight (25.1 - 30)	10.4	1.06 (0.68 – 1.65)	14.0	1.05 (0.61 – 1.80)	6.2	1.22 (0.51 – 2.91)
4	Obese (>30)	20.9	1.49 (0.87 – 2.57)	26.5	1.46 (0.81 – 2.64)	5.6	0.95 (0.12 – 7.60)
5	Waist Circumference (cm)						
6	Normal ^g	2.3	Ref.	3.8	Ref.	1.6	Ref.
7	Abdominally Obese ^h	13.3	2.49 (1.53 – 4.07)	18.1	2.54 (1.35 – 4.77)	6.8	2.95 (1.32 – 6.58)
8	Abbreviations: PR = prevalence ratio	, CI = confide	nce intervals, Ref = ref	erent category			
9	^a Raised blood glucose was defined	as a capillary	blood glucose level gre	ater than or ec	qual to 11.1 mmol/L or self	f-reported dia	abetes medication use
10	^b Model adjusted for all variables incl	uded in table:	sex, age, education, w	ealth index, blo	ood pressure, body mass	index, self-re	eported physical
11	activity, and waist circumference						
12	⁶ Wealth index was calculated using	principal com	ponent analysis using o	ata collected o	on nousenoid ownersnip o	of the followin	ig items: electricity,
13	almirah/wardrobe table bed chair/h	ench watch/	clock as well as type o	f main materia	l used to build their home	s roof walls	and floor
14	^d Pre-Hypertension was defined as S	BP ≥120 mm	Hg but < 140 mmHg an	d/or DBP \geq 80	mmHq but <90 mmHq ar	nd not taking	anti-hypertensive
15	medication at the time of the survey				0 0	0	51
16	^e Hypertension was defined as systo	lic blood pres	sure (SBP) was ≥140 m	mHg (millimet	ers of mercury) and/or, dia	astolic blood	pressure (DBP) ≥90
17	mmHg and/or taking any-hypertensiv	e medication					
18	^f Body mass index (BMI) calculated b	by weight in ki	logram divided by heigh	nt in meter squ	ared		
19	^g Defined as <90 cm M; <80 cm F						
20	^h Defined as ≥90 cm M; ≥80 cm F						
21							
22							
23							
24							
25							
26							
27							
28							
29							
30							
31							
32							
33							
34 25							
35							
36							
3/ 20							
38 20							
27 10							
40 11							
41 10							
42 12							
-+-+							

140x202mm (150 x 150 DPI)

59

60

Figure 4: Self-reported diabetics aged 18 years or older who take diabetes medication with raised blood glucose on study measurement (>11.0mmol/L)

286x154mm (300 x 300 DPI)

STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of cross-sectional studies				
Section/Topic	ltem #	Recommendation	Reported on page #	
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	2	
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2-3	
Introduction				
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	5-6	
Objectives	3	State specific objectives, including any prespecified hypotheses	6	
Methods				
Study design	4	Present key elements of study design early in the paper	6	
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	7	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants	6	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	8-9	
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	7-10	
Bias	9	Describe any efforts to address potential sources of bias	6-7 & 11	
Study size	10	Explain how the study size was arrived at	7	
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	9-10	
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	11	
		(b) Describe any methods used to examine subgroups and interactions	11	
		(c) Explain how missing data were addressed	N/A	
		(d) If applicable, describe analytical methods taking account of sampling strategy	N/A	
		(e) Describe any sensitivity analyses	N/A	
Results				

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility,	7
		confirmed eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	7
		(c) Consider use of a flow diagram	N/A
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	12
		(b) Indicate number of participants with missing data for each variable of interest	N/A
Outcome data	15*	Report numbers of outcome events or summary measures	
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence	12
		interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	9
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	N/A
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	11
Discussion			
Key results	18	Summarise key results with reference to study objectives	12-14
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	17-18
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	15-18
Generalisability	21	Discuss the generalisability (external validity) of the study results	17
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	20

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
BMJ Open

Prevalence and determinants of hyperglycemia among adults in Bangladesh: results from a population-based national survey

Journal:	BMJ Open
Manuscript ID	bmjopen-2019-029674.R1
Article Type:	Research
Date Submitted by the Author:	17-May-2019
Complete List of Authors:	Islam, Jessica; World Health Organization Country Office for Bangladesh, ; University of North Carolina at Chapel Hill Gillings School of Global Public Health, Department of Epidemiology Zaman, MM; World Health Organization, Dhaka, Bangladesh, Bhuiyan, Mahfuz; World Health Organization Country Office for Bangladesh Haq, Syed; Bangabandhu Sheikh Mujib Medical University, Rheumatology Ahmed, Shamim; Bangabandhu Sheikh Mujib Medical University Al-Qadir, Zahid; Bangabandhu Sheikh Mujib Medical University
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Diabetes and endocrinology, Global health
Keywords:	non-communicable diseases, chronic disease, raised blood glucose, Bangladesh

SCHOLARONE[™] Manuscripts

1 2		
3	1	Prevalence and determinants of hyperglycemia among adults in Bangladesh: results from a
4 5 6	2	population-based national survey
7 8 9	3	Jessica Y. Islam ^{1,2} , M. Mostafa Zaman* ² , Mahfuzur Rahman Bhuiyan ² , Syed Atiqul Haq ³ ,
10 11	4	Shamim Ahmed ³ , Zahid- Al- Quadir ³
12 13 14	5	¹ Department of Epidemiology, UNC Gillings School of Global Public Health, Chapel Hill, NC;
15 16	6	Email: islamjy@email.unc.edu
17 18 19	7	² World Health Organization, Dhaka, Bangladesh; Email: <u>zamanm@who.int</u> ; Email:
20 21	8	mahfuzdoc@gmail.com
22 23 24	9	³ Department of Rheumatology, Bangabandhu Sheikh Mujib Medical University, Shahbag,
25 26	10	Dhaka, Bangladesh. Email: <u>haqsyedatiqul@gmail.com</u> ; Email: <u>dr_shamim_ahmed@yahoo.com</u> ;
27 28	11	Email: drzahid1981@yahoo.com
29 30	12	Corresponding Author:
31	13	Jessica Yasmine Islam, MPH
32	14	The University of North Carolina at Chapel Hill
33	15	Gillings School of Global Public Health
34	16	Department of Epidemiology
35	_0 17	Chapel Hill NC USA 27599-7400
36	18	
37	10	Email: isiamjy@email.unc.cou
38	19	
39 40	20	
40 41	21	Manuscript word count: 4,200
42		
43	22	
44 45	23	
46 47	24	
48 49	25	
50	26	
52	27	
53 54	28	
55 56 57	29	
58		1
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2 3	30	Abstract	
4 5 6	31	Objectives: With the increasing burden of non-communicable diseases in low- and middle-	
7 8	32	income countries, biological risk factors such as hyperglycemia are a major public health	
9 10	33	concern in Bangladesh. Hyperglycemia is an excess of glucose in the bloodstream and is often	
11 12	34	associated with type-2 diabetes mellitus. Nationally representative data of hyperglycemia	
13 14	35	prevalence starting from age ≥18 years are currently unavailable for Bangladeshi adults. The	
15 16	36	objective of this study was to assess the prevalence and determinants of hyperglycemia among	
17 18	37	adults in Bangladesh aged ≥18 years.	
19 20 21	38		
21 22 23	39	Study Design: Cross-sectional, population-based study	
23 24 25	40		
26 27	41	Setting and Participants: Data for this analysis were collected from a population-based	
28 29	42	nationally representative sample of 1843 adults, aged ≥18 years, from both urban and rural	
30 31	43	areas of Bangladesh. Demographic information, capillary blood glucose, blood pressure, height,	
32 33	44	weight, waist circumference, and treatment history were recorded.	
34 35	45		
36 37	46	Primary Outcome Measures: Hyperglycemia was defined as a random capillary blood glucose	
38 39 40	47	level of ≥11.1mmol/L (i.e. in the diabetic range) or currently taking medication to control type-2	
40 41 42	48	diabetes, based on self-report.	
43 44	49		
45 46	50	Results: Overall, the prevalence of hyperglycemia was 5.5% (95% CI: 4.5-6.6) and was	
47 48	51	significantly higher among urban (9.8%, 95% CI: 7.7-12.2) than rural residents (2.8%, 95% CI:	
49 50	52	1.9-3.9). The age-standardized prevalence of hyperglycemia was 5.6% (95% CI: 4.6-6.8).	
51 52	53	Among both urban and rural residents, the associated determinants of hyperglycemia included	
53 54	54	hypertension and abdominal obesity. About 5% of the total population self-reported to have	
55 56 57			
57 58 59		2	

1 2		
- 3 4	55	been previously diagnosed with type-2 diabetes; among these adults, over 25% were not taking
5	56	medications to control their diabetes.
7 8	57	Conclusions: Our study found that about 1 out of 20 Bangladeshi adults aged ≥18 years have
9 10	58	hyperglycemia. To control and prevent the development of type-2 diabetes, data from this study
11 12	59	can be used to inform public health programming and provide descriptive information on
13 14	60	surveillance of progress towards controlling diabetes in Bangladesh.
15 16 17	61	
17 18 10	62	Keywords: non-communicable diseases, Bangladesh, hyperglycemia, diabetes, chronic
20 21	63	disease
22 23	64	
24 25	65	
26 27	66	
28 29	67	
30 31	68	
32 33	69	
34 35 36	70	
37 38	71	
39 40	72	
41 42	73	
43 44	74	
45 46	75	
47 48	76	
49 50	77	
51 52	78	
55 55	79	
56 57	80	
58 59		3
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 ว		
2 3	81	Article Summary
4 5 6 7	82 83 84	Strengths and Limitations of the Study
8 9	85	This study utilized a multistage, geographically clustered, probability-based sampling
10 11 12	86	approach to produce nationally representative data for Bangladesh.
12	87	
14 15	88	Currently, nationally representative data for the prevalence of hyperglycemia in the
16 17	89	diabetic range is unavailable for adults aged 18-29 years. A strength of our study is that
18 19	90	we included Bangladeshi adults aged 18 years and above to obtain novel data on the
20 21 22	91	prevalence of hyperglycemia, and relevant non-communicable disease risk factors
23 24	92	
24 25 26	93	We were able to estimate the prevalence of hyperglycemia using capillary blood glucose
27 28	94	measured at random. However, we were unable to measure the prevalence of
29 30	95	prediabetes and diabetes as we did not obtain blood sugar levels using standardized
31 32	96	methods, such as fasting blood glucose or 2-hour post-prandial measurements.
33 34	97	
35 36 27	98	Due to the cross-sectional nature of the study design, we were unable to assess
37 38	99	temporality of risk factors identified and our outcomes of interest.
39 40 41	100	
41 42 43	101	We assessed type-2 diabetes medication history based on self-report and we were able
44 45	102	to obtain medicine strips or vials records or prescription records of participants to confirm
46 47 48	103	the self-reported data.
48 49 50	104	
51 52	105	
53 54	106	
55 56 57	107	
58 59		4
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 5 of 35

1 2

BMJ Open

3	
4	
5	
6	
7	
8	
9	
10	
11	
10	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
∠∠ วว	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
22	
27	
54 25	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
77 15	
رب ^ـ ۲۷	
40	
4/	
48	
49	
50	
51	
52	
53	
54	
55	
55	
50	
5/	
58	
59	
60	

108 Background

109 Globally, diabetes mellitus (DM), characterized by hyperglycemia, is a leading cause of premature mortality and disability. Globally, almost half of all deaths attributable to high blood 110 glucose occur before the age of 70 years, and the WHO estimates that diabetes was the 111 112 seventh leading cause of mortality in 2016. The global prevalence of DM has been on the rise over the past several decades¹². Estimates reflect the global prevalence of diabetes has nearly 113 doubled among adults aged 18 years and above, rising from 4.7% in 1980 to 8.5% in 2014³. 114 This growing burden is most prominent in low- and middle-income countries particularly the 115 116 Indian sub-continent ⁴, which accounts for close to one-fifth of all diabetes cases worldwide. The prevalence of diabetes in this region is projected to increase by 71% by 2035⁵. In Bangladesh, 117 specifically, the International Diabetes Federation projects the prevalence of diabetes will 118 increase to more than 50% in the next 15 years⁵. 119

120 The increasing prevalence of diabetes among Bangladeshi adults over the past few 121 decades has been documented: Based on a meta-analysis of studies conducted from 1995 -2010, the prevalence of diabetes among Bangladeshi adults aged 30 years and above 122 123 increased from 4% in 1995 to 2000 and 5% in 2001 to 2005 to 9% in 2006 to 2010⁶. Studies to 124 assess the burden of diabetes have been conducted in Bangladesh in both urban and rural 125 populations over the last decades⁷. However, national data on the prevalence of diabetes or hyperglycemia in the diabetic range starting at age 18 years are currently unavailable⁷⁻¹⁰. These 126 127 data are valuable for monitoring progress made towards one of the nine global non-128 communicable disease (NCD) targets of the year 2025, set forth by the World Health Organization's (WHO) NCD Global Monitoring Framework: To observe a 0% increase in age-129 130 standardized prevalence of hyperglycemia or diabetes among persons aged ≥ 18 years¹¹. As 131 such in response to the WHO Global Action Plan for the Prevention and Control of NCDs¹², 132 descriptive epidemiological data on the burden of hyperglycemia among adults starting at 18 133 years are needed to monitor the national progress of interventions implemented to reduce the

burden of DM in Bangladesh¹³⁻¹⁵. Here, using a nationally representative sample, we present
data on prevalence and determinants of hyperglycemia by various sociodemographic factors
such as age, sex, and area of residence among Bangladeshi adults aged 18 years and above,
residing in both urban and rural areas of the country. Additionally, we explore treatment patterns
and control of hyperglycemia among participants in our sample of Bangladeshi adults.

140 Methods

Data for this analysis were collected as part of a national assessment of the burden of musculoskeletal disorders in Bangladesh conducted by investigators from the Bangabandhu Sheikh Mujib Medical University (BSMMU) with technical assistance from the WHO Country Office for Bangladesh, as previously described¹⁶. The study was a population-based cross-sectional study carried out from November to December 2015 and followed the WHO STEP-wise approach to Surveillance of NCD risk factors (STEPS)¹⁷. The target population of this survey was men and women aged ≥18 years residing in rural and urban areas of Bangladesh. The exclusion criteria included tourists and the institutionalized, including residents of hospitals, prisons, nursing homes, and army barracks.

7 150

9 151 <u>Sampling Methods</u>

To obtain a population-based sample of Bangladesh, this survey adopted a multistage, geographically clustered, probability-based sampling approach. Population statistics were obtained using the updated national census conducted by the Bangladesh Bureau of Statistics (BBS) in 2009¹⁸. To obtain our primary sampling unit (PSU), we utilized the following geographical distribution described: In Bangladesh, there are seven divisions, which are the largest administrative units of the country. Each division is divided into several districts (Zila) and within each district, there are several sub-districts (Upazila). Within sub-districts, mauzas and mahallas (commonly known as neighborhoods or blocks) are the smallest units within

Page 7 of 35

165

1

BMJ Open

2	
2	
3	
4	
5	
6	
7	
/ ^	
8	
9	
10	
11	
11	
12	
13	
14	
15	
16	
10	
17	
18	
19	
20	
21	
∠ I วา	
22	
23	
24	
25	
26	
20	
27	
28	
29	
30	
21	
51	
32	
33	
34	
35	
20	
30	
37	
38	
39	
40	
41	
41	
42	
43	
44	
45	
10	
40	
47	
48	
49	
50	
50	
21	
52	
53	
54	
55	
55	
50	
57	
58	
50	

defined territories in rural and urban areas respectively. *Mauzas* and *mahallas* were considered
the PSU for the study's sampling approach. The households within the *mauzas* and *mahallas*were the secondary sampling units. We utilized the BBS' definition of a household which is as
follows: "a dwelling in which persons either related or unrelated were living together and taking
food from the same kitchen"¹⁸.

166 Sample size estimation

The power analysis and sample size calculations were completed based on the 167 standardized approach outlined in the WHO STEPS methodology ¹⁷. Using the WHO STEPS 168 methodology, the minimum number of participants required was 296 in each group (rural males, 169 rural females, urban males, and urban females). Assuming a design effect of 1.5 adjusted within 170 cluster population homogeneity, the necessary sample size was 1776. We assumed a response 171 172 rate of 90% and determined we would need to contact at least 1973 adults. For simplicity, our target sample size was 2000. Twenty PSUs (8 urban and 12 rural) were randomly selected from 173 7 divisions of the country, with the probability proportional to the population size of each 174 175 division. In each PSU, 100 consecutive households were selected. The even numbered 176 households were designated as a "male household" and odd numbered households as a "female household." Finally, one male or female was approached to participate from each 177 respective household as designated. 178

³ 179

60

180 Data collection

181 Through a structured survey, we collected data on the following topics: musculoskeletal
 182 disorders¹⁹, health history, and demographic data such as age, area of residence, education,
 183 current (last 12 months) occupation, tobacco use, and physical activity. Physical measurements
 184 such as height, weight, waist circumference, blood glucose levels, and blood pressure were
 185 collected. To measure blood glucose levels, we obtained random blood glucose samples ³, per

the clinical guidelines of diabetes diagnostic criteria of Bangladesh²⁰. Capillary blood samples were consistently taken from the index finger of the right arm using a glucometer, namely Accuchek Advantage (Roche Diagnostics Division, Grenzacherstrasse, Switzerland). Each participant's history of diabetes was assessed based on self-report. Specifically, participants were asked: 1. Have you ever been diagnosed with diabetes by a health care professional? 2. If yes, are you receiving treatment for diabetes? Treatment history of diabetes was confirmed by prescription, including medicine strips or insulin injection vials, or medical records. The guestionnaire was translated from English to Bengali, adapted and validated per standard procedure. Data collection procedures were standardized across study sites through coordinated training of field staff conducted by epidemiologists, study physicians, and WHO staff members. Blood pressure was measured by a trained field interviewer using the LifeSource UA-767+ blood pressure monitor, as recommended by the WHO, and appropriately sized arm cuffs. Blood pressure measurements were consistently taken on each participant's right arm at the level of the heart and elbow-assisted, while the participant was in a seated position. The initial measurement was performed after five minutes of rest. After two minutes, the second measurement was taken. The mean of these two blood pressure readings was utilized as the final blood pressure for each participant. Following data collection, participants scheduled a visit with the study research physician within the following five days. The research physician assessed the participant's medical history, either through self-report or using medical records when possible. Study physicians examined each participant to confirm the results of data collection through classical symptom assessment. When necessary, the participant was also evaluated by the divisional investigator for a second opinion of relevant diagnoses.

Patient and public involvement

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2			
- 3 4	212	There was no patient or public involvement in the implementation of this study or interpretation	۱
5 6	213	of analytic results.	
7 8	214		
9 10	215	Outcome definitions	
11 12	216	Our primary outcome of interest was the prevalence of hyperglycemia. We utilized the	
13 14	217	American Diabetes Association (ADA) guidelines to define a diagnosis of hyperglycemia using	I
15 16	218	random or casual plasma glucose test and symptom review by the study physician ²¹ . An	
17 18 10	219	individual was considered to have hyperglycemia if the plasma glucose level was 11.1 mmol/L	
19 20 21	220	or higher (i.e. in the diabetic range) and/or if they self-reported to take diabetes medication. Ou	٦r
21 22 23	221	secondary outcome of interest was the prevalence of self-reported type-2 diabetes mellitus. An	n
24 25	222	individual was categorized as diabetic if they self-reported to have been previously diagnosed	
26 27	223	with diabetes by a health care provider.	
28 29	224		
30 31	225	Covariates	
32 33	226	The following variables were assessed as covariates for analysis: area of residence,	
34 35	227	sex, age, education, occupation, wealth index, body mass index (BMI), BP, and waist	
36 37	228	circumference. Education was categorized into four groups: no education, primary education	
38 39	229	(completed grade \leq 5), secondary education (completed \leq grade 10), and above secondary	
40 41 42	230	education (completed ≥ grade 12). Each participant's occupation was categorized into five	
43 44	231	groups, including: professional employment (field staff, police officer, guard, doctor, engineer,	
45 46	232	professional, businessman, desk job), unemployed or retired, industrial worker or day laborer,	
47 48 49 50	233	housewife, and other (shop keeper, weaver, driver, student, beggar, cook, carpenter, tailor,	
	234	migrant workers and fishermen).	
51 52	235	Data on physical activity was collected based on self-report. First, respondents were	
53 54	236	asked the number of days they engaged in vigorous, moderate, or light physical activity	
55 56	237	throughout a typical week. The following definitions were used to define (1) vigorous, (2)	
57 58			9
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

moderate, and (3) light physical activity, respectively: (1) vigorous activity was defined as any activity that caused a large increase in breathing or heart rate, if continued for at least 10 minutes (e.g. running, carrying heavy loads, digging or construction work); (2) moderate activity was defined as any activity that caused a small increase in breathing or heart rate, if continued for at least 10 minutes (brisk walking or carrying light loads); and (3) light physical activity was defined as activities such as office work. Next, we asked participants to estimate how many minutes per day they engaged in the activity. MET-minute was calculated using the STEPS protocol²² as follows: one minute of light activity was equivalent to 1 MET-minute; one minute in moderate-intensity activities was equivalent to 4 MET-minutes, and one minute of vigorousintensity was equivalent to 8 MET-minutes. Physical activity was then categorized based on total MET-minutes per week. Participants who spent 3000 or more MET-minutes per week were categorized in the vigorous physical activity group, 600-3000 MET-minutes were categorized as moderate physical activity, and <600 MET-minutes were categorized as low physical activity. The wealth index was constructed using principal component analysis. Asset information collected covered information on household ownership of nineteen items, including electricity,

flush toilet, land telephone, cell phone, television, radio, refrigerator, car, motorcycle, washing machine, bicycle, sewing machine, wardrobe, table, bed or cot, chair or bench, watch or clock. Additionally, we assessed the main type of material used to build each participant's home (i.e. cement, tin, bamboo, or thatched straw). Each asset was assigned a weight (factor score) generated through principal components analysis, and the resulting asset scores were standardized to a normal distribution with a mean of zero and standard deviation of one. Each household was then assigned a score for each asset, and the scores were summed up; individuals were ranked according to the total score of the household in which they resided. The sample was then divided into quartiles from quartile one (lowest) to quartile four (highest). Using height (centimeters) and weight (kilograms) measurements, we calculated BMI (height/weight²). BMI was categorized in the following groups: underweight (\leq 18.5), normal

Page 11 of 35

1 2

3 4	264	(≤25), overweight (25.1-30) and obese (>30). Waist circumference was measured in centimeters
5 6 7 8 9 10 11 12 13 14 15 16 17	265	(cm). Participants were categorized as abdominally obese if waist circumference was 90 cm and
	266	above for men, or 80 cm and above for women. Prehypertension was defined as SBP ≥120
	267	mmHg but < 140 mmHg and/or DBP ≥ 80 mmHg but <90 mmHg and not taking antihypertensive
	268	medication at the time of the survey. We utilized the WHO's guidelines for cut-off points to
	269	define hypertension ²³ . An individual was considered to have hypertension if systolic blood
	270	pressure (SBP) was ≥140 mmHg (millimeters of mercury) and/or, diastolic blood pressure (DBP)
17 18 10	271	≥90 mmHg, and/or taking antihypertensive medication based on self-report.
20 21	272	
22 23	273	Age-Standardized Prevalence Estimates
24 25	274	To facilitate comparison of overall hyperglycemia among Bangladeshi adults across
26 27	275	global populations with different age compositions we calculated age-standardized prevalence
28 29	276	estimates with 95% confidence intervals (CIs) using the WHO's World Standard Population ²⁴ .
30 31	277	The World Standards database (WHO 2000-2025) provided population estimates for 18 and 19
32 33 34 35	278	age groups, as well as single year ages. To derive single ages from the 5-year age group
	279	proportions publically available, we used the Beers "Ordinary" Formula ²⁵ . The following formula
36 37 38	280	was utilized for standardization:
39 40	281	$\sum pi^*w_i / \sum w_i$, where p = observed prevalence and w = world population weight.
41 42	282	
43 44	283	Data Analysis
44 45 46 47 48 49 50 51 52	284	Sociodemographic variables were presented with mean and standard deviation (SD) for
	285	continuous variables, and using proportions for categorical variables. For bivariate analyses,
	286	study participants were divided by sex and into four age groups (18-29, 30-44, 45-54 and ≥55
	287	years). We calculated the prevalence of our primary outcome by key demographic variables and
53 54	288	calculated 95% CIs using the binomial exact method.
55 56		
57 58		11
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
3 4 5 6 7 8 9 10 11 12	289	To estimate determinants of hyperglycemia in the diabetic range, we computed
	290	prevalence ratios with Poisson regression using robust estimation of standard errors ²⁶⁻²⁸ .
	291	Potential variables for inclusion in the model were assessed using prior published literature and
	292	bivariate Poisson regression analysis; an arbitrary p-value of <0.10 was used as criteria to
	293	include the variable in the multivariable Poisson regression model to control for confounding
13 14	294	effects. For multivariable Poisson regression models, adjusted prevalence ratios (aPR), and
15 16	295	95% CIs for each independent variable were calculated. Additionally, <0.05 was used as the
17 18	296	level of significance. Multivariable Poisson regression models were generated separately for
19 20 21	297	urban and rural participants to account for possible effect measure modification. Collinearity was
21 22 23	298	assessed using the variance inflation factor to ensure a strong linear relationship among
24 25	299	independent variables included in the model was not present. All statistical procedures were
26 27	300	performed using Stata/SE 15.0 (StataCorp LP, Texas, USA) software package.
28 29	301	
30 31		
30 31	302	Results
30 31 32 33	302 303	Results Background Characteristics
30 31 32 33 34 35	302 303 304	Results Background Characteristics Of the 2000 adults approached, 1843 agreed to participate in our study leading to a
30 31 32 33 34 35 36 37	302 303 304 305	Results Background Characteristics Of the 2000 adults approached, 1843 agreed to participate in our study leading to a response rate of 92.1%. Twenty-four female participants were pregnant and were dropped from
30 31 32 33 34 35 36 37 38 39	 302 303 304 305 306 	Results Background Characteristics Of the 2000 adults approached, 1843 agreed to participate in our study leading to a response rate of 92.1%. Twenty-four female participants were pregnant and were dropped from subsequent analyses to ensure those with gestational diabetes were not included. Additionally,
 30 31 32 33 34 35 36 37 38 39 40 41 42 	 302 303 304 305 306 307 	Results Background Characteristics Of the 2000 adults approached, 1843 agreed to participate in our study leading to a response rate of 92.1%. Twenty-four female participants were pregnant and were dropped from subsequent analyses to ensure those with gestational diabetes were not included. Additionally, no participants reported having been previously diagnosed with type-1 diabetes. There were
 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 	 302 303 304 305 306 307 308 	Results Background Characteristics Of the 2000 adults approached, 1843 agreed to participate in our study leading to a response rate of 92.1%. Twenty-four female participants were pregnant and were dropped from subsequent analyses to ensure those with gestational diabetes were not included. Additionally, no participants reported having been previously diagnosed with type-1 diabetes. There were 892 (49.0%) male and 927 (50.9%) female respondents (Table 1). The age of our participants
 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 	 302 303 304 305 306 307 308 309 	Results <u>Background Characteristics</u> Of the 2000 adults approached, 1843 agreed to participate in our study leading to a response rate of 92.1%. Twenty-four female participants were pregnant and were dropped from subsequent analyses to ensure those with gestational diabetes were not included. Additionally, no participants reported having been previously diagnosed with type-1 diabetes. There were 892 (49.0%) male and 927 (50.9%) female respondents (Table 1). The age of our participants ranged from 18 to 90 years. The mean age and education level of participants were 40.5 (SD =
 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 	 302 303 304 305 306 307 308 309 310 	Results Background Characteristics Of the 2000 adults approached, 1843 agreed to participate in our study leading to a response rate of 92.1%. Twenty-four female participants were pregnant and were dropped from subsequent analyses to ensure those with gestational diabetes were not included. Additionally, no participants reported having been previously diagnosed with type-1 diabetes. There were 892 (49.0%) male and 927 (50.9%) female respondents (Table 1). The age of our participants ranged from 18 to 90 years. The mean age and education level of participants were 40.5 (SD = 14.7) years and 5.7 (SD = 5.1) years, respectively. The majority of the study population was
 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 	 302 303 304 305 306 307 308 309 310 311 	Results Background Characteristics Of the 2000 adults approached, 1843 agreed to participate in our study leading to a response rate of 92.1%. Twenty-four female participants were pregnant and were dropped from subsequent analyses to ensure those with gestational diabetes were not included. Additionally, no participants reported having been previously diagnosed with type-1 diabetes. There were 892 (49.0%) male and 927 (50.9%) female respondents (Table 1). The age of our participants ranged from 18 to 90 years. The mean age and education level of participants were 40.5 (SD = 14.7) years and 5.7 (SD = 5.1) years, respectively. The majority of the study population was married (88.0%) and employed as either an industrial worker/day laborer (26.5%) or housewife
 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 	 302 303 304 305 306 307 308 309 310 311 312 	Results Background Characteristics Of the 2000 adults approached, 1843 agreed to participate in our study leading to a response rate of 92.1%. Twenty-four female participants were pregnant and were dropped from subsequent analyses to ensure those with gestational diabetes were not included. Additionally, no participants reported having been previously diagnosed with type-1 diabetes. There were 892 (49.0%) male and 927 (50.9%) female respondents (Table 1). The age of our participants ranged from 18 to 90 years. The mean age and education level of participants were 40.5 (SD = 14.7) years and 5.7 (SD = 5.1) years, respectively. The majority of the study population was married (88.0%) and employed as either an industrial worker/day laborer (26.5%) or housewife (39.9%). Almost half of participants never used some form of tobacco. The majority of
 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 	 302 303 304 305 306 307 308 309 310 311 312 313 	Results Background Characteristics Of the 2000 adults approached, 1843 agreed to participate in our study leading to a response rate of 92.1%. Twenty-four female participants were pregnant and were dropped from subsequent analyses to ensure those with gestational diabetes were not included. Additionally, no participants reported having been previously diagnosed with type-1 diabetes. There were 892 (49.0%) male and 927 (50.9%) female respondents (Table 1). The age of our participants ranged from 18 to 90 years. The mean age and education level of participants were 40.5 (SD = 14.7) years and 5.7 (SD = 5.1) years, respectively. The majority of the study population was married (88.0%) and employed as either an industrial worker/day laborer (26.5%) or housewife (39.9%). Almost half of participants never used some form of tobacco. The majority of
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 51 52 53 54 55	 302 303 304 305 306 307 308 309 310 311 312 313 314 	Results Background Characteristics Of the 2000 adults approached, 1843 agreed to participate in our study leading to a response rate of 92.1%. Twenty-four female participants were pregnant and were dropped from subsequent analyses to ensure those with gestational diabetes were not included. Additionally, no participants reported having been previously diagnosed with type-1 diabetes. There were 892 (49.0%) male and 927 (50.9%) female respondents (Table 1). The age of our participants ranged from 18 to 90 years. The mean age and education level of participants were 40.5 (SD = 14.7) years and 5.7 (SD = 5.1) years, respectively. The majority of the study population was married (88.0%) and employed as either an industrial worker/day laborer (26.5%) or housewife (39.9%). Almost half of participants never used some form of tobacco. The majority of participants engaged in vigorous physical activity over an average week (69.3%). The mean BMI was 22.1 (SD = 4.1) and the mean waist circumference was 78.4 cm (SD = 11.6). Overall,

59

Page 13 of 35

1 2			
3 4	315	the mean systolic blood pressure was 116.1 mmHg (SD = 17.1) and diastolic blood pressure	
5 6	316	was 76.1 mmHg (SD = 10.5). The mean blood glucose level was 6.4 mmol/L (SD = 2.4). Figure	;
7 8	317	1 presents the distribution of blood glucose levels by various demographic factors.	
9 10	318		
11 12	319	Prevalence and Risk Factors for Hyperglycemia	
13 14	320	The prevalence of hyperglycemia was 5.5% (95% CI: 4.5-6.6). This prevalence was	
15 16	321	significantly higher among urban participants (9.8%, 95%CI: 7.7-12.2) than rural participants	
17 18	322	(2.8%, 95% CI: 1.9-3.9) (Table 2) and increased as age increased (Figure 2). The highest	
19 20 21	323	prevalence of hyperglycemia was observed among those aged ≥55 years, at 8.2% (95% CI: 4.6	3-
21 22 23	324	13.1) among men and 9.4% (95% CI: 5.4-14.8) among women. The age-standardized	
24 25	325	prevalence of hyperglycemia was 5.6% (95% CI: 4.6-6.8). The age-standardized prevalence of	
26 27	326	hyperglycemia among urban and rural residents was 10.5% (95% CI: 9.2-12.1) and 2.8% (95%	
28 29	327	CI: 2.1-3.7), respectively. Among men and women, the age-standardized prevalence of	
30 31	328	hyperglycemia was 4.9% (95% CI: 3.9-6.0) and 6.0% (95% CI: 4.9-7.2), respectively.	
32 33	329		
34 35	330	Self-Reported Diabetes Mellitus and Hyperglycemia	
36 37	331	Ninety-five participants (5.2%) self-reported to have been previously diagnosed with	
38 39 40	332	type-2 diabetes by a health care provider. However, 25 of those participants did not meet our	
40 41 42	333	criteria of diagnosis of hyperglycemia as they did not take medication to control their diabetes	
43 44	334	and their plasma glucose was below 11.1 mmol/L. Therefore, 69.3% of those with	
45 46	335	hyperglycemia, per the study definition, were previously diagnosed with diabetes by a health	
47 48	336	care provider.	
49 50	337	The proportion of men and women who were previously diagnosed with diabetes by a	
51 52	338	health care provider based on self-report was higher among urban residents (men: 8.4%;	
53 54	339	women: 9,1%) than among rural residents (men: 2.9%; women: 3.0%) (Figure 3a). However,	
55 56	340	overall, the large majority (81.8%) reported they did not know if they had been previously	
57 58 59		1	3
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

diagnosed with diabetes; this proportion was higher among rural residents (87.8%) than urban

residents (72.2%). Among participants previously diagnosed with type-2 diabetes based on self-report, 72.6% reported taking medication to control their diabetes (Table 1). Urban women more frequently (96.7%) self-reported to take diabetes medication than urban men (62.1%) (Figure 3b). We were able to confirm 100% of participant's self-reported diabetes treatment history by checking prescriptions or medicine strips/vials. Among participants who were categorized as hyperglycemic during study measurement, over one-third (37.9%) of urban men self-reported to have diabetes, however, they did not take any medication to control their diabetes. Among rural participants, the proportion of women who did not take medication to control their self-reported diabetes was higher (52.9%) than men (31.3%). Although three-quarters of self-reported diabetic participants reported taking medication to control their diabetes, 31% continued to have high blood sugar levels indicating uncontrolled diabetes at study measurement (Figure 4). Determinants of Hyperglycemia Table 2 presents the results of multivariable Poisson regression with robust variance analyses to identify determinants of hyperglycemia. Among urban participants, those of older age, lowest wealth quartile, hypertension, low physical activity, and with abdominal obesity based on waist circumference, were more likely to have hyperglycemia. The prevalence of hyperglycemia was significantly highest among those aged ≥55 years (aPR 3.92, 95% CI: 1.48-10.39) compared to individuals aged 18-29 years of age. When compared to those in the 4th (highest) wealth quartile, urban residents in the first (lowest) wealth quartile had 3.18 times the prevalence of hyperglycemia. For urban individuals with hypertension, the prevalence of hyperglycemia was 2.65 (95% CI:1.30-5.38) times that of individuals without hypertension. The prevalence of hyperglycemia among those with low physical activity was 3.01 (95% CI: 1.42-For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 15 of 35

1

BMJ Open

r	
Z	
3	
Δ	
-	
5	
6	
2	
/	
8	
č	
9	
10	
11	
11	
12	
12	
15	
14	
15	
15	
16	
17	
18	
19	
20	
20	
21	
 าา	
22	
23	
24	
24	
25	
26	
20	
27	
28	
20	
29	
30	
20	
31	
32	
22	
33	
34	
2	
35	
36	
27	
57	
38	
30	
59	
40	
41	
11	
42	
43	
11	
44	
45	
16	
40	
47	
٨٥	
Ήð	
49	
50	
20	
51	
52	
52	
53	
54	
57	
55	
56	
5/	
58	
ΓO	

60

6.38) times that of urban participants with vigorous physical activity. Abdominal obesity also
significantly increased the prevalence of hyperglycemia among urban participants (aOR: 2.54,
95% CI: 1.35-4.77). Among rural participants, the only observed determinants of hyperglycemia
were hypertension (aPR: 5.39, 95% CI: 1.94-14.96) and abdominal obesity (aPR: 2.95, 95% CI:
1.32-6.58).

373 Discussion

372

374 Using data from this nationally representative sample, we estimate that about one in 375 twenty Bangladeshi adults aged ≥18 years have hyperglycemia. The prevalence of hyperglycemia was higher among urban residents (9.8%) than rural residents (2.8%). Risk 376 factors of hyperglycemia included older with age, urban residence, abdominal obesity, low 377 physical activity, and hypertension. As diabetes is characterized by hyperglycemia, targeting 378 379 high-risk groups identified in this analysis could be prioritized for effective diabetes preventive 380 programs in Bangladesh. Bangladesh has adopted the goals and targets set forth by the WHO's Global Monitoring Framework for the Prevention and Control of NCDs for the year 2025¹¹. One 381 382 of these targets is to ensure there is a 0% increase in the age-standardized prevalence of 383 hyperglycemia among adults aged ≥18 years by the year 2025. To our knowledge, the present 384 study is the first to report national estimates on the prevalence of hyperglycemia starting at age 18 years in both urban and rural areas of Bangladesh. Data gathered from this national-level 385 386 study are critical towards the measurement of progress towards the nine global targets for 387 Bangladesh for 2025.

Globally, the number of adults living with diabetes has risen from 108 million in 1980 to 422 million in 2013, and low- and middle-income countries (LMICs) have seen the most rapid rise in diabetes prevalence³. Several lifestyle factors have been attributed to the increase in prevalence across LMICs including, globalization of food production, extensive marketing of low-cost and energy-dense foods, increased sedentary behavior and rapid urbanization²⁹. In

2
3
4
т г
2
6
7
8
0
9
10
11
12
13
14
14
15
16
17
10
10
19
20
21
22
22
23
24
25
26
20
27
28
29
30
21
51
32
33
34
25
22
36
37
38
39
40
40
41
42
43
ΔΛ
44
45
46
47
48
40
49
50
51
52
52
55
54
55
56
57
50
20
59
60

1

393 recent decades, the increase in the prevalence of diabetes in South Asia has been greater than 394 that seen in high-income countries⁴. The prevalence of diabetes in adults across countries in 395 South Asia is similar, excluding Nepal which has a low prevalence in comparison to neighboring countries (8.8% in India, 8.6% in Sri Lanka, 6.9% in Bangladesh, 7.9% in Bhutan, 6.9% in 396 397 Pakistan, and 4.0% in Nepal)³⁰. In our study, we observed a prevalence of 5.6% hyperglycemia 398 in the diabetic range among adults aged 18 years and above. This prevalence is lower than 399 previous studies conducted in Bangladesh and neighboring countries. In fact, a scoping review 400 estimated the pooled prevalence of type-2 diabetes to be 7.4%⁷. Our estimated prevalence was 401 lower due to a younger study population (18 years and above compared to the WHO estimate among adults aged 30 years and above), and a higher percentage of participants from rural 402 areas (61.1%, as is representative of Bangladesh). Indeed, when we restrict our analytic sample 403 404 to 30 years and above, the prevalence of hyperglycemia is 6.7%, which is similar to the 2017 405 WHO estimate of diabetes (6.9%). Significant heterogeneity in diabetes and its determinants may exist within one country due to variations in the level of urbanization by state, ethnic 406 phenotypes, and socioeconomic status of specific sub-populations³¹. 407 408 Significant determinants of raised blood glucose in both urban and rural areas of our 409 assessment included hypertension, low physical activity, and abdominal obesity. Interestingly, 410 there was no association of diabetes identified for increasing body mass index (BMI). This indicates that abdominal obesity may be a more significant factor to consider than BMI. Prior 411 studies conducted in Bangladesh have also identified a positive association of central (or 412

abdominal) obesity with diabetes³². Interestingly, our assessment found a decrease in odds of
diabetes with increasing wealth quartile. Prior studies have conflicting findings on the risk of
diabetes and other NCDs, among the wealthy based on demographic features such as the area
of residence. One prior study conducted in Bangladesh found that people from the highest
wealth quintile are significantly more likely to have diabetes than people from the lowest wealth
quintile³³. However, another found a high burden of selected NCDs, including diabetes, among

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 17 of 35

59

60

1 2			
2 3 4	419	the lowest wealth quintile populations in rural areas and wealthy populations in urban areas ³⁴ .	
5 6	420	Further study is warranted to assess the reliability of wealth indices as a measurement of	
7 8	421	socioeconomic status and wealth among Bangladeshi adults.	
9 10	422	In our study, a high proportion (~70%) of those with hyperglycemia self-reported to have	¢
11 12	423	been previously diagnosed with diabetes and therefore, aware of their condition. Additionally,	
13 14	424	72% reported taking medication to control their diabetes. However, we found that almost one-	
15 16	425	third of those who self-reported to take medication for their diabetes continued to have	
17 18 10	426	hyperglycemia. Efforts should be made to ensure diabetics in Bangladesh are treated for their	
20 21	427	condition and secondary prevention of complications of diabetes, such as diabetic retinopathy.	
21 22 23	428	This is of particular concern in developing countries where resources are limited and cost-	
24 25	429	effective solutions for chronic disease treatment should be prioritized. A recently published	
26 27	430	study found that healthcare expenditure in persons with diabetes in Bangladesh is six times	
28 29	431	higher than in persons without diabetes ¹⁴ . Prevention and management of diabetes are likely to)
30 31	432	be a cost-saving approach for Bangladesh through the utilization of community health workers	
32 33	433	adequately trained to effectively screen for, and identify, people with diabetes ³⁵ .	
34 35	434	This study has several strengths. Data collected for our study was of a nationally	
36 37	435	representative sample indicating our results are generalizable to the population of Bangladeshi	
38 39 40	436	adults aged 18 years and above. Additionally, due to our large sample size, we were able to	
40 41 42	437	conduct precise subgroup analyses. However, several limitations should also be considered	
43 44	438	when interpreting the results of this analysis. We assessed blood glucose levels using random	
45 46	439	capillary blood samples, however, we did not assess each participant's history of classical	
47 48	440	symptoms of hyperglycemia, which is necessary to diagnose diabetes according to the ADA	
49 50	441	guidelines ²¹ . Additionally, we were unable to measure known determinants of type-2 diabetes	
51 52	442	factors such as diet or family history of diabetes. Further, we did not collect blood glucose	
53 54	443	samples in fasting or two-hour post-prandial status to also assess prediabetes. Future studies	
55 56	444	should consider the addition of glycosylated hemoglobin measurement when assessing the	
57 58		1	7

prevalence of diabetes as this method could provide a more long-term and stable diagnosis of
diabetes mellitus. Finally, due to the cross-sectional nature of this study, we were unable to
define temporality of certain determinants of hyperglycemia identified and therefore, unable to
assess causality.

450 Conclusion

Data from this nationally-representative sample of Bangladeshi adults aged 18 years and above will be critical to informing the progress of NCD control in Bangladesh per the WHO's Global Monitoring Framework and goals for 2025. We found that about one in twenty Bangladeshi adults aged ≥18 years have hyperglycemia. Among urban residents, we found that about one in ten Bangladeshi adults aged ≥18 years have hyperglycemia. Bangladeshi adults with hypertension and abdominal obesity are high-risk groups for the development of diabetes and should be targeted for routine screening for diabetes. Preventive methods such as lifestyle changes and medication should be recommended by primary care providers in Bangladesh to avoid the future development of CVDs among this group. In order to control the prevalence of hyperglycemia in the diabetic range, and reduce the burden of diabetes or associated risk factors, national initiatives such as training community health workers to deliver primary care and implementing universal health coverage should be implemented to curb the spread of NCDs in Bangladesh.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 471 Figures Figure 1: Urban and Rural differences in the distribution of blood glucose levels bas 473 random capillary blood measurement among (A) All Participants, and (B) Men and V 474 1819) Figure 2: Prevalence of hyperglycemia among Bangladeshi adults aged 18 years ar 476 sex and age group, 2015 (n = 1819) Figure 3: Bangladeshi adults aged 18 years and above with (A) self-reported diabetics aged 18 years or older who take diabetes medications, 2015 Figure 4: Self-reported diabetics aged 18 years or older who take diabetes medications hyperglycemia on study measurement (≥11.0mmol/L) 481 483 484 485 486 487 488 489 490 491 492 493 494 495 	
Figure 1: Urban and Rural differences in the distribution of blood glucose levels bas random capillary blood measurement among (A) All Participants, and (B) Men and V 1819) Figure 2: Prevalence of hyperglycemia among Bangladeshi adults aged 18 years ar sex and age group, 2015 (n = 1819) Figure 3: Bangladeshi adults aged 18 years and above with (A) self-reported diabetics self-reported diabetics on diabetes medications, 2015 Figure 4: Self-reported diabetics aged 18 years or older who take diabetes medication hyperglycemia on study measurement (≥11.0mmol/L) 481 483 484 484 485 486 487 488 489 490 491 492 493 494 495	
473 random capillary blood measurement among (A) All Participants, and (B) Men and V 474 1819) 475 Figure 2: Prevalence of hyperglycemia among Bangladeshi adults aged 18 years and 476 sex and age group, 2015 (n = 1819) 477 Figure 3: Bangladeshi adults aged 18 years and above with (A) self-reported diabetics 478 self-reported diabetics on diabetes medications, 2015 479 Figure 4: Self-reported diabetics aged 18 years or older who take diabetes medication 480 hyperglycemia on study measurement (≥11.0mmol/L) 481 483 483 484 484 485 484 484 484 485 484 485 484 484 485 486 486 487 487 488 488 489 490 491 491 492 492 493 493 494 494 495	ased on
474 1819) 475 Figure 2: Prevalence of hyperglycemia among Bangladeshi adults aged 18 years and 476 sex and age group, 2015 (n = 1819) 477 Figure 3: Bangladeshi adults aged 18 years and above with (A) self-reported diabet 478 self-reported diabetics on diabetes medications, 2015 479 Figure 4: Self-reported diabetics aged 18 years or older who take diabetes medication 481 hyperglycemia on study measurement (≥11.0mmol/L) 481 482 483 484 484 485 485 486 486 487 487 488 488 489 489 489 490 491 491 492 493 493 494 495	d Women (n =
 Figure 2: Prevalence of hyperglycemia among Bangladeshi adults aged 18 years ar sex and age group, 2015 (n = 1819) Figure 3: Bangladeshi adults aged 18 years and above with (A) self-reported diabet self-reported diabetics on diabetes medications, 2015 Figure 4: Self-reported diabetics aged 18 years or older who take diabetes medication hyperglycemia on study measurement (≥11.0mmol/L) 481 483 484 484 484 485 486 487 488 489 490 491 491 493 494 495 	
13 476 sex and age group, 2015 (n = 1819) 14 476 Figure 3: Bangladeshi adults aged 18 years and above with (A) self-reported diabet 17 self-reported diabetics on diabetes medications, 2015 18 478 self-reported diabetics aged 18 years or older who take diabetes medicati 19 Figure 4: Self-reported diabetics aged 18 years or older who take diabetes medicati 12 480 14 481 15 481 16 482 17 481 18 483 18 484 18 484 18 485 18 486 18 486 18 486 18 486 18 486 18 487 18 488 18 489 18 490 18 491 18 492 18 493 18 491 18 492 18 493 19 491 </td <td>and above by</td>	and above by
15 477 Figure 3: Bangladeshi adults aged 18 years and above with (A) self-reported diabet 18 self-reported diabetics on diabetes medications, 2015 179 Figure 4: Self-reported diabetics aged 18 years or older who take diabetes medication 180 hyperglycemia on study measurement (≥11.0mmol/L) 181 482 183 483 184 483 184 484 184 485 184 486 184 486 184 486 184 486 184 486 184 486 184 486 184 486 184 486 184 486 185 486 188 486 189 481 189 481 189 491 189 491 189 491 189 491 189 491 189 491 181 492 182 493	
478 self-reported diabetics on diabetes medications, 2015 479 Figure 4: Self-reported diabetics aged 18 years or older who take diabetes medicati 480 hyperglycemia on study measurement (≥11.0mmol/L) 481 482 483 483 484 484 485 486 486 487 487 488 488 489 490 489 491 491 492 493 493 494 494 495	petes and (B)
19 Figure 4: Self-reported diabetics aged 18 years or older who take diabetes medicati 23 480 14 hyperglycemia on study measurement (≥11.0mmol/L) 24 481 25 482 26 482 27 483 30 484 31 484 32 485 33 485 486	
480 hyperglycemia on study measurement (≥11.0mmol/L) 481 481 482 483 484 484 483 484 485 486 487 488 489 481 482 483 484 485 486 487 488 490 41 489 43 490 44 490 43 490 43 490 43 491 432 492 493 51 494 495	ation with
24 481 25 482 26 482 29 483 30 484 31 484 32 485 33 485 34 486 35 486 36 37 37 487 38 40 41 489 42 490 43 490 44 490 45 491 47 482 490 493 50 493 51 494 52 494 53 495	
27 482 28 483 29 483 30 484 31 484 32 485 33 485 34 486 35 486 36 37 37 487 38 483 41 489 42 43 43 490 44 490 45 491 47 492 49 493 51 494 52 494 53 495	
28 483 30 484 31 484 32 485 33 485 34 35 35 486 36 37 37 487 39 488 40 41 41 489 42 490 43 490 44 45 45 491 46 491 47 492 49 493 51 494 52 494 53 495	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
51 52 494 53 54 495	
53 54 495	
55 56 496	
57 58	10
5960For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	10

2 3	497	Abbreviations
4 5 6	498	WHO: World Health Organization
0 7 8	499	ADA: American Diabetes Association
9 10	500	aPR: Adjusted prevalence ratio
11 12	501	BBS: Bangladesh Bureau of Statistics
13 14	502	BMI: Body mass index
15 16	503	BP: Blood pressure
17 18	504	BSMMU: Bangabandhu Sheikh Mujib Medical University
19 20 21	505	CI: Confidence interval
21 22 23	506	CVD: Cardiovascular disease
24 25	507	MET: Metabolic equivalent
26 27	508	mmHg: Millimeter of mercury
28 29	509	mmol/L: Millimoles per liter
30 31	510	NCD: Non-communicable disease
32 33	511	SBP: Systolic blood pressure
34 35 26	512	DBP: Diastolic blood pressure
30 37 38	513	PSU: Primary sampling unit
39 40	514	SD: Standard deviation
41 42	515	STEPS: STEPwise approach to Surveillance
43 44	516	
45 46	517	
47 48	518	
49 50	519	
51 52 53	520	
54 55	521	
56 57	522	
58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2 3 4	523	Footnotes
- 5 6	524	Ethics approval and consent to participate: Ethical guidelines as outlined by the Declaration of
7 8	525	Helsinki were followed throughout the study. Ethical clearance was obtained from the
9 10	526	Institutional Review Board of Bangabandhu Sheikh Mujib Medical University (BSMMU) (Protocol
11 12	527	Number: 1100). We obtained permission from the relevant administrative units of the surveyed
13 14	528	districts. Orientations with community leaders (elected representatives of the local government
15 16	529	offices) were conducted prior to data collection for community engagement in the study's
17 18	530	implementation process. Written (or thumb impression if unable to write) consent was obtained
19 20	531	from the respondents in Bangla as per BSMMU Institutional Review Board (IRB) guidelines.
21 22 22	532	Consent to publish: All authors consent to the publication of this manuscript.
23 24 25	533	Availability of data and materials: The de-identified participant data used and/or analyzed during
26 27	534	the current study are available from the corresponding author on reasonable request. Please
28 29	535	contact M. Mostafa Zaman at zamanm@who.int for further information and guidelines.
30 31	536	Competing Interests: The authors declare no competing interests. The authors alone are
32 33	537	responsible for views expressed in this article and they do not necessarily represent the views,
34 35	538	decisions or policies of the institutions with which they are affiliated.
36 37	539	Funding: The study was conducted with the technical and financial assistance of the World
38 39	540	Health Organization Country Office for Bangladesh.
40 41 42	541	Authors contributions: JYI: conceptualized the manuscript, analyzed data, interpreted results
43 44	542	critically, and drafted the manuscript. MMZ: designed the study, interpreted results critically,
45 46	543	guided manuscript writing, and critically reviewed it. MRB, SAH, SA, ZAQ: trained the field team,
47 48	544	implemented the survey, processed and analyzed data, and reviewed the manuscript.
49 50	545	Acknowledgments: The authors thank Mr. Hassanuzzaman Khan for his efforts on data
51 52	546	management.
53 54	547	
55 56	548	
57 58		21
60 59		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2 3 4	549	References
5 6 7	550	1. Disease GBD, Injury I, Prevalence C. Global, regional, and national incidence, prevalence,
7 8 9	551	and years lived with disability for 354 diseases and injuries for 195 countries and
J 10 11	552	territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study
12 13	553	2017. Lancet (London, England) 2018;392(10159):1789-858. doi: 10.1016/S0140-
14 15	554	6736(18)32279-7
16 17	555	2. Ogurtsova K, da Rocha Fernandes JD, Huang Y, et al. IDF Diabetes Atlas: Global estimates
18 19	556	for the prevalence of diabetes for 2015 and 2040. Diabetes research and clinical practice
20 21	557	2017;128:40-50. doi: 10.1016/j.diabres.2017.03.024
22 23	558	3. Global report on diabetes. Geneva, Switzerland: World Health Organization 2016.
24 25 26	559	4. Jayawardena R, Ranasinghe P, Byrne NM, et al. Prevalence and trends of the diabetes
20 27 28	560	epidemic in South Asia: a systematic review and meta-analysis. BMC public health
20 29 30	561	2012;12:380. doi: 10.1186/1471-2458-12-380
31 32	562	5. IDF diabetes atlas sixth edition Brussels, Belgium Interational Diabetes Federation, 2013.
33 34	563	6. Saquib N, Saquib J, Ahmed T, et al. Cardiovascular diseases and type 2 diabetes in
35 36	564	Bangladesh: a systematic review and meta-analysis of studies between 1995 and 2010.
37 38	565	BMC public health 2012;12:434. doi: 10.1186/1471-2458-12-434
39 40	566	7. Biswas T, Islam A, Rawal LB, et al. Increasing prevalence of diabetes in Bangladesh: a
41 42	567	scoping review. Public health 2016;138:4-11. doi: 10.1016/j.puhe.2016.03.025
43 44 45	568	8. Rahman MS, Akter S, Abe SK, et al. Awareness, treatment, and control of diabetes in
45 46 47	569	Bangladesh: a nationwide population-based study. <i>PloS one</i> 2015;10(2):e0118365. doi:
48 49	570	10.1371/journal.pone.0118365
50 51	571	9. Akter S, Rahman MM, Abe SK, et al. Prevalence of diabetes and prediabetes and their risk
52 53	572	factors among Bangladeshi adults: a nationwide survey. Bulletin of the World Health
54 55	573	Organization 2014;92(3):204-13, 13A. doi: 10.2471/BLT.13.128371
56 57		
58 59		22
00		tor peer retrett only inteps, singopenion jeons ster about, guidelines, and

1 2		
3 4	574	10. Zaman MM, Choudhury SR, Ahmed J, et al. Blood glucose and cholesterol levels in adult
5 6	575	population of Bangladesh: Results from STEPS 2006 survey. Indian heart journal
7 8	576	2016;68(1):52-6. doi: 10.1016/j.ihj.2015.06.031
9 10	577	11. NCD Global Monitoring Framework: World Health Organization; 2017 [Available from:
11 12	578	http://www.who.int/nmh/global_monitoring_framework/en/ accessed 09/29 2017.
13 14	579	12. Global action plan for the prevention and control of noncommunicable diseases 2013-2020.
15 16	580	Geneva, Switzerland: World Health Organization, 2013.
17 18 10	581	13. Siddique MKB, Islam SMS, Banik PC, et al. Diabetes knowledge and utilization of
19 20 21	582	healthcare services among patients with type 2 diabetes mellitus in Dhaka, Bangladesh.
21 22 23	583	BMC health services research 2017;17(1):586. doi: 10.1186/s12913-017-2542-3
24 25	584	14. Shariful Islam SM, Lechner A, Ferrari U, et al. Healthcare use and expenditure for diabetes
26 27	585	in Bangladesh. <i>BMJ Glob Health</i> 2017;2(1):e000033. doi: 10.1136/bmjgh-2016-000033
28 29	586	15. Haghparast-Bidgoli H, Shaha SK, Kuddus A, et al. Protocol of economic evaluation and
30 31	587	equity impact analysis of mHealth and community groups for prevention and control of
32 33	588	diabetes in rural Bangladesh in a three-arm cluster randomised controlled trial. BMJ
34 35	589	open 2018;8(8):e022035. doi: 10.1136/bmjopen-2018-022035
36 37	590	16. Islam JY, Zaman MM, Haq SA, et al. Epidemiology of hypertension among Bangladeshi
38 39 40	591	adults using the 2017 ACC/AHA Hypertension Clinical Practice Guidelines and Joint
40 41 42	592	National Committee 7 Guidelines. Journal of human hypertension 2018;32(10):668-80.
43 44	593	doi: 10.1038/s41371-018-0087-5
45 46	594	17. Chronic Disease and Health Promotion: STEP wise approach to surveillance (STEPS).
47 48	595	Geneva: World Health Organization.
49 50	596	18. Population and Housing Census 2001, updated in 2009. Dhaka, Bangladesh: Bangladesh
51 52	597	Bureau of Statistics 2009.
53 54		
55 56		
57 58 50		23
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2		
3 4	598	19. Goycochea-Robles MV, Sanin LH, Moreno-Montoya J, et al. Validity of the COPCORD core
5 6	599	questionnaire as a classification tool for rheumatic diseases. J Rheumatol Suppl
7 8	600	2011;86:31-5. doi: 10.3899/jrheum.100955
9 10	601	20. Guidelines for Care of Type 2 Diabetes Mellitus in Bangaldesh. Dhaka, Bangladesh:
11 12	602	BIRDEM Clinical Research Group, 2003.
13 14	603	21. American Diabetes A. 2. Classification and Diagnosis of Diabetes. Diabetes care
15 16	604	2017;40(Suppl 1):S11-S24. doi: 10.2337/dc17-S005
17 18 10	605	22. Moniruzzaman M, Mostafa Zaman M, Islam MS, et al. Physical activity levels in Bangladeshi
19 20 21	606	adults: results from STEPS survey 2010. Public health 2016;137:131-8. doi:
21 22 23	607	10.1016/j.puhe.2016.02.028
24 25	608	23. A global brief on Hypertension: Silent Killer, global public health crisis. Geneva, Switzerland:
26 27	609	World Health Organization, 2013.
28 29	610	24. Ahmad OB, Boschi-Pinto C, Lopez AD, et al. Age Standardization of Rates: A New WHO
30 31	611	Standard. GPE Discussion Paper Series: No31 Geneva, Switzerland: World Health
32 33	612	Organization, 2001.
34 35	613	25. World (WHO 2000-2025) Standard Rockville, MD: National Cancer Institute: Surveillance,
36 37	614	Epidemiology, and End Results Program; 2017 [Available from:
30 39 40	615	https://seer.cancer.gov/stdpopulations/world.who.html accessed December 17 2017.
40 41 42	616	26. Coutinho LM, Scazufca M, Menezes PR. Methods for estimating prevalence ratios in cross-
43 44	617	sectional studies. Revista de saude publica 2008;42(6):992-8.
45 46	618	27. Behrens T, Taeger D, Wellmann J, et al. Different methods to calculate effect estimates in
47 48	619	cross-sectional studies. A comparison between prevalence odds ratio and prevalence
49 50	620	ratio. <i>Methods Inf Med</i> 2004;43(5):505-9.
51 52	621	28. Barros AJ, Hirakata VN. Alternatives for logistic regression in cross-sectional studies: an
53 54	622	empirical comparison of models that directly estimate the prevalence ratio. BMC medical
55 56 57	623	research methodology 2003;3:21. doi: 10.1186/1471-2288-3-21
58		24
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
3 4	624	29. Singh PN, Arthur KN, Orlich MJ, et al. Global epidemiology of obesity, vegetarian dietary
5 6	625	patterns, and noncommunicable disease in Asian Indians. The American journal of
7 8	626	clinical nutrition 2014;100 Suppl 1:359S-64S. doi: 10.3945/ajcn.113.071571
9 10	627	30. Hills AP, Arena R, Khunti K, et al. Epidemiology and determinants of type 2 diabetes in
11 12	628	south Asia. Lancet Diabetes Endocrinol 2018;6(12):966-78. doi: 10.1016/S2213-
13 14	629	8587(18)30204-3
15 16	630	31. Chan JC, Malik V, Jia W, et al. Diabetes in Asia: epidemiology, risk factors, and
17 18	631	pathophysiology. <i>Jama</i> 2009;301(20):2129-40. doi: 10.1001/jama.2009.726
19 20 21	632	32. Alam DS, Talukder SH, Chowdhury MA, et al. Overweight and abdominal obesity as
21 22 23	633	determinants of undiagnosed diabetes and pre-diabetes in Bangladesh. BMC Obes
24 25	634	2016;3:19. doi: 10.1186/s40608-016-0099-z
26 27	635	33. Tareque MI, Koshio A, Tiedt AD, et al. Are the rates of hypertension and diabetes higher in
28 29	636	people from lower socioeconomic status in Bangladesh? Results from a nationally
30 31	637	representative survey. <i>PloS one</i> 2015;10(5):e0127954. doi:
32 33	638	10.1371/journal.pone.0127954
34 35	639	34. Biswas T, Islam MS, Linton N, et al. Socio-Economic Inequality of Chronic Non-
36 37	640	Communicable Diseases in Bangladesh. <i>PloS one</i> 2016;11(11):e0167140. doi:
38 39 40	641	10.1371/journal.pone.0167140
40 41 42	642	35. Gaziano TA, Abrahams-Gessel S, Denman CA, et al. An assessment of community health
43 44	643	workers' ability to screen for cardiovascular disease risk with a simple, non-invasive risk
45 46	644	assessment instrument in Bangladesh, Guatemala, Mexico, and South Africa: an
47 48	645	observational study. The Lancet Global health 2015;3(9):e556-63. doi: 10.1016/S2214-
49 50	646	109X(15)00143-6
51 52		
53 54		
55 56		
57 58 50		25
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Table 1: Background Characteristics of Bangladeshi adult participants, 2015 (n = 1819)

3 -		Total (n =	: 1819)		Urban (r	, n = 708	5)	Rural (n	= 1111	1)
4 5 _	Characteristic	Mean (SD)	n	%	Mean (SD)	n	%	Mean (SD)	n	%
6	Sex									
7	Male		892	49.0		345	48.7		547	49.2
8	Female		927	50.9		363	51.3		564	50.8
9	Age(years)	40.5 (14.7)			39.1 (13.9)			41.4 (15.1)		
10	Education (Years) ^a	5 (0 - 9)			8 (3-12)			4 (0-8)		
11	Marital Status									
12	Never Married		110	6.1		54	7.6		56	4.9
13	Married		1601	88.0		619	87.4		982	88.4
14	Separated/Divorced/Widowed		108	5.9		35	4.9		73	6.5
15	Occupation									
16	Professional employment ^b		279	15.2		189	26.7		90	8.1
17	Unemployed/retired		98	5.3		43	6.1		55	4.9
18	Industrial worker/Day Laborer		483	26.6		120	16.9		363	32.7
19	Housewife		726	39.9		247	34.9		479	43.2
20	Other ^c		232	12.8		109	15.4		123	11.1
21	Wealth Index ^d									
22	1st Wealth Quartile		407	22.4		110	15.5		297	26.7
23	2nd Wealth Quartile		533	29.3		171	24.2		362	32.6
24	3rd Wealth Quartile		429	23.6		179	25.3		250	22.5
25	4th Wealth Quartile		450	24.7		248	35.0		202	18.2
26	Tobacco Use ^e									
27	Never		859	47.2		389	54.9		470	42.3
28	Current Use		821	45.1		268	37.9		553	49.8
29	Past Use		139	7.6		51	7.2		88	7.9
30	Smoking Tobacco Use f									
31	Every day / Occasionally		494	27.2		169	23.9		325	29.3
32	Past Use		104	5.7		38	5.4		66	5.9
33	Never		1221	67.1		501	70.8		720	64.8
34 25	Smokeless Tobacco Use ^g			/						.
35	Every day / Occasionally		529	29.1		150	21.2		379	34.1
36	Past Use		51	2.8		21	2.9		30	2.7
3/	Never		1239	68.1		537	75.9		702	63.2
38										
39	Physical Activity ^h		1000	<u> </u>			<u> </u>		000	
40	Physical Activity ^h Vigorous		1268	69.7		445	62.9		823	74.1
40 41	Physical Activity ^h Vigorous Moderate		1268 464	69.7 25.5		445 234	62.9 33.1		823 230	74.1 20.7

BMJ Open

1										
2	Body Mass Index ⁱ	22.1 (4.1)			23.3 (4.5)			21.3 (3.7)		
2	Waist Circumference (cm)	78.4 (11.6)			81.8 (12.6)			76.2 (10.3)		
ر ۵	Blood Pressure				. ,			. ,		
т 5	Systolic Blood Pressure (mmHg)	116.1 (17.1)			117.9 (16.6)			115.0 (17.3)		
6	Diastolic Blood Pressure (mmHg)	76.1 (10.5)			77.9 (10.9)			74.9 (10.1)		
7	Blood Glucose Level (mmol/l)	6.4 (2.4)			6.6 (2.9)			6.3 (2.1)		
8	Self-reported diabetes medication history ^j		69	72.6		50	80.6		19	57.6
9	Abbroviations: SD, standard doviation									

Abbreviations: SD, standard deviation

¹⁰ ^a Calculated median and interquartile range for education as the data are skewed

¹¹ ^b Professional occupation includes: Field staff, police officer, guard, doctor, engineer, professional, business man, desk job

^c Other occupation includes: Shop keeper, weavers, driver, student, beggar, cook, carpenter, tailor, migrant workers and fishermen

¹³ ^d Wealth index was calculated using principal component analysis using data collected on household ownership of the following items: electricity,

14 flushable toilet, land phone, cell phone, television, radio, refrigerator, private car, motor cycle, washing machine, bicycle, sewing machine,

15 almirah/wardrobe, table, bed, chair/bench, watch/clock, as well as, type of main material used to build their homes roof, walls and floor

16 ^e Includes both smokeless tobacco and smoke tobacco

^f Smoking tobacco use includes cigarettes, biri, hookah, etc.

¹⁸ ⁹ Smokeless tobacco use includes jarda, sada pata, pan mashala with tobacco leaf, gul etc.

¹⁹ ^h Measured in MET-minutes; 1 MET stands for the amount of oxygen you consume and the number of calories you burn at rest.

¹Body mass index (BMI) calculated by weight in kilogram divided by height in meter squared

^j Percentage reported out of participants who self-reported to have diabetes (Total n = 95; Urban n = 62; Rural n = 33)

ilien only

	Tota	(n = 1819)	Urbar	ו (n = 708)	Rural	(n = 1111)
	Diabetes ^a Prevalence %	Adjusted PR ^b (95% CI)	Diabetes ^a Prevalence %	Adjusted OR ^b (95% CI)	Diabetes ^a Prevalence %	Adjusted OR [♭] (95% CI)
<u>Characteristic</u>						
Area						
Urban	9.8	Ref.	-	-	-	-
Rural	2.8	0.44 (0.28 - 0.68)	-	-	-	-
Sex						
Male	4.9	Ref.	7.5	Ref.	3.3	Ref.
Female	5.9	1.05 (0.71 – 1.54)	11.9	1.26 (0.80 – 1.99)	2.2	0.61 (0.29 – 1.28
Age (years)						
18 - 29	2.5	Ref.	2.5	Ref.	2.5	Ref.
30 - 44	4.9	1.48 (0.78 – 2.79)	8.4	2.55 (1.01 – 6.41)	2.5	0.76 (0.30 - 1.93
45 - 54	7.4	2.18 (1.10–4.31)	15.5	4.38 (1.62 – 11.59)	2.8	0.67 (0.25 – 1.83
≥ 55	8.8	1.92 (0.95 – 3.86)	19.3	3.92 (1.48 – 10.39)	3.4	0.53 (0.17 – 1.67
Educational Status		, , , , , , , , , , , , , , , , , , ,				, , , , , , , , , , , , , , , , , , ,
No Education	3.4	Ref.	7.0	Ref.	2.1	Ref.
Primary Education	3.7	1.00 (0.53 – 1.86)	7.6	1.00 (0.44 – 2.30)	2.1	0.84 (0.30 - 2.30
Secondary Education	6.9	1.67 (0.95 – 2.93)	12.1	1.94 (0.95 - 3.97)	2.9	1.01 (0.40 – 2.54
Above Secondary Education	9.8	1.48 (0.77 – 2.84)	10.4	1.54 (0.71 – 3.33)	8.1	2.24 (0.68 - 7.41
Wealth Index °		, , , , , , , , , , , , , , , , , , ,		, , , , , , , , , , , , , , , , , , ,		, , , , , , , , , , , , , , , , , , ,
1st Wealth Quartile	7.7	2.58 (1.57 – 4.24)	18.9	3.18 (1.80 - 5.62)	3.6	1.37 (0.53 – 3.49
2nd Wealth Quartile	4.3	1.23 (0.71 – 2.14)	9.4	1.50(0.82 - 2.77)	1.9	0.70(0.24 - 2.05)
3rd Wealth Quartile	3.7	0.86 (0.47 – 1.58)	6.0	0.96(0.48 - 1.92)	2.0	0.55 (0.18 – 1.73)
4th Wealth Quartile	6.6	Ref.	8.8	Ref.	3.9	Ref.
Blood Pressure						
Normal Blood Pressure	1.9	Ref	3.5	Ref	1.1	Ref
Pre-Hypertension ^d	5.7	1.74 (1.00 – 3.01)	8.3	1.37 (0.69 – 2.74)	3.8	2.32(0.91 - 5.92)
Hypertension ^e	18.9	3.57(2.01 - 6.34)	27 4	2.65(1.30 - 5.38)	8.8	5 39(1 94 -14 96
Physical Activity	10.3	5.07 (2.01 - 0.04)	£1.7	2.00 (1.00 - 0.00)	0.0	0.00(1.04 - 14.90
Vigorous	3.9	Ref	69	Ref	23	Ref
Moderate	82	1 18 (0 78 – 1 77)	13.8	1 22 (0 77 – 1 93)	2.0	0 65 (0 22 – 1 88
	14.0	2.04(4.00 - 5.47)	00.7	2.04(4.40, 0.00)	40.4	

BMJ Open

1		i			1		
2	Body Mass Index ^f						
3	Underweight (<18.5)	1.1	0.37 (0.12 – 1.13)	1.8	0.38 (0.07 – 1.95)	0.7	0.42 (0.09 – 2.02)
4	Normal (18.5 - 25)	4.7	Ref.	8.2	Ref.	2.8	Ref.
5	Overweight (25.1 - 30)	10.4	1.06 (0.68 – 1.65)	14.0	1.05 (0.61 – 1.80)	6.2	1.22 (0.51 – 2.91)
6	Obese (>30)	20.9	1.49 (0.87 – 2.57)	26.5	1.46 (0.81 – 2.64)	5.6	0.95 (0.12 – 7.60)
7	Waist Circumference (cm)						
8	Normal ^g	2.3	Ref.	3.8	Ref.	1.6	Ref.
9	Abdominally Obese ^h	13.3	2.49 (1.53 – 4.07)	18.1	2.54 (1.35 – 4.77)	6.8	2.95 (1.32 – 6.58)
10	Abbreviations: PR = prevalence ra	tio, CI = confide	ence intervals, Ref = refer	ent category			
11	^a Hyperolycemia was defined as a capillary blood olycose level greater than or equal to 11.1 mmol/L or self-reported diabetes medication use						

Hypergivermin was defined as a capillary blood glucose level greater than or equal to 11.1 mmol/L or self-reported diabetes medication use
 ^b Model adjusted for all variables included in table: sex, age, education, wealth index, blood pressure, body mass index, self-reported physical activity, and waist circumference

activity, and waist circumference
 ^c Wealth index was calculated using principal component analysis using data collected on household ownership of the following items: electricity, flushable toilet, land phone, cell phone, television, radio, refrigerator, private car, motor cycle, washing machine, bicycle, sewing machine,

almirah/wardrobe, table, bed, chair/bench, watch/clock, as well as, type of main material used to build their homes roof, walls and floor

¹⁶ ^d Pre-Hypertension was defined as SBP \geq 120 mmHg but < 140 mmHg and/or DBP \geq 80 mmHg but <90 mmHg and not taking anti-hypertensive medication at the time of the survey

¹⁸ e Hypertension was defined as systolic blood pressure (SBP) was ≥140 mmHg (millimeters of mercury) and/or, diastolic blood pressure (DBP) ≥90 mmHg and/or taking any-hypertensive medication

^fBody mass index (BMI) calculated by weight in kilogram divided by height in meter squared

²¹ ^g Defined as <90 cm M; <80 cm F

22 h Defined as ≥90 cm M; ≥80 cm F

Figure 1: Urban and Rural differences in the distribution of blood glucose levels based on random capillary blood measurement among (A) All Participants, and (B) Men and Women (n = 1819)

327x119mm (150 x 150 DPI)

В

Urban Residents

100

80

60

20

96.7

37.9

3.1

(%)

77.1

Τ 68.0

1

Figure 3: Bangladeshi adults aged 18 years and above with (A) self-reported diabetes and (B) self-reported diabetics on diabetes medications, 2015

284x190mm (300 x 300 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Figure 4: Self-reported diabetics aged 18 years or older who take diabetes medication with hyperglycemia on study measurement (≥11.0mmol/L)

284x210mm (300 x 300 DPI)

Section/Topic	ltem #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	2
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2-3
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	
Objectives	3	State specific objectives, including any prespecified hypotheses	6
Methods			
Study design	4	Present key elements of study design early in the paper	6
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	7
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants	6
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	8-9
Data sources/	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe	7-10
neasurement compa		comparability of assessment methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	6-7 & 11
Study size	10	Explain how the study size was arrived at	7
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	9-10
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	11
	1	(b) Describe any methods used to examine subgroups and interactions	11
		(c) Explain how missing data were addressed	N/A
		(d) If applicable, describe analytical methods taking account of sampling strategy	N/A
		(e) Describe any sensitivity analyses	N/A
Results			

STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of *cross-sectional studies*

 BMJ Open

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility,	7
		confirmed eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	7
		(c) Consider use of a flow diagram	N/A
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential	12
		confounders	
		(b) Indicate number of participants with missing data for each variable of interest	N/A
Outcome data	15*	Report numbers of outcome events or summary measures	
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence	12
		interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	9
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	N/A
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	11
Discussion			
Key results	18	Summarise key results with reference to study objectives	12-14
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	17-18
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	15-18
Generalisability	21	Discuss the generalisability (external validity) of the study results	17
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on	20
		which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.
BMJ Open

Prevalence and determinants of hyperglycemia among adults in Bangladesh: results from a population-based national survey

Journal:	BMJ Open
Manuscript ID	bmjopen-2019-029674.R2
Article Type:	Research
Date Submitted by the Author:	29-Jun-2019
Complete List of Authors:	Islam, Jessica; World Health Organization Country Office for Bangladesh, ; University of North Carolina at Chapel Hill Gillings School of Global Public Health, Department of Epidemiology Zaman, MM; World Health Organization, Dhaka, Bangladesh, Bhuiyan, Mahfuz; World Health Organization Country Office for Bangladesh Haq, Syed; Bangabandhu Sheikh Mujib Medical University, Rheumatology Ahmed, Shamim; Bangabandhu Sheikh Mujib Medical University Al-Qadir, Zahid; Bangabandhu Sheikh Mujib Medical University
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Diabetes and endocrinology, Global health
Keywords:	non-communicable diseases, chronic disease, raised blood glucose, Bangladesh

SCHOLARONE[™] Manuscripts

1		
2 3	1	Prevalence and determinants of hyperalycemia among adults in Bangladesh: results from a
4	T	Trevalence and determinants of hypergrycernia among addits in Dangladesh. results norma
5 6	2	population-based national survey
7		
8 9	3	Jessica Y. Islam ^{1,2} , M. Mostata Zaman ² , Mantuzur Ranman Bhulyan ² , Syed Atiqui Haq ³ ,
10 11	4	Shamim Ahmed ³ , Zahid- Al- Quadir ³
12 13 14	5	¹ Department of Epidemiology, UNC Gillings School of Global Public Health, Chapel Hill, NC;
15 16	6	Email: islamjy@email.unc.edu
17 18 19	7	² World Health Organization, Dhaka, Bangladesh; Email: <u>zamanm@who.int</u> ; Email:
20 21	8	mahfuzdoc@gmail.com
22 23 24	9	³ Department of Rheumatology, Bangabandhu Sheikh Mujib Medical University, Shahbag,
25	10	Dhaka, Bangladesh. Email: <u>haqsyedatiqul@gmail.com</u> ; Email: <u>dr_shamim_ahmed@yahoo.com</u> ;
26 27 28	11	Email: drzahid1981@yahoo.com
29 30	12	Corresponding Author:
31	13	Jessica Yasmine Islam. MPH
32	14	The University of North Carolina at Chapel Hill
33	15	Gillings School of Global Public Health
34	16	Department of Epidemiology
35	17	Chapel Hill NC USA 27599-7400
36	18	Email: islamiv@email.unc.edu
37	10	
38	20	
39 40	20	
40	21	Manuscript word count: 4,200
42		
43	22	
44 45	23	
46 47	24	
48	25	
49 50	26	
51 52	27	
53 54	28	
55	29	
56 57		
58		1
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2			
3 4	30	Abstract	
5 6 7 8	31	Objectives: With the increasing burden of non-communicable diseases in low- and middle-	
	32	income countries, biological risk factors such as hyperglycemia are a major public health	
9 10	33	concern in Bangladesh. Hyperglycemia is an excess of glucose in the bloodstream and is ofter	ı
11 12	34	associated with type-2 diabetes mellitus. Nationally representative data of hyperglycemia	
13 14	35	prevalence starting from age ≥18 years are currently unavailable for Bangladeshi adults. The	
15 16	36	objective of this study was to assess the prevalence and determinants of hyperglycemia amon	g
17 18 10	37	adults in Bangladesh aged ≥18 years.	
20 21	38		
21 22 23	39	Study Design: Cross-sectional, population-based study	
24 25	40		
26 27	41	Setting and Participants: Data for this analysis were collected in November-December of 2015	,
28 29	42	from a population-based nationally representative sample of 1843 adults, aged ≥18 years, from	ı
30 31	43	both urban and rural areas of Bangladesh. Demographic information, capillary blood glucose,	
32 33	44	blood pressure, height, weight, waist circumference, and treatment history were recorded.	
34 35	45		
36 37	46	Primary Outcome Measures: Hyperglycemia was defined as a random capillary blood glucose	
38 39 40	47	level of ≥11.1mmol/L (i.e. in the diabetic range) or currently taking medication to control type-2	
40 41 42	48	diabetes, based on self-report.	
43 44	49		
45 46	50	Results: Overall, the prevalence of hyperglycemia was 5.5% (95% CI: 4.5-6.6) and was	
47 48	51	significantly higher among urban (9.8%, 95% CI: 7.7-12.2) than rural residents (2.8%, 95% CI:	
49 50	52	1.9-3.9). The age-standardized prevalence of hyperglycemia was 5.6% (95% CI: 4.6-6.8).	
51 52	53	Among both urban and rural residents, the associated determinants of hyperglycemia included	l
53 54	54	hypertension and abdominal obesity. About 5% of the total population self-reported to have	
55 56			
57 58			2
27			

1 2		
3 4	55	been previously diagnosed with type-2 diabetes; among these adults, over 25% were not taking
5 6	56	medications to control their diabetes.
7 8	57	Conclusions: Our study found that about 1 out of 20 Bangladeshi adults aged ≥18 years have
9 10	58	hyperglycemia. To control and prevent the development of type-2 diabetes, data from this study
11 12	59	can be used to inform public health programming and provide descriptive information on
13 14	60	surveillance of progress towards controlling diabetes in Bangladesh.
15 16	61	
17 18 10	62	Keywords: non-communicable diseases, Bangladesh, hyperglycemia, diabetes, chronic
19 20 21	63	disease
22 23	64	
24 25	65	
26 27	66	
28 29	67	
30 31	68	
32 33	69	
34 35	70	
30 37 38	71	
39 40	72	
41 42	73	
43 44	74	
45 46	75	
47 48	76	
49 50	77	
51 52	78	
53 54	79	
55 56	80	
58 59		3
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 ว		
2 3 4	81	Article Summary
4 5 6 7	82 83 84	Strengths and Limitations of the Study
8 9	85	This study utilized a multistage, geographically clustered, probability-based sampling
10 11 12	86	approach to produce nationally representative data for Bangladesh.
13	87	
14 15	88	Currently, nationally representative data for the prevalence of hyperglycemia in the
16 17	89	diabetic range is unavailable for adults aged 18-29 years. A strength of our study is that
18 19	90	we included Bangladeshi adults aged 18 years and above to obtain novel data on the
20 21 22	91	prevalence of hyperglycemia, and relevant non-communicable disease risk factors
23	92	
24 25 26	93	We were able to estimate the prevalence of hyperglycemia using capillary blood glucose
27 28	94	measured at random. However, we were unable to measure the prevalence of
29 30	95	prediabetes and diabetes as we did not obtain blood sugar levels using standardized
31 32	96	methods, such as fasting blood glucose or 2-hour post-prandial measurements.
33 34	97	
35 36	98	Due to the cross-sectional nature of the study design, we were unable to assess
37 38	99	temporality of risk factors identified and our outcomes of interest.
39 40 41	100	
42 43	101	We assessed type-2 diabetes medication history based on self-report and we were able
44 45	102	to obtain medicine strips or vials records or prescription records of participants to confirm
46 47 48 49 50 51 52 53 54 55 56 57	103	the self-reported data.
	104	
	105	
	106	
	107	
58		4
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 5 of 36

1 2

BMJ Open

3	
4	
5	
6	
7	
8	
9	
10	
11	
10	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
∠∠ วว	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
22	
27	
54 25	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
77 15	
رب ^ـ ۲۷	
40	
4/	
48	
49	
50	
51	
52	
53	
54	
55	
55	
50	
5/	
58	
59	
60	

108 Background

109 Globally, diabetes mellitus (DM), characterized by hyperglycemia, is a leading cause of premature mortality and disability. Globally, almost half of all deaths attributable to high blood 110 glucose occur before the age of 70 years, and the WHO estimates that diabetes was the 111 112 seventh leading cause of mortality in 2016. The global prevalence of DM has been on the rise over the past several decades¹². Estimates reflect the global prevalence of diabetes has nearly 113 doubled among adults aged 18 years and above, rising from 4.7% in 1980 to 8.5% in 2014³. 114 This growing burden is most prominent in low- and middle-income countries particularly the 115 116 Indian sub-continent ⁴, which accounts for close to one-fifth of all diabetes cases worldwide. The prevalence of diabetes in this region is projected to increase by 71% by 2035⁵. In Bangladesh, 117 specifically, the International Diabetes Federation projects the prevalence of diabetes will 118 increase to more than 50% in the next 15 years⁵. 119

120 The increasing prevalence of diabetes among Bangladeshi adults over the past few 121 decades has been documented: Based on a meta-analysis of studies conducted from 1995 -2010, the prevalence of diabetes among Bangladeshi adults aged 30 years and above 122 123 increased from 4% in 1995 to 2000 and 5% in 2001 to 2005 to 9% in 2006 to 2010⁶. Studies to 124 assess the burden of diabetes have been conducted in Bangladesh in both urban and rural 125 populations over the last decades⁷. However, national data on the prevalence of diabetes or hyperglycemia in the diabetic range starting at age 18 years are currently unavailable⁷⁻¹⁰. These 126 127 data are valuable for monitoring progress made towards one of the nine global non-128 communicable disease (NCD) targets of the year 2025, set forth by the World Health Organization's (WHO) NCD Global Monitoring Framework: To observe a 0% increase in age-129 130 standardized prevalence of hyperglycemia or diabetes among persons aged ≥ 18 years¹¹. As 131 such in response to the WHO Global Action Plan for the Prevention and Control of NCDs¹², 132 descriptive epidemiological data on the burden of hyperglycemia among adults starting at 18 133 years are needed to monitor the national progress of interventions implemented to reduce the

burden of DM in Bangladesh¹³⁻¹⁵. Here, using a nationally representative sample, we present
data on prevalence and determinants of hyperglycemia by various sociodemographic factors
such as age, sex, and area of residence among Bangladeshi adults aged 18 years and above,
residing in both urban and rural areas of the country. Additionally, we explore treatment patterns
and control of hyperglycemia among participants in our sample of Bangladeshi adults.

140 Methods

Data for this analysis were collected as part of a national assessment of the burden of musculoskeletal disorders in Bangladesh conducted by investigators from the Bangabandhu Sheikh Mujib Medical University (BSMMU) with technical assistance from the WHO Country Office for Bangladesh, as previously described¹⁶. The study was a population-based cross-sectional study carried out from November to December 2015 and followed the WHO STEP-wise approach to Surveillance of NCD risk factors (STEPS)¹⁷. The target population of this survey was men and women aged ≥18 years residing in rural and urban areas of Bangladesh. The exclusion criteria included tourists and the institutionalized, including residents of hospitals, prisons, nursing homes, and army barracks.

7 150

151 Sampling Methods

To obtain a population-based sample of Bangladesh, this survey adopted a multistage, geographically clustered, probability-based sampling approach. Population statistics were obtained using the updated national census conducted by the Bangladesh Bureau of Statistics (BBS) in 2009¹⁸. To obtain our primary sampling unit (PSU), we utilized the following geographical distribution described: In Bangladesh, there are seven divisions, which are the largest administrative units of the country. Each division is divided into several districts (Zila) and within each district, there are several sub-districts (Upazila). Within sub-districts, mauzas and mahallas (commonly known as neighborhoods or blocks) are the smallest units within

Page 7 of 36

165

1

BMJ Open

2	
2	
3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
11	
12	
13	
14	
15	
10	
16	
17	
18	
19	
20	
20	
21	
22	
23	
24	
27	
25	
26	
27	
28	
20	
20	
30	
31	
32	
22	
27	
54	
35	
36	
37	
20	
20	
39	
40	
41	
42	
12	
43	
44	
45	
46	
47	
10	
+0	
49	
50	
51	
52	
52	
22	
54	
55	
56	
57	
57	
58	
59	

defined territories in rural and urban areas respectively. *Mauzas* and *mahallas* were considered
the PSU for the study's sampling approach. The households within the *mauzas* and *mahallas*were the secondary sampling units. We utilized the BBS' definition of a household which is as
follows: "a dwelling in which persons either related or unrelated were living together and taking
food from the same kitchen"¹⁸.

166 Sample size estimation

The power analysis and sample size calculations were completed based on the 167 standardized approach outlined in the WHO STEPS methodology ¹⁷. Using the WHO STEPS 168 methodology, the minimum number of participants required was 296 in each group (rural males, 169 rural females, urban males, and urban females). Assuming a design effect of 1.5 adjusted within 170 cluster population homogeneity, the necessary sample size was 1776. We assumed a response 171 172 rate of 90% and determined we would need to contact at least 1973 adults. For simplicity, our target sample size was 2000. Twenty PSUs (8 urban and 12 rural) were randomly selected from 173 7 divisions of the country, with the probability proportional to the population size of each 174 175 division. In each PSU, 100 consecutive households were selected. The even numbered 176 households were designated as a "male household" and odd numbered households as a "female household." Finally, one male or female was approached to participate from each 177 respective household as designated. 178

³ 179

60

180 Data collection

181 Through a structured survey, we collected data on the following topics: musculoskeletal
 182 disorders¹⁹, health history, and demographic data such as age, area of residence, education,
 183 current (last 12 months) occupation, tobacco use, and physical activity. Physical measurements
 184 such as height, weight, waist circumference, blood glucose levels, and blood pressure were
 185 collected. To measure blood glucose levels, we obtained random blood glucose samples ³, per

the clinical guidelines of diabetes diagnostic criteria of Bangladesh²⁰. Capillary blood samples were consistently taken from the index finger of the right arm using a glucometer, namely Accuchek Advantage (Roche Diagnostics Division, Grenzacherstrasse, Switzerland). Each participant's history of diabetes was assessed based on self-report. Specifically, participants were asked: 1. Have you ever been diagnosed with diabetes by a health care professional? 2. If yes, are you receiving treatment for diabetes? Treatment history of diabetes was confirmed by prescription, including medicine strips or insulin injection vials, or medical records. The guestionnaire was translated from English to Bengali, adapted and validated per standard procedure. Data collection procedures were standardized across study sites through coordinated training of field staff conducted by epidemiologists, study physicians, and WHO staff members. Blood pressure was measured by a trained field interviewer using the LifeSource UA-767+ blood pressure monitor, as recommended by the WHO, and appropriately sized arm cuffs. Blood pressure measurements were consistently taken on each participant's right arm at the level of the heart and elbow-assisted, while the participant was in a seated position. The initial measurement was performed after five minutes of rest. After two minutes, the second measurement was taken. The mean of these two blood pressure readings was utilized as the final blood pressure for each participant. Following data collection, participants scheduled a visit with the study research physician within the following five days. The research physician assessed the participant's medical history, either through self-report or using medical records when possible. Study physicians examined each participant to confirm the results of data collection through classical symptom assessment. When necessary, the participant was also evaluated by the divisional investigator for a second opinion of relevant diagnoses.

Patient and public involvement

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2			
3 4 5 6 7 8 9 10 11 12 13 14	212	There was no patient or public involvement in the implementation of this study or interpretation	۱
	213	of analytic results.	
	214		
	215	Outcome definitions	
	216	Our primary outcome of interest was the prevalence of hyperglycemia. We utilized the	
	217	American Diabetes Association (ADA) guidelines to define a diagnosis of hyperglycemia using	I
15 16	218	random or casual plasma glucose test and symptom review by the study physician ²¹ . An	
17 18 10	219	individual was considered to have hyperglycemia if the plasma glucose level was 11.1 mmol/L	
19 20 21	220	or higher (i.e. in the diabetic range) and/or if they self-reported to take diabetes medication. Our	
21 22 23	221	secondary outcome of interest was the prevalence of self-reported type-2 diabetes mellitus. An	
24 25	222	individual was categorized as diabetic if they self-reported to have been previously diagnosed	
26 27	223	with diabetes by a health care provider.	
28 29	224		
30 31	225	Covariates	
32 33	226	The following variables were assessed as covariates for analysis: area of residence,	
34 35	227	sex, age, education, occupation, wealth index, body mass index (BMI), BP, and waist	
36 37	228	circumference. Education was categorized into four groups: no education, primary education	
38 39	229	(completed grade \leq 5), secondary education (completed \leq grade 10), and above secondary	
40 41 42	230	education (completed ≥ grade 12). Each participant's occupation was categorized into five	
43 44	231	groups, including: professional employment (field staff, police officer, guard, doctor, engineer,	
45 46	232	professional, businessman, desk job), unemployed or retired, industrial worker or day laborer,	
47 48	233	housewife, and other (shop keeper, weaver, driver, student, beggar, cook, carpenter, tailor,	
49 50 51 52 53 54 55 56	234	migrant workers and fishermen).	
	235	Data on physical activity was collected based on self-report. First, respondents were	
	236	asked the number of days they engaged in vigorous, moderate, or light physical activity	
	237	throughout a typical week. The following definitions were used to define (1) vigorous, (2)	
57 58			9
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

moderate, and (3) light physical activity, respectively: (1) vigorous activity was defined as any activity that caused a large increase in breathing or heart rate, if continued for at least 10 minutes (e.g. running, carrying heavy loads, digging or construction work); (2) moderate activity was defined as any activity that caused a small increase in breathing or heart rate, if continued for at least 10 minutes (brisk walking or carrying light loads); and (3) light physical activity was defined as activities such as office work. Next, we asked participants to estimate how many minutes per day they engaged in the activity. Metabolic equivalent of task (MET)-minute was calculated using the STEPS protocol²² as follows: one minute of light activity was equivalent to 1 MET-minute; one minute in moderate-intensity activities was equivalent to 4 MET-minutes, and one minute of vigorous-intensity was equivalent to 8 MET-minutes. Physical activity was then categorized based on total MET-minutes per week. Participants who spent 3000 or more MET-minutes per week were categorized in the vigorous physical activity group, 600-3000 MET-minutes were categorized as moderate physical activity, and <600 MET-minutes were categorized as low physical activity.

The wealth index was constructed using principal component analysis. Asset information collected covered information on household ownership of nineteen items, including electricity, flush toilet, land telephone, cell phone, television, radio, refrigerator, car, motorcycle, washing machine, bicycle, sewing machine, wardrobe, table, bed or cot, chair or bench, watch or clock. Additionally, we assessed the main type of material used to build each participant's home (i.e. cement, tin, bamboo, or thatched straw). Each asset was assigned a weight (factor score) generated through principal components analysis, and the resulting asset scores were standardized to a normal distribution with a mean of zero and standard deviation of one. Each household was then assigned a score for each asset, and the scores were summed up; individuals were ranked according to the total score of the household in which they resided. The sample was then divided into quartiles from quartile one (lowest) to quartile four (highest).

Page 11 of 36

1 2		
3 4	263	Using height (centimeters) and weight (kilograms) measurements, we calculated BMI
5 6 7 8	264	(height/weight ²). BMI was categorized in the following groups: underweight (\leq 18.5), normal
	265	(<25), overweight (25.1-30) and obese (>30). Waist circumference was measured in centimeters
9 10	266	(cm). Participants were categorized as abdominally obese if waist circumference was 90 cm and
11 12	267	above for men, or 80 cm and above for women. Prehypertension was defined as SBP ≥120
13 14	268	mmHg but < 140 mmHg and/or DBP ≥ 80 mmHg but <90 mmHg and not taking antihypertensive
15 16	269	medication at the time of the survey. We utilized the WHO's guidelines for cut-off points to
17 18	270	define hypertension ²³ . An individual was considered to have hypertension if systolic blood
19 20 21	271	pressure (SBP) was ≥140 mmHg (millimeters of mercury) and/or, diastolic blood pressure (DBP)
21 22 23	272	≥90 mmHg, and/or taking antihypertensive medication based on self-report.
23 24 25	273	
26 27	274	Age-Standardized Prevalence Estimates
28 29	275	To facilitate comparison of overall hyperglycemia among Bangladeshi adults across
30 31	276	global populations with different age compositions we calculated age-standardized prevalence
32 33	277	estimates with 95% confidence intervals (CIs) using the WHO's World Standard Population ²⁴ .
34 35	278	The World Standards database (WHO 2000-2025) provided population estimates for 18 and 19
36 37	279	age groups, as well as single year ages. To derive single ages from the 5-year age group
38 39	280	proportions publically available, we used the Beers "Ordinary" Formula ²⁵ . The following formula
40 41 42	281	was utilized for standardization:
42 43 44	282	$\sum pi^* w_i / \sum w_i$, where p = observed prevalence and w = world population weight.
45 46	283	
47 48 49 50 51 52 53 54 55 56	284	Data Analysis
	285	Sociodemographic variables were presented with mean and standard deviation (SD) for
	286	continuous variables, and using proportions for categorical variables. For bivariate analyses,
	287	study participants were divided by sex and into four age groups (18-29, 30-44, 45-54 and ≥55
57 58		11
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 12 of 36

years). We calculated the prevalence of our primary outcome by key demographic variables and
 calculated 95% CIs using the binomial exact method.

To estimate determinants of hyperglycemia in the diabetic range, we computed prevalence ratios with Poisson regression using robust estimation of standard errors²⁶⁻²⁸. Potential variables for inclusion in the model were assessed using prior published literature and bivariate Poisson regression analysis; an arbitrary p-value of <0.10 was used as criteria to include the variable in the multivariable Poisson regression model to control for confounding effects. For multivariable Poisson regression models, adjusted prevalence ratios (aPR), and 95% CIs for each independent variable were calculated. Additionally, <0.05 was used as the level of significance. Multivariable Poisson regression models were generated separately for urban and rural participants to account for possible effect measure modification. Collinearity was assessed using the variance inflation factor to ensure a strong linear relationship among independent variables included in the model was not present. All statistical procedures were performed using Stata/SE 15.0 (StataCorp LP, Texas, USA) software package.

33 302

303 Results

304 Background Characteristics

Of the 2000 adults approached, 1843 agreed to participate in our study leading to a response rate of 92.1%. Twenty-four female participants were pregnant and were dropped from subsequent analyses to ensure those with gestational diabetes were not included. Additionally, no participants reported having been previously diagnosed with type-1 diabetes. There were 892 (49.0%) male and 927 (50.9%) female respondents (Table 1). The age of our participants ranged from 18 to 90 years. The mean age and education level of participants were 40.5 (SD = 14.7) years and 5.7 (SD = 5.1) years, respectively. The majority of the study population was married (88.0%) and employed as either an industrial worker/day laborer (26.5%) or housewife (39.9%). Almost half of participants never used some form of tobacco. The majority of

Page 13 of 36

1

60

BMJ Open

2		
3 4	314	participants engaged in vigorous physical activity over an average week (69.3%). The mean
5 6	315	BMI was 22.1 (SD = 4.1) and the mean waist circumference was 78.4 cm (SD = 11.6). Overall,
7 8	316	the mean systolic blood pressure was 116.1 mmHg (SD = 17.1) and diastolic blood pressure
9 10	317	was 76.1 mmHg (SD = 10.5). The mean blood glucose level was 6.4 mmol/L (SD = 2.4). Figure
11 12 13	318	1 presents the distribution of blood glucose levels by various demographic factors.
14 15	319	
15 16 17	320	Prevalence and Risk Factors for Hyperglycemia
18 19	321	The prevalence of hyperglycemia was 5.5% (95% CI: 4.5-6.6). This prevalence was
20 21	322	significantly higher among urban participants (9.8%, 95%CI: 7.7-12.2) than rural participants
22 23	323	(2.8%, 95% CI: 1.9-3.9) (Table 2) and increased as age increased (Figure 2). The highest
24 25	324	prevalence of hyperglycemia was observed among those aged ≥55 years, at 8.2% (95% CI: 4.6-
26 27	325	13.1) among men and 9.4% (95% CI: 5.4-14.8) among women. The age-standardized
28 29	326	prevalence of hyperglycemia was 5.6% (95% CI: 4.6-6.8). The age-standardized prevalence of
30 31	327	hyperglycemia among urban and rural residents was 10.5% (95% CI: 9.2-12.1) and 2.8% (95%
32 33	328	CI: 2.1-3.7), respectively. Among men and women, the age-standardized prevalence of
34 35	329	hyperglycemia was 4.9% (95% CI: 3.9-6.0) and 6.0% (95% CI: 4.9-7.2), respectively.
36 37	330	
38 39 40	331	Self-Reported Diabetes Mellitus and Hyperglycemia
40 41 42	332	Ninety-five participants (5.2%) self-reported to have been previously diagnosed with
43 44	333	type-2 diabetes by a health care provider. However, 25 of those participants did not meet our
45 46	334	criteria of diagnosis of hyperglycemia as they did not take medication to control their diabetes
47 48	335	and their plasma glucose was below 11.1 mmol/L. Therefore, 69.3% of those with
49 50	336	hyperglycemia, per the study definition, were previously diagnosed with diabetes by a health
51 52	337	care provider.
53 54	338	The proportion of men and women who were previously diagnosed with diabetes by a
55 56	339	health care provider based on self-report was higher among urban residents (men: 8.4%;
57 58		13
59		

Page 14 of 36

BMJ Open

women: 9,1%) than among rural residents (men: 2.9%; women: 3.0%) (Figure 3a). However, overall, the large majority (81.8%) reported they did not know if they had been previously diagnosed with diabetes; this proportion was higher among rural residents (87.8%) than urban residents (72.2%). Among participants previously diagnosed with type-2 diabetes based on self-report, 72.6% reported taking medication to control their diabetes (Table 1). Urban women more frequently (96.7%) self-reported to take diabetes medication than urban men (62.1%) (Figure 3b). We were able to confirm 100% of participant's self-reported diabetes treatment history by checking prescriptions or medicine strips/vials. Among participants who were categorized as hyperglycemic during study measurement, over one-third (37.9%) of urban men self-reported to have diabetes, however, they did not take any medication to control their diabetes. Among rural participants, the proportion of women who did not take medication to control their self-reported diabetes was higher (52.9%) than men (31.3%). Although three-guarters of self-reported diabetic participants reported taking medication to control their diabetes, 31% continued to have high blood sugar levels indicating uncontrolled diabetes at study measurement (Figure 4). Determinants of Hyperglycemia Table 2 presents the results of multivariable Poisson regression with robust variance analyses to identify determinants of hyperglycemia. Among urban participants, those of older age, lowest wealth quartile, hypertension, low physical activity, and with abdominal obesity based on waist circumference, were more likely to have hyperglycemia. The prevalence of hyperglycemia was significantly highest among those aged ≥55 years (aPR 3.92, 95% CI: 1.48-10.39) compared to individuals aged 18-29 years of age. When compared to those in the 4th (highest) wealth quartile, urban residents in the first (lowest) wealth quartile had 3.18 times the prevalence of hyperglycemia. For urban individuals with hypertension, the prevalence of For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 15 of 36

60

1 2		
3 4 5 6 7 8	366	hyperglycemia was 2.65 (95% CI:1.30-5.38) times that of individuals without hypertension. The
	367	prevalence of hyperglycemia among those with low physical activity was 3.01 (95% CI: 1.42-
	368	6.38) times that of urban participants with vigorous physical activity. Abdominal obesity also
9 10	369	significantly increased the prevalence of hyperglycemia among urban participants (aPR: 2.54,
11 12	370	95% CI: 1.35-4.77). Among rural participants, the only observed determinants of hyperglycemia
13 14 15	371	were hypertension (aPR: 5.39, 95% CI: 1.94-14.96) and abdominal obesity (aPR: 2.95, 95% CI:
15 16	372	1.32-6.58).
17 18 10	373	
19 20 21	374	Discussion
21 22 23	375	Using data from this nationally representative sample, we estimate that about one in
24 25	376	twenty Bangladeshi adults aged ≥18 years have hyperglycemia. The prevalence of
26 27	377	hyperglycemia was higher among urban residents (9.8%) than rural residents (2.8%).
28 29	378	Determinants of hyperglycemia included older age, urban residence, abdominal obesity, low
30 31	379	physical activity, and hypertension. As diabetes is characterized by hyperglycemia, targeting
32 33	380	high-risk groups identified in this analysis could be prioritized for effective diabetes preventive
34 35 26	381	programs in Bangladesh.
36 37	382	Bangladesh has adopted the goals and targets set forth by the WHO's Global Monitoring
30 39 40	383	Framework for the Prevention and Control of NCDs for the year 2025 ¹¹ . One of these targets is
40 41 42	384	to ensure there is a 0% increase in the age-standardized prevalence of hyperglycemia among
43 44	385	adults aged ≥18 years by the year 2025. To our knowledge, the present study is the first to
45 46	386	report national estimates on the prevalence of hyperglycemia starting at age 18 years in both
47 48	387	urban and rural areas of Bangladesh. Data gathered from this national-level study are critical
49 50 51 52 53 54 55 56	388	towards the measurement of progress towards the WHO's nine global NCD control targets for
	389	Bangladesh for 2025.
	390	Globally, the number of adults living with diabetes has risen from 108 million in 1980 to
	391	422 million in 2013, and low- and middle-income countries (LMICs) have seen the most rapid
57 58 59		15

rise in diabetes prevalence³. Several lifestyle factors have been attributed to the increase in prevalence across LMICs including, globalization of food production, extensive marketing of low-cost and energy-dense foods, increased sedentary behavior, and rapid urbanization²⁹. In recent decades, the increase in the prevalence of diabetes in South Asia has been greater than that seen in high-income countries⁴. The prevalence of diabetes in adults across countries in South Asia is similar, excluding Nepal which has a low prevalence in comparison to neighboring countries (8.8% in India, 8.6% in Sri Lanka, 6.9% in Bangladesh, 7.9% in Bhutan, 6.9% in Pakistan, and 4.0% in Nepal)³⁰. In our study, we observed a prevalence of 5.6% hyperglycemia in the diabetic range among adults aged 18 years and above. This prevalence is lower than previous studies conducted in Bangladesh and neighboring countries. In fact, a scoping review estimated the pooled prevalence of type-2 diabetes to be 7.4%⁷. Our estimated prevalence was lower due to a younger study population (18 years and above compared to the WHO estimate among adults aged 30 years and above), and a higher percentage of participants from rural areas (61.1%, as is representative of Bangladesh). Indeed, when we restrict our analytic sample to 30 years and above, the prevalence of hyperglycemia is 6.7%, which is similar to the 2017 WHO estimate of diabetes (6.9%). Significant heterogeneity in diabetes and its determinants may exist within Bangladesh due to variations in the level of urbanization by region, and socioeconomic status of specific sub-populations³¹.

Important determinants of hyperglycemia in both urban and rural areas of our assessment included hypertension, low physical activity, and abdominal obesity. Interestingly, there was no association of diabetes identified for increasing BMI. This indicates that abdominal obesity may be a more significant factor to consider than BMI. Prior studies conducted in Bangladesh have also identified a positive association of central (or abdominal) obesity with diabetes³². Furthermore, our assessment found a decrease in prevalence of diabetes with increasing wealth quartile. Prior studies have conflicting findings on the risk of diabetes and other NCDs, among the wealthy based on demographic features such as the area of residence.

Page 17 of 36

1

BMJ Open

2		
3 4	418	0
5 6	419	w
7 8	420	a
9 10	421	q
11 12	422	w
13 14	423	a
15 16	424	
17 18	425	b
19 20	426	72
21 22	427	th
23 24	428	h
25 26 27	429	С
27 28 29	430	Т
30 31	431	e
32 33	432	st
34 35	433	hi
36 37	434	b
38 39	435	a
40 41	136	u
42 43	430	rc
44 45	437	
46 47	438	a
48 49	439	C
50 51	440	si
52 53	441	m
54 55	442	le
56 57	443	r
58 59 60		
00		

One prior study conducted in Bangladesh found that people from the highest wealth quintile were more likely to have diabetes than people from the lowest wealth quintile³³. However, another found a high burden of selected NCDs, including diabetes, among the lowest wealth quintile populations in rural areas and wealthy populations in urban areas³⁴. Further study is warranted to assess the reliability of wealth indices as a measurement of socioeconomic status and wealth among Bangladeshi adults.

In our study, a high proportion (~70%) of those with hyperglycemia self-reported to have
been previously diagnosed with diabetes and therefore, aware of their condition. Additionally,
72% reported taking medication to control their diabetes. However, we found that almost onethird of those who self-reported to take medication for their diabetes continued to have
hyperglycemia. Efforts should be made to ensure diabetics in Bangladesh are treated for their
condition and secondary prevention of complications of diabetes, such as diabetic retinopathy.
This is of particular concern in developing countries where resources are limited and costeffective solutions for chronic disease treatment should be prioritized. A recently published
study found that healthcare expenditure in persons with diabetes in Bangladesh is six times
higher than in persons without diabetes ¹⁴. Prevention and management of diabetes are likely to
be a cost-saving approach for Bangladesh through the utilization of community health workers
adequately trained to effectively screen for, and identify, people with diabetes ³⁵.

This study has several strengths. Data collected for our study was of a nationally representative sample indicating our results are generalizable to the population of Bangladeshi adults aged 18 years and above. Additionally, due to our large sample size, we were able to conduct subgroup analyses to identify urban and rural differences. However, several limitations should also be considered when interpreting the results of this analysis. We were unable to measure the prevalence of prediabetes and diabetes directly as we did not obtain blood sugar levels using standardized methods, such as fasting blood glucose or 2-hour post-prandial measurements. Further, we did not assess each participant's history of classical symptoms of

hyperglycemia, which is necessary to diagnose diabetes according to the ADA guidelines²¹. We were unable to measure known determinants of type-2 diabetes factors such as diet or family history of diabetes. Future studies should consider the addition of glycosylated hemoglobin measurement when assessing the prevalence of diabetes as this method could provide a more long-term and stable diagnosis of diabetes mellitus. Finally, due to the cross-sectional nature of this study, we were unable to define temporality of certain determinants of hyperglycemia identified and therefore, unable to assess causality.

Conclusion

Data from this nationally-representative sample of Bangladeshi adults aged 18 years and above will be critical to informing the progress of NCD control in Bangladesh per the WHO's Global Monitoring Framework and goals for 2025. As our data were collected in late 2015, more recent studies to estimate the prevalence of diabetes mellitus or hyperglycemia are warranted. Recent changes in risk factor distribution coupled with aging of the population may have led to changes prevalence of diabetes mellitus not reflected in our results, which will be important in measuring our progress as we approach 2025. We found that about one in twenty Bangladeshi adults aged ≥18 years have hyperglycemia. Among urban residents, we found that about one in ten Bangladeshi adults aged ≥18 years have hyperglycemia. Bangladeshi adults with hypertension and abdominal obesity are high-risk groups for the development of diabetes and should be targeted for routine screening for diabetes. Preventive methods such as lifestyle changes and medication should be recommended by primary care providers in Bangladesh to avoid the future development of CVDs among this group. In order to control the prevalence of hyperglycemia in the diabetic range, and reduce the burden of diabetes or associated risk factors, national initiatives such as training community health workers to deliver primary care and implementing universal health coverage should be implemented to curb the spread of NCDs in Bangladesh.

2		
3	470	
4 5		
6	471	
7	470	
8	472	
9	473	
10 11	-	
12	474	
13		
14	475	
15 16	476	
10	470	
18	477	
19		
20	478	
21	470	
23	479	
24	480	
25	100	
26 27	481	
28		
29	482	
30	100	
31	405	
32 33	484	
34		
35	485	
36	400	
37 38	486	
39	487	
40		
41	488	
42 43		
43 44	489	
45	490	
46	450	
47 19	491	
40 49		
50	492	
51	402	
52	493	
53 54	494	
55		
56	495	
57		
58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2 3	496	Figures	
4 5 6	497	Figure 1: Urban and Rural differences in the distribution of blood glucose levels based on	
7 8	498	random capillary blood measurement among (A) All Participants, and (B) Men and Women (n =	=
9 10	499	1819)	
11 12	500	Figure 2: Prevalence of hyperglycemia among Bangladeshi adults aged 18 years and above by	y
13 14	501	sex and age group, 2015 (n = 1819)	
15 16	502	Figure 3: Bangladeshi adults aged 18 years and above with (A) self-reported diabetes and (B)	
17 18 10	503	self-reported diabetics on diabetes medications, 2015	
19 20 21	504	Figure 4: Self-reported diabetics aged 18 years or older who take diabetes medication with	
22 23	505	hyperglycemia on study measurement (≥11.0mmol/L)	
24 25	506		
26 27	507		
28 29	508		
30 31	509		
32 33	510		
34 35 36	511		
37 38	512		
39 40	513		
41 42	514		
43 44	515		
45 46	516		
47 48	517		
49 50 51	518		
52 53	519		
55 54 55	520		
56 57	521		
58 59		2	20
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

1 ว		
2 3 4	522	Abbreviations
5 6	523	WHO: World Health Organization
7 8	524	ADA: American Diabetes Association
9 10	525	aPR: Adjusted prevalence ratio
11 12	526	BBS: Bangladesh Bureau of Statistics
13 14	527	BMI: Body mass index
15 16	528	BP: Blood pressure
17 18 10	529	BSMMU: Bangabandhu Sheikh Mujib Medical University
19 20 21	530	CI: Confidence interval
21 22 23	531	CVD: Cardiovascular disease
24 25	532	MET: Metabolic equivalent
26 27	533	mmHg: Millimeter of mercury
28 29	534	mmol/L: Millimoles per liter
30 31	535	NCD: Non-communicable disease
32 33	536	SBP: Systolic blood pressure
34 35	537	DBP: Diastolic blood pressure
36 37	538	PSU: Primary sampling unit
38 39 40	539	SD: Standard deviation
40 41 42	540	STEPS: STEPwise approach to Surveillance
43 44	541	
45 46	542	
47 48	543	
49 50	544	
51 52	545	
53 54	546	
55 56	547	
57 58		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3 4	548	Footnotes
5 6	549	Ethics approval and consent to participate: Ethical guidelines as outlined by the Declaration of
7 8	550	Helsinki were followed throughout the study. Ethical clearance was obtained from the
9 10	551	Institutional Review Board of Bangabandhu Sheikh Mujib Medical University (BSMMU) (Protocol
11 12	552	Number: 1100). We obtained permission from the relevant administrative units of the surveyed
13 14	553	districts. Orientations with community leaders (elected representatives of the local government
15 16 17	554	offices) were conducted prior to data collection for community engagement in the study's
17 18 10	555	implementation process. Written (or thumb impression if unable to write) consent was obtained
20 21	556	from the respondents in Bangla as per BSMMU Institutional Review Board (IRB) guidelines.
22 23	557	Availability of data and materials: The de-identified participant data used and/or analyzed during
24 25	558	the current study are available from the corresponding author on reasonable request. Please
26 27	559	contact M. Mostafa Zaman at zamanm@who.int for further information and guidelines.
28 29	560	Competing Interests: The authors declare no competing interests. The authors alone are
30 31	561	responsible for views expressed in this article and they do not necessarily represent the views,
32 33	562	decisions or policies of the institutions with which they are affiliated.
34 35 36	563	Funding: The study was conducted with the technical and financial assistance of the World
30 37 38	564	Health Organization Country Office for Bangladesh.
39 40	565	Authors contributions: JYI: conceptualized the manuscript, analyzed data, interpreted results
41 42	566	critically, and drafted the manuscript. MMZ: designed the study, interpreted results critically,
43 44	567	guided manuscript writing, and critically reviewed it. MRB, SAH, SA, ZAQ: trained the field team,
45 46	568	implemented the survey, processed and analyzed data, and reviewed the manuscript.
47 48	569	Acknowledgments: The authors thank Mr. Hassanuzzaman Khan for his efforts on data
49 50	570	management.
51 52	571	
53 54	572	
55 56 57	573	
58		22
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 23 of 36

1 2 3 4	574	References
5 6 7	575	1. Disease GBD, Injury I, Prevalence C. Global, regional, and national incidence, prevalence,
7 8 9	576	and years lived with disability for 354 diseases and injuries for 195 countries and
9 10 11	577	territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study
12 13	578	2017. Lancet (London, England) 2018;392(10159):1789-858. doi: 10.1016/S0140-
14 15	579	6736(18)32279-7
16 17	580	2. Ogurtsova K, da Rocha Fernandes JD, Huang Y, et al. IDF Diabetes Atlas: Global estimates
18 19	581	for the prevalence of diabetes for 2015 and 2040. Diabetes research and clinical practice
20 21	582	2017;128:40-50. doi: 10.1016/j.diabres.2017.03.024
22 23	583	3. Global report on diabetes. Geneva, Switzerland: World Health Organization 2016.
24 25	584	4. Jayawardena R, Ranasinghe P, Byrne NM, et al. Prevalence and trends of the diabetes
26 27	585	epidemic in South Asia: a systematic review and meta-analysis. BMC public health
28 29 20	586	2012;12:380. doi: 10.1186/1471-2458-12-380
30 31 32	587	5. IDF diabetes atlas sixth edition Brussels, Belgium Interational Diabetes Federation, 2013.
33 34	588	6. Saquib N, Saquib J, Ahmed T, et al. Cardiovascular diseases and type 2 diabetes in
35 36	589	Bangladesh: a systematic review and meta-analysis of studies between 1995 and 2010.
37 38	590	BMC public health 2012;12:434. doi: 10.1186/1471-2458-12-434
39 40	591	7. Biswas T, Islam A, Rawal LB, et al. Increasing prevalence of diabetes in Bangladesh: a
41 42	592	scoping review. Public health 2016;138:4-11. doi: 10.1016/j.puhe.2016.03.025
43 44	593	8. Rahman MS, Akter S, Abe SK, et al. Awareness, treatment, and control of diabetes in
45 46	594	Bangladesh: a nationwide population-based study. <i>PloS one</i> 2015;10(2):e0118365. doi:
47 48 40	595	10.1371/journal.pone.0118365
49 50 51	596	9. Akter S, Rahman MM, Abe SK, et al. Prevalence of diabetes and prediabetes and their risk
52 53	597	factors among Bangladeshi adults: a nationwide survey. Bulletin of the World Health
55 54 55 56	598	Organization 2014;92(3):204-13, 13A. doi: 10.2471/BLT.13.128371
57 58		23
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 24 of 36

BMJ Open

3 4	599	10. Zaman MM, Choudhury SR, Ahmed J, et al. Blood glucose and cholesterol levels in adult
5 6	600	population of Bangladesh: Results from STEPS 2006 survey. Indian heart journal
7 8	601	2016;68(1):52-6. doi: 10.1016/j.ihj.2015.06.031
9 10	602	11. NCD Global Monitoring Framework: World Health Organization; 2017 [Available from:
11 12	603	http://www.who.int/nmh/global_monitoring_framework/en/ accessed 09/29 2017.
13 14	604	12. Global action plan for the prevention and control of noncommunicable diseases 2013-2020.
15 16	605	Geneva, Switzerland: World Health Organization, 2013.
17 18 10	606	13. Siddique MKB, Islam SMS, Banik PC, et al. Diabetes knowledge and utilization of
19 20 21	607	healthcare services among patients with type 2 diabetes mellitus in Dhaka, Bangladesh.
22 23	608	BMC health services research 2017;17(1):586. doi: 10.1186/s12913-017-2542-3
24 25	609	14. Shariful Islam SM, Lechner A, Ferrari U, et al. Healthcare use and expenditure for diabetes
26 27	610	in Bangladesh. <i>BMJ Glob Health</i> 2017;2(1):e000033. doi: 10.1136/bmjgh-2016-000033
28 29	611	15. Haghparast-Bidgoli H, Shaha SK, Kuddus A, et al. Protocol of economic evaluation and
30 31	612	equity impact analysis of mHealth and community groups for prevention and control of
32 33	613	diabetes in rural Bangladesh in a three-arm cluster randomised controlled trial. BMJ
34 35 26	614	open 2018;8(8):e022035. doi: 10.1136/bmjopen-2018-022035
30 37 38	615	16. Islam JY, Zaman MM, Haq SA, et al. Epidemiology of hypertension among Bangladeshi
39 40	616	adults using the 2017 ACC/AHA Hypertension Clinical Practice Guidelines and Joint
41 42	617	National Committee 7 Guidelines. Journal of human hypertension 2018;32(10):668-80.
43 44	618	doi: 10.1038/s41371-018-0087-5
45 46	619	17. Chronic Disease and Health Promotion: STEP wise approach to surveillance (STEPS).
47 48	620	Geneva: World Health Organization.
49 50	621	18. Population and Housing Census 2001, updated in 2009. Dhaka, Bangladesh: Bangladesh
51 52 53	622	Bureau of Statistics 2009.
55 55		
56 57		
58 59		24
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 25 of 36

1 2		
3 4	623	19. Goycochea-Robles MV, Sanin LH, Moreno-Montoya J, et al. Validity of the COPCORD core
5 6	624	questionnaire as a classification tool for rheumatic diseases. J Rheumatol Suppl
7 8	625	2011;86:31-5. doi: 10.3899/jrheum.100955
9 10	626	20. Guidelines for Care of Type 2 Diabetes Mellitus in Bangaldesh. Dhaka, Bangladesh:
11 12	627	BIRDEM Clinical Research Group, 2003.
13 14	628	21. American Diabetes A. 2. Classification and Diagnosis of Diabetes. Diabetes care
15 16	629	2017;40(Suppl 1):S11-S24. doi: 10.2337/dc17-S005
17 18	630	22. Moniruzzaman M, Mostafa Zaman M, Islam MS, et al. Physical activity levels in Bangladeshi
19 20	631	adults: results from STEPS survey 2010. Public health 2016;137:131-8. doi:
21 22 22	632	10.1016/j.puhe.2016.02.028
23 24 25	633	23. A global brief on Hypertension: Silent Killer, global public health crisis. Geneva, Switzerland:
26 27	634	World Health Organization, 2013.
28 29	635	24. Ahmad OB, Boschi-Pinto C, Lopez AD, et al. Age Standardization of Rates: A New WHO
30 31	636	Standard. GPE Discussion Paper Series: No31 Geneva, Switzerland: World Health
32 33	637	Organization, 2001.
34 35	638	25. World (WHO 2000-2025) Standard Rockville, MD: National Cancer Institute: Surveillance,
36 37	639	Epidemiology, and End Results Program; 2017 [Available from:
38 39	640	https://seer.cancer.gov/stdpopulations/world.who.html accessed December 17 2017.
40 41 42	641	26. Coutinho LM, Scazufca M, Menezes PR. Methods for estimating prevalence ratios in cross-
42 43 44	642	sectional studies. Revista de saude publica 2008;42(6):992-8.
45 46	643	27. Behrens T, Taeger D, Wellmann J, et al. Different methods to calculate effect estimates in
47 48	644	cross-sectional studies. A comparison between prevalence odds ratio and prevalence
49 50	645	ratio. <i>Methods Inf Med</i> 2004;43(5):505-9.
51 52	646	28. Barros AJ, Hirakata VN. Alternatives for logistic regression in cross-sectional studies: an
53 54	647	empirical comparison of models that directly estimate the prevalence ratio. BMC medical
55 56	648	research methodology 2003;3:21. doi: 10.1186/1471-2288-3-21
57 58		25
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3 4	649	29. Singh PN, Arthur KN, Orlich MJ, et al. Global epidemiology of obesity, vegetarian dietary
5 6	650	patterns, and noncommunicable disease in Asian Indians. The American journal of
7 8	651	clinical nutrition 2014;100 Suppl 1:359S-64S. doi: 10.3945/ajcn.113.071571
9 10	652	30. Hills AP, Arena R, Khunti K, et al. Epidemiology and determinants of type 2 diabetes in
11 12	653	south Asia. Lancet Diabetes Endocrinol 2018;6(12):966-78. doi: 10.1016/S2213-
13 14	654	8587(18)30204-3
15 16 17	655	31. Chan JC, Malik V, Jia W, et al. Diabetes in Asia: epidemiology, risk factors, and
17 18 19	656	pathophysiology. Jama 2009;301(20):2129-40. doi: 10.1001/jama.2009.726
20 21	657	32. Alam DS, Talukder SH, Chowdhury MA, et al. Overweight and abdominal obesity as
22 23	658	determinants of undiagnosed diabetes and pre-diabetes in Bangladesh. BMC Obes
24 25	659	2016;3:19. doi: 10.1186/s40608-016-0099-z
26 27	660	33. Tareque MI, Koshio A, Tiedt AD, et al. Are the rates of hypertension and diabetes higher in
28 29	661	people from lower socioeconomic status in Bangladesh? Results from a nationally
30 31	662	representative survey. <i>PloS one</i> 2015;10(5):e0127954. doi:
32 33	663	10.1371/journal.pone.0127954
34 35 26	664	34. Biswas T, Islam MS, Linton N, et al. Socio-Economic Inequality of Chronic Non-
30 37 38	665	Communicable Diseases in Bangladesh. <i>PloS one</i> 2016;11(11):e0167140. doi:
39 40	666	10.1371/journal.pone.0167140
41 42	667	35. Gaziano TA, Abrahams-Gessel S, Denman CA, et al. An assessment of community health
43 44	668	workers' ability to screen for cardiovascular disease risk with a simple, non-invasive risk
45 46	669	assessment instrument in Bangladesh, Guatemala, Mexico, and South Africa: an
47 48	670	observational study. The Lancet Global health 2015;3(9):e556-63. doi: 10.1016/S2214-
49 50	671	109X(15)00143-6
51 52		
53 54		
55 56 57		
58		26

Page 27 of 36

	Table 1: Background	Characteristics of Bar	ngladeshi adult j	participan	ts, 2015	(n = 1819))
--	---------------------	-------------------------------	-------------------	------------	----------	------------	---

	Total (n =	= 1819)		Urban (r	n = 708	5)	Rural (n	= 111	1
Characteristic	Mean (SD)	n	%	Mean (SD)	n	%	Mean (SD)	n	
Sex									
Male		892	49.0		345	48.7		547	
Female		927	50.9		363	51.3		564	
Age(years)	40.5 (14.7)			39.1 (13.9)			41.4 (15.1)		
Education (Years) ^a	5 (0 - 9)			8 (3-12)			4 (0-8)		
Marital Status									
Never Married		110	6.1		54	7.6		56	
Married		1601	88.0		619	87.4		982	
Separated/Divorced/Widowed		108	5.9		35	4.9		73	
Occupation									
Professional employment ^b		279	15.2		189	26.7		90	
Unemployed/retired		98	5.3		43	6.1		55	
Industrial worker/Day Laborer		483	26.6		120	16.9		363	
Housewife		726	39.9		247	34.9		479	
Other ^c		232	12.8		109	15.4		123	
Wealth Index ^d									
1st Wealth Quartile		407	22.4		110	15.5		297	
2nd Wealth Quartile		533	29.3		171	24.2		362	
3rd Wealth Quartile		429	23.6		179	25.3		250	
4th Wealth Quartile		450	24.7		248	35.0		202	
Tobacco Use ^e									
Never		859	47.2		389	54.9		470	
Current Use		821	45.1		268	37.9		553	
Past Use		139	7.6		51	7.2		88	
Smoking Tobacco Use ^f									
Every day / Occasionally		494	27.2		169	23.9		325	
Past Use		104	5.7		38	5.4		66	
Never		1221	67.1		501	70.8		720	
Smokeless Tobacco Use ^g									
Every day / Occasionally		529	29.1		150	21.2		379	
Past Use		51	2.8		21	2.9		30	
Never		1239	68.1		537	75.9		702	
Physical Activity ^h									
Vigorous		1268	69.7		445	62.9		823	
Moderate		464	25.5		234	33.1		230	
Low		87	4.7		29	4.1		58	

ody Mass Index1 22.1 (4.1) 23.3 (4.5) 21.3 (3.7) valis Circumference (cm) 78.4 (11.6) 81.8 (12.6) 76.2 (10.3) lood Pressure Systolic Blood Pressure (mmHg) 116.1 (17.1) 117.9 (16.6) 115.0 (17.3) Diastolic Blood Pressure (mmHg) 76.1 (10.5) 77.9 (10.9) 74.9 (10.1) lood Clucose Level (mmOl/) 6.4 (2.4) 6.6 (2.9) 6.3 (2.1) elf-reported diabetes medication history i 69 72.6 50 80.6 19 51 biorvaitons: S, D, standard deviation Calculated median and interquartile range for education as the data are skewed Professional occupation includes: Field staff, police officer, guard, doctor, engineer, professional, business man, desk job Other occupation includes: Shop keeper, weavers, driver, student, beggar, cook, carpenter, tailor, migrant workers and fishermen Wealth index was calculated using principal component analysis using data collected on household ownership of the following items: electricity, shable toliki, land phone, edeivosin, radio, effgerator, private car, motor cycle, washing machine, bioyde, sewing machine, imirah/wardrobe, table, bed, chair/bench, watch/clock, as well as, type of main material used to build their homes root, walls and floor Includes both mokeless tobacco use includes oigarettes, biri, hookah, etc. Smokless tobacco use includes girda, sada pata, pan mashala with tobacco leaf, gul etc. Measurui in MET sands for the amountof oxygen you								
Valst Circlumference (cm) / 76.4 (11.6) 81.8 (12.6) 76.2 (10.3) isod Pressure Systolic Blood Pressure (mmHg) 116.1 (17.1) 117.9 (16.6) 115.0 (17.3) Diastolic Blood Pressure (mmHg) 76.1 (10.5) 77.9 (10.9) 74.9 (10.1) lood Glucose Level (mmol/l) 64 (2.4) 6.6 (2.9) 6.3 (2.1) eff-reported diabetes medication history <u>169</u> 72.6 50 80.6 19 5 bbreviations: SD, standard deviation Calculated median and interquartile range for education as the data are skewed Professional occupation includes: Field staff, police officer, guard, doctor, engineer, professional, business man, desk job Other occupation includes: Shop keeper, weavers, driver, student, beggar, cook, carpenter, tailor, migrant workers and fishermen Wealth index was calculated using principal component analysis using data collected on household ownership of the following items: electricity, ushable tollet, land phone, cell phone, television, radio, refrigerator, private car, motor cycle, washing machine, bicycle, sewing machine, imrita/wardrobe, table, bed, chair/bench, walle as, type of main material used to build their homes roof, walls and floor Includes both smokeless tobacco and smoke tobacco Smoking tobacco use includes jarda, stad pata, pan mashala with tobacco leaf, gul etc. Measured in MET-minutes: 1 MET stands for the amount of oxygen you consume and the number of calories you burn at rest. 30dy mass index (BMI) calculated by weight in kilogram divided by height in meter squared ³ ercentage reported out of participants who self-reported to have diabetes (Total n = 95; Urban n = 62; Rural n = 33)	Jy Mass Index	22.1 (4.1)		23.3 (4.5)		21.3 (3.7)		
Idea Pressure (mmHg) 116.1 (17.1) 117.9 (16.6) 115.0 (17.3) Diastolic Blood Pressure (mmHg) 76.1 (10.5) 77.9 (10.9) 74.9 (10.1) Ioad Solic Blood Pressure (mmHg) 64.(2.4) 6.6 (2.9) 6.3 (2.1) elf-reported diabetes medication history i 69 72.6 50 80.6 19 5 bbreviations: SD, standard deviation Calculated median and interquartile range for education as the data are skewed Professional occupation includes: Field staff, police officer, guard, doctor, engineer, professional, business man, desk job Ohrer occupation includes: Shop keeper, weavers, driver, student, beggar, cook, carpenter, tailor, migrant workers and fishermen Wealth index was calculated using principal component analysis using data collected on household ownership of the following items: electricity, shable tolicit, lind phone, celevision, radio, refrigerator, private car, motor cycle, washing machine, bicyde, sewing machine, bixable tobic, thair/bench, watch/clock, as well as, type of main material used to build their homes roof, walls and floor Includes both smokeless tobacco and smoke tobacco Smoking tobacco use includes igarettes, bir, hookah, etc. Smoking tobacco use includes igarettes, bir, hookah, etc. Smoking tobacco use includes igarettes, bir, hookah, etc. Smoking tobacco use includes igarettes, bir, hookah, etc. Smoking tobacco use includes igarettes, bir, hookah, etc. Yorgen asindex (BMI) calculated by weight in kilogram	ad Dressure	78.4 (11.6)		81.8 (12.6)		76.2 (10.3)		
System Blodd Pressure (mmHg) T0:1(17.1) T17.9(10.9) T3.9(17.3) Diastolic Blodd Pressure (mmHg) T6:1(17.1) 64 (2.4) 6.6 (2.9) 7.9 (10.1) elf-reported diabetes medication history 64 (2.4) 69 72.6 0 80.6 19 5 bireviations: SD, standard deviation Calculated median and interguartile range for education as the data are skewed Professional occupation includes: Field staff, police officer, guard, doctor, engineer, professional, business man, desk job Other occupation includes: Shop keeper, weavers, driver, student, beggar, cook, carpenter, tailor, migrant workers and fishermen Wealth index was calculated using principal component analysis using data collected on household ownership of the following items: electricity, shable tolicit, land phone, celevision, radio, refigerator, private car, motor cycle, washing machine, bicycle, sewing machine, inrah/wardrobe, table, bed, chair/bench, watch/clock, as well as, type of main material used to build their homes roof, walls and floor includes both smokeless tobacco and smoke tobacco Smoking tobacco use includes cigarettes, biri, hookah, etc. Smokles tobacco use includes jarda, sada pata, pan mashala with tobacco leaf, gul etc. Measured in MET-minutes: 1 MET stands for the amount of oxygen you consume and the number of calories you burn at rest. 3ody mass index (BMI) calculated by weight in kilogram divided by height in meter squared Percentage reported out of participants who self-reported to have diabetes (Total n = 95; Urban n = 62; Rural n = 33)	ou Plessule	116 1 (17 1)		117.0 (16.6)		115 0 (17 2)		
Diadatic block revel (mm/l) 6.4 (2.4) 6.6 (2.9) 6.3 (2.1) elf-reported diabetes medication history 6.4 (2.4) 6.7 (2.9) 6.3 (2.1) elf-reported diabetes medication history 6.4 (2.4) 6.7 (2.9) 6.3 (2.1) elf-reported diabetes medication history 6.4 (2.4) 6.7 (2.9) 6.3 (2.1) bibreviations: SD, standard deviation Calculated median and interguartile range for education as the data are skewed Professional occupation includes: Field staff, police officer, guard, doctor, engineer, professional, business man, desk job Other occupation includes: Shop keeper, weavers, driver, student, beggar, cook, carpenter, tailor, migrant workers and fishermen Wealth index was calculated using principal component analysis using data collected on household ownership of the following items: electricity, ushable toliet, land phone, cell phone, television, radio, refrigerator, private car, motor cycle, washing machine, bicycle, sewing machine, mirah/wardrobe, table, bed, chair/bench, watch/clock, as well as, type of main material used to build their homes roof, walls and floor includes both smokeless tobacco and smoke tobacco Smoking tobacco use includes cigarettes, biri, hookah, etc. Smokless tobacco use includes jarda, sada pata, pan mashala with tobacco leaf, gul etc. Measured in MET-minutes; 1 MET stands for the amount of oxygen you consume and the number of calories you burn at rest. 30d mass index (BMI) calculated by weight in kilogram divided by height in meter squared Percentage reported out of participants who self-reported to have diabetes (Total n = 95; Urban n = 62; Rural n = 33)	ijastolic Blood Pressure (mmHa)	76 1 (10 5)		77 9 (10.0)		74.9(10.1)		
<pre>iddu diculates the redication history i 69 72.6 50 80.6 19 5 bireviations: SD, standard deviation Calculated median and interquartile range for education as the data are skewed Professional occupation includes: Shop keeper, weavers, driver, student, beggar, cook, carpenter, tailor, migrant workers and fishermen Wealth index was calculated using principal component analysis using data collected on household ownership of the following items: electricity, ushable toilet, land phone, celevision, radio, refrigerator, private car, motor cycle, washing machine, bicycle, sewing machine, imirah/wardrobe, table, bed, chair/bench, watch/clock, as well as, type of main material used to build their homes roof, walls and floor Includes both smokeless tobacco and smoke tobacco Smoking tobacco use includes jarda, sada pata, pan mashala with tobacco leaf, gul etc. Measured in MET-minutes; 11 MET stands for the amount of oxygen you consume and the number of calories you burn at rest. 30d ymass includes (BMI) calculated by weight in kilogram divided by height in meter squared Percentage reported out of participants who self-reported to have diabetes (Total n = 95; Urban n = 62; Rural n = 33)</pre>	ad Glucoso Loval (mmal/l)	64(24)		66 (2.0)		63 (2.1)		
ein-reported diabetes fineducation instudy? Cold 19 30 Calculated median and interquartile range for education as the data are skewed Professional occupation includes: Field staff, police officer, guard, doctor, engineer, professional, business man, desk job Other occupation includes: Shop keeper, weavers, driver, student, beggar, cook, cargenter, tailor, migrant workers and fishermen Wealth index was calculated using principal component analysis using data collected on household ownership of the following items: electricity, ushable tollet, land phone, cell phone, television, radio, refrigerator, private car, motor cycle, weabing machine, bicycle, sewing machine, mirah/wardrobe, table, bed, chair/bench, weatb/cok, as well as, type of main material used to build their homes roof, walls and floor Includes both smokeless tobacco and smoke tobacco Smokiless tobacco use includes jarda, sada pata, pan mashala with tobacco leaf, gul etc. Measured in MET-minutes; 1 MET stands for the amount of oxygen you consume and the number of calories you burn at rest. 3ody mass index (BMI) calculated by weight in kilogram divided by height in meter squared *ercentage reported out of participants who self-reported to have diabetes (Total n = 95, Urban n = 62; Rural n = 33)	f reported diabates medication history	0.4 (2.4)	60 72	6	50 000	0.5 (2.1)	10	57
bibleviations: SD, standard deviation Calculated median and interquartile range for education as the data are skewed Professional occupation includes: Field staff, police officer, guard, doctor, engineer, professional, business man, desk job Other occupation includes: Shop keeper, weavers, driver, student, beggar, cook, carpenter, tailor, migrant workers and fishermen Wealth index was calculated using principal component analysis using data collected on household ownership of the following items: electricity, ushable toilet, land phone, cell phone, television, radio, refrigerator, private car, motor cycle, washing machine, bicycle, sewing machine, mirah/wardrobe, table, bed, chair/bench, watch/clock, as well as, type of main material used to build their homes roof, walls and floor Includes both smokeless tobacco use includes igarda, sada pata, pan mashala with tobacco leaf, gul etc. Measured in MET-minutes; 1 MET stands for the amount of oxygen you consume and the number of calories you burn at rest. 3ody mass index (BMI) calculated by weight in kilogram divided by height in meter squared Percentage reported out of participants who self-reported to have diabetes (Total n = 95; Urban n = 62; Rural n = 33)		1	09 72	0	50 60.0)	19	57.
Calculated integral and interduatine range for education as the data are skewed Professional occupation includes: Field saff, police officer, guard, doctor, engineer, professional, business man, desk job Other occupation includes: Shop keeper, weavers, driver, student, beggar, cook, carpenter, tailor, migrant workers and fishermen Wealth index was calculated using principal component analysis using data collected on household ownership of the following items: electricity, lishable toilet, land phone, cell phone, television, radio, refrigerator, private car, motor cycle, washing machine, bicycle, sewing machine, Imirah/wardrobe, table, bed, chair/bench, watch/clock, as well as, type of main material used to build their homes roof, walls and floor Includes both smokeless tobacco and smoke tobacco Smoking tobacco use includes cigarettes, biri, hookah, etc. Smokless tobacco use includes jarda, sada pata, pan mashala with tobacco leaf, gul etc. Measured in MET-minutes; 1 MET stands for the amount of oxygen you consume and the number of calories you burn at rest. 30dy mass includes (BMI) calculated by weight in kilogram divided by height in meters equared Percentage reported out of participants who self-reported to have diabetes (Total n = 95; Urban n = 62; Rural n = 33)	reviations: SD, standard deviation	a ducation on the data are	alcaucad					
Professional occupation includes: Field staff, police officer, guard, doctor, engineer, professional, business man, desk job Other occupation includes: Shop keeper, weavers, driver, student, beggar, coxek, carpenter, tailor, migrant workers and fishermen Wealth index was calculated using principal component analysis using data collected on household ownership of the following items: electricity, ushable toilet, land phone, cell phone, television, radio, refrigerator, private car, motor cycle, washing machine, bicycle, sewing machine, mirrah/wardrobe, table, bed, chair/bench, watch/clock, as well as, type of main material used to build their homes roof, walls and floor Includes both smokeless tobacco and smoke tobacco Smoking tobacco use includes cigarettes, biri, hookah, etc. Smokeless tobacco use includes jarda, sada pata, pan mashala with tobacco leaf, gul etc. Measured in MET-minutes; 1 MET stands for the amount of oxygen you consume and the number of calories you burn at rest. 3ody mass index (BMI) calculated by weight in kilogram divided by height in meter squared Percentage reported out of participants who self-reported to have diabetes (Total n = 95; Urban n = 62; Rural n = 33) Percentage reported out of participants who self-reported to have diabetes (Total n = 95; Urban n = 62; Rural n = 33)	inculated median and interquartile range to	r education as the data are	skewed					
Includes both smokeless tobacco and smoke tobacco Smoking tobacco use includes cigarettes, biri, hookah, etc. Smokeless tobacco use includes jarda, sada pata, pan mashala with tobacco leaf, gul etc. Measured in MET-minutes; 1 MET stands for the amount of oxygen you consume and the number of calories you burn at rest. 30dy mass index (BMI) calculated by weight in kilogram divided by height in meter squared Percentage reported out of participants who self-reported to have diabetes (Total n = 95; Urban n = 62; Rural n = 33)	her occupation includes: Shop keeper, we ealth index was calculated using principal hable toilet, land phone, cell phone, televis	avers, driver, student, begg component analysis using sion, radio, refrigerator, priv	gar, cook, c data collec ate car, mo	arpenter, tailor, migra ed on household owr tor cycle, washing m	int workers hership of tl achine, bic	and fishermen ne following items: ycle, sewing mach	electri iine,	city,
Includes both smokeless topacco and smoke topacco Smoking tobacco use includes cigarettes, biri, hookah, etc. Smokeless tobacco use includes jarda, sada pata, pan mashala with tobacco leaf, gul etc. Measured in MET-minutes; 1 MET stands for the amount of oxygen you consume and the number of calories you burn at rest. 30dy mass index (BMI) calculated by weight in kilogram divided by height in meter squared Percentage reported out of participants who self-reported to have diabetes (Total n = 95; Urban n = 62; Rural n = 33)	iran/wardrobe, table, bed, chair/bench, wa	tch/clock, as well as, type o	of main ma	erial used to build the	eir nomes r	pot, walls and floor		
Smoking topacco use includes cigarettes, birl, nookan, etc. Smokeless tobacco use includes jarda, sada pata, pan mashala with tobacco leaf, gul etc. Measured in MET-minutes; 1 MET stands for the amount of oxygen you consume and the number of calories you burn at rest. Body mass index (BMI) calculated by weight in kilogram divided by height in meter squared Percentage reported out of participants who self-reported to have diabetes (Total n = 95; Urban n = 62; Rural n = 33) Percentage reported out of participants who self-reported to have diabetes (Total n = 95; Urban n = 62; Rural n = 33)	cludes both smokeless tobacco and smoke							
Smokeless tobacco use includes jarda, sada pata, pan mashala with tobacco lear, gui etc. Measured in MET-minutes; 1 MET stands for the amount of oxygen you consume and the number of calories you burn at rest. 3ody mass index (BMI) calculated by weight in kilogram divided by height in meter squared Percentage reported out of participants who self-reported to have diabetes (Total n = 95; Urban n = 62; Rural n = 33) Percentage reported out of participants who self-reported to have diabetes (Total n = 95; Urban n = 62; Rural n = 33)	noking tobacco use includes cigarettes, bii	n, hookah, etc.						
	rcentage reported out of participants who	self-reported to have diabe	tes (Total r	= 95; Urban n = 62;	Rural n = 3	3)		

	Tota	ıl (n = 1819)	Urbar	n (n = 708)	Rural	(n = 1111)
	Diabetes ^a Prevalence %	Adjusted PR ^b (95% CI)	Diabetes ^a Prevalence %	Adjusted PR ^b (95% CI)	Diabetes ^a Prevalence %	Adjusted PR ^ь (95% CI)
Characteristic						
Area						
Urban	9.8	Ref.	-	-	-	-
Rural	2.8	0.44 (0.28 – 0.68)	-	-	-	-
Sex						
Male	4.9	Ref.	7.5	Ref.	3.3	Ref.
Female	5.9	1.05 (0.71 – 1.54)	11.9	1.26 (0.80 – 1.99)	2.2	0.61 (0.29 – 1.28
Age (years)						
18 - 29	2.5	Ref.	2.5	Ref.	2.5	Ref.
30 - 44	4.9	1.48 (0.78 – 2.79)	8.4	2.55 (1.01 – 6.41)	2.5	0.76 (0.30 – 1.93
45 - 54	7.4	2.18 (1.10-4.31)	15.5	4.38 (1.62 – 11.59)	2.8	0.67 (0.25 – 1.83
≥ 55	8.8	1.92 (0.95 – 3.86)	19.3	3.92 (1.48 – 10.39)	3.4	0.53 (0.17 – 1.67
Educational Status						
No Education	3.4	Ref.	7.0	Ref.	2.1	Ref.
Primary Education	3.7	1.00 (0.53 – 1.86)	7.6	1.00 (0.44 – 2.30)	2.1	0.84 (0.30 - 2.30)
Secondary Education	6.9	1.67 (0.95 – 2.93)	12.1	1.94 (0.95 - 3.97)	2.9	1.01 (0.40 – 2.54
Above Secondary Education	9.8	1.48 (0.77 – 2.84)	10.4	1.54 (0.71 – 3.33)	8.1	2.24 (0.68 – 7.41
Wealth Index ^c						
1st Wealth Quartile	7.7	2.58 (1.57 – 4.24)	18.9	3.18 (1.80 – 5.62)	3.6	1.37 (0.53 – 3.49
2nd Wealth Quartile	4.3	1.23 (0.71 – 2.14)	9.4	1.50 (0.82 – 2.77)	1.9	0.70 (0.24 – 2.05
3rd Wealth Quartile	3.7	0.86 (0.47 – 1.58)	6.0	0.96 (0.48 – 1.92)	2.0	0.55 (0.18 – 1.73
4th Wealth Quartile	6.6	Ref.	8.8	Ref.	3.9	Ref.
Blood Pressure						
Normal Blood Pressure	1.9	Ref.	3.5	Ref.	1.1	Ref.
Pre-Hypertension d	5.7	1.74 (1.00 – 3.01)	8.3	1.37 (0.69 – 2.74)	3.8	2.32(0.91 - 5.92)
Hypertension ^e	18.9	357(201 - 634)	27.4	(1.30 - 5.38)	8.8	5 39(1 94 14 96
Physical Activity		0.01 (2.01 0.01)			0.0	0.00(1.01 11.00
Vigorous	3.9	Ref	6.9	Ref	2.3	Ref
Moderate	8.2	1.18 (0.78 – 1.77)	13.8	1.22(0.77 - 1.93)	2.1	0.65 (0.22 – 1.88
Low	14 9	3.04(1.69 - 5.47)	20.7	3.01(1.42 - 6.38)	12.1	2.58(0.95 - 7.04)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		1	1		1				
2	Body Mass Index ^f								
3	Underweight (<18.5)	1.1	0.37 (0.12 – 1.13)	1.8	0.38 (0.07 – 1.95)	0.7	0.42 (0.09 – 2.02)		
4	Normal (18.5 - 25)	4.7	Ref.	8.2	Ref.	2.8	Ref.		
5	Overweight (25.1 - 30)	10.4	1.06 (0.68 – 1.65)	14.0	1.05 (0.61 – 1.80)	6.2	1.22 (0.51 – 2.91)		
6	Obese (>30)	20.9	1.49 (0.87 – 2.57)	26.5	1.46 (0.81 – 2.64)	5.6	0.95 (0.12 – 7.60)		
7	Waist Circumference (cm)								
8	Normal ^g	2.3	Ref.	3.8	Ref.	1.6	Ref.		
9	Abdominally Obese ^h	13.3	2.49 (1.53 – 4.07)	18.1	2.54 (1.35 – 4.77)	6.8	2.95 (1.32 – 6.58)		
10	Abbreviations: PR = prevalence ratio, CI = confidence intervals, Ref = referent category								
11	^a Hyperglycemia was defined as a capillary blood glucose level greater than or equal to 11.1 mmol/L or self-reported diabetes medication use								
12	^b Model adjusted for all variables included in table: sex, age, education, wealth index, blood pressure, body mass index, self-reported physical								

activity, and waist circumference

^c Wealth index was calculated using principal component analysis using data collected on household ownership of the following items: electricity, flushable toilet, land phone, cell phone, television, radio, refrigerator, private car, motor cycle, washing machine, bicycle, sewing machine,

almirah/wardrobe, table, bed, chair/bench, watch/clock, as well as, type of main material used to build their homes roof, walls and floor

^d Pre-Hypertension was defined as SBP ≥120 mmHg but < 140 mmHg and/or DBP ≥ 80 mmHg but <90 mmHg and not taking anti-hypertensive medication at the time of the survey

e Hypertension was defined as systolic blood pressure (SBP) was ≥140 mmHg (millimeters of mercury) and/or, diastolic blood pressure (DBP) ≥90 mmHg and/or taking any-hypertensive medication

^fBody mass index (BMI) calculated by weight in kilogram divided by height in meter squared

⁹ Defined as <90 cm M; <80 cm F

^h Defined as ≥90 cm M; ≥80 cm F

squared

Figure 4: Self-reported diabetics aged 18 years or older who take diabetes medication with hyperglycemia on study measurement (≥11.0mmol/L)

284x210mm (300 x 300 DPI)

STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of cross-sectional studies						
Section/Topic	ltem #	Recommendation	Reported on page #			
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	2			
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2-3			
Introduction						
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	5-6			
Objectives	3	State specific objectives, including any prespecified hypotheses	6			
Methods						
Study design	4	Present key elements of study design early in the paper	6			
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	7			
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants	6			
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	8-9			
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	7-10			
Bias	9	Describe any efforts to address potential sources of bias	6-7 & 11			
Study size	10	Explain how the study size was arrived at	7			
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	9-10			
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	11			
		(b) Describe any methods used to examine subgroups and interactions	11			
		(c) Explain how missing data were addressed	N/A			
		(d) If applicable, describe analytical methods taking account of sampling strategy	N/A			
		(e) Describe any sensitivity analyses	N/A			
Results						
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility,	7			
-------------------	-----	--	-------			
		confirmed eligible, included in the study, completing follow-up, and analysed				
		(b) Give reasons for non-participation at each stage	7			
		(c) Consider use of a flow diagram	N/A			
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	12			
		(b) Indicate number of participants with missing data for each variable of interest	N/A			
Outcome data	15*	Report numbers of outcome events or summary measures				
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence	12			
		interval). Make clear which confounders were adjusted for and why they were included				
		(b) Report category boundaries when continuous variables were categorized	9			
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	N/A			
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	11			
Discussion						
Key results	18	Summarise key results with reference to study objectives	12-14			
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	17-18			
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	15-18			
Generalisability	21	Discuss the generalisability (external validity) of the study results	17			
Other information						
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	20			

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml