

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Clinical and Epidemiological Indicators and Spatial Analysis of Leprosy Cases in Patients Under 15 Years Old in Endemic Area of Northeast Brazil

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-023420
Article Type:	Research
Date Submitted by the Author:	08-Apr-2018
Complete List of Authors:	Santos, Márcio; Universidade Federal de Sergipe, Health Education; Universidade Federal de Sergipe, Laboratory of Immunology and Molecular Biology Santos, Allan; Universidade Federal de Sergipe, Nursing Barreto, Aline; Universidade Federal de Sergipe, Laboratory of Immunology and Molecular Biology Souza, Mariana; Universidade Federal de Sergipe, Laboratory of Immunology and Molecular Biology Goes, Marco; Universidade Federal de Sergipe, Medicine Barreto Alves, Jose Antonio; Universidade Federal de Sergipe, Nursing Barreto, Ikaro; Universidade Federal Rural de Pernambuco, Programa de Pos-Graduacao em Biometria e Estatistica Aplicada Silva, José-Rodrigo; Universidade Federal de Sergipe, Statistics and Actuarial Sciences Oliveira, Daniela; Universidade Federal de Sergipe, Morphology Araújo, Karina; Universidade Federal de Sergipe, Morphology Duthie, Malcolm; Infectious Diseases Research Institute Jesus, Amélia; Universidade Federal de Sergipe, Laboratory of Immunology and Molecular Biology; Universidade Federal de Sergipe, Medicine
Keywords:	Leprosy, Children, Epidemiology < INFECTIOUS DISEASES, Spatial analysis
	·

SCHOLARONE[™] Manuscripts Page 1 of 28

BMJ Open
1
Clinical and Epidemiological Indicators and Spatial Analysis of Leprosy
Cases in Patients Under 15 Years Old in Endemic Area of Northeast Brazil
Márcio B Santos ^{1,2} , Allan D dos Santos ³ , Aline S Barreto ² , Mariana do R Souza ² , Marco A
de O Goes ⁴ , José-Antônio A Barreto ³ , Íkaro D C Barreto ⁵ , José-Rodrigo S Silva ⁶ , Daniela
T de Oliveira ³ , Karina G de Araujo ⁷ , Malcolm S Duthie ⁸ , Amélia R de Jesus ^{2,9,10} .
¹ Departament of Health Education, Universidade Federal de Sergipe, Brazil; ² Laboratory of Immunology
and Molecular Biology, Universidade Federal de Sergipe, Brazil; ³ Departament of Nursing, Universidade

Márcio B Santos ^{1,2} , Allan D dos Santos ³ , Aline S Barreto ² , Mariana do R Souza ² , Marco A
de O Goes ⁴ , José-Antônio A Barreto ³ , Íkaro D C Barreto ⁵ , José-Rodrigo S Silva ⁶ , Daniela
T de Oliveira ³ , Karina G de Araujo ⁷ , Malcolm S Duthie ⁸ , Amélia R de Jesus ^{2,9,10} .

¹Departament of Health Education, Universidade Federal de Sergipe, Brazil; ²Laboratory of Immunology and Molecular Biology, Universidade Federal de Sergipe, Brazil; ³Departament of Nursing, Universidade Federal de Sergipe, Brazil; ⁴Departament of Medicine, Universidade Federal de Sergipe, Brazil; ⁵Mestre, Universidade Federal Rural de Pernambuco (UFPE), Programa de Pos-Graduacao em Biometria e Estatistica Aplicada; ⁶Doutor, Professor Adjunto do Departamento de Estatística e Ciencias Atuariais da Universidade Federal de Sergipe (UFS); ⁷Departament of Morphology, Universidade Federal de Sergipe, Aracaju; ⁸Infectious Diseases Research Institute (IDRI), Seatlle, USA. ⁹Departament of Medicine, Universidade Federal de Sergipe, Aracaju. ¹⁰Instituto de Investigação em Imunologia, INCT, CNPq.

- **Corresponding Author**
- Márcio B. Santos
- Department of Health Science, Federal University of Sergipe
- Av. Gov. Marcelo Déda - São José, Lagarto - SE, Brazil
- Postal Code 49400-000
- E-mail: bio_marcio2006@hotmail.com

23 ABSTRACT

Objective: This study aimed to analyze the clinical and epidemiological indicators and
 the spatial distribution of leprosy in patients under 15 years old in an endemic area of
 Northeast Brazil.

Design: Regional surveillance study of all reported cases.

28 Setting: State of Sergipe, endemic area of Northeast Brazil.

Methods: An ecological and time series study was conducted, based on secondary
data reported by the Brazilian Information System on Notifiable Diseases (SINAN) for
leprosy cases diagnosed in Sergipe state (2002-2015). We performed spatial analysis
by Kernel estimator and Moran index.

Results: The incidence rate was reduced from 6.29 to 3.78 cases per 100,000 inhabitants in 2002 and 2015, respectively. However, Sergipe was still classified as highly endemicity in 2015. The mean number of household contacts (HHC) examined was significantly lower than those registered. Clinical data indicated that 21.4% of the patients developed leprosy reactions, and 31.3% presented with some physical disability in the multibacillary (MB) groups. Patients diagnosed by exam within the HHC presented better indicators, such as lower percentage of leprosy reaction and physical disability. Spatial analysis showed the most risk areas distributed on the northeast and cities around the capital, Aracaju.

Conclusion: The data indicate that there is a persistence of active *M. leprae* 43 transmission and a delay in disease detection, following a pattern of high endemicity in 44 many municipalities. The early detection by household contacts examination is 45 important not only to stop transmission but also to detect the cases in a less severe 46 state.

47 Keywords: Leprosy; Children; Epidemiology; Spatial analysis.

Strengths and limitations of this study

- It is a regional surveillance study including all notified cases. It was conducted using secondary data reported by SINAN and this source of date can present under notification cases and datasets missing.
- This is the first summary of leprosy cases in patients under 15 years old in Sergipe state, Northeast Brazil.
- Our study also addresses the distribution of the disease in the territory. We mapped areas of higher prevalence of leprosy in the general population, in children under 15 years and of physical disability using geoprocessing tools.
- We compared also the leprosy patient detection mode and how it affects the *M. leprae* transmission, the disease severity and the occurrence of leprosy reactions and physical disabilities.

INTRODUCTION

Leprosy is a chronic infectious disease caused by infection with Mycobacterium leprae [1]. This pathogen exhibits tissue tropism for phagocytes in the skin and Schwann cells within peripheral nerves and it presents a long incubation time (from 2 to 7 years) [2,3]. The disease can manifest across a broad spectrum of symptoms and the diagnosis is made based on the clinical signs (cutaneous lesions with altered sensitivity and neurological lesions). Patients are then classified as multibacillary (MB) and paucibacillary (PB) for treatment purposes, according to criteria accepted by Brazilian Ministry of Health (BMH) and International Leprosy Association (ILA) [1,2,4–7].

Despite control efforts including the widespread use of multidrug therapy (MDT), and the stabilization of the reported new case detection rate in the last few years, leprosy remains endemic in many developing countries [3–6,8–11]. In 2014, the World Health Organization (WHO) reported 213.899 new leprosy cases in 121 countries or territories [4]. Brazil ranks as the second most burdened country in the world concerning number of new cases (31,064 in 2014) and has by far the highest number of cases reported in Americas [4,12,13]. Within Brazil, the highest prevalence has been reported in the North, Northeast and Midwest regions [8,9]. In 2013, 2,439 new cases were diagnosed in children under 15 years old in Brazil, yielding a detection rate of 5.03 per 100,000 inhabitants [4].

50 Studies have demonstrated that leprosy presents higher incidence in population with: 51 low educational degree, precarious health services and domiciliary infrastructure 52 settlements, and reduced investment in prevention and control [14–16]. Moreover,

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 5 of 28

BMJ Open

73	the high incidence rate in children under 15 years is important to indicate there is
74	early exposure of the population to the bacillus, that is associated to elevated
75	prevalence in general population, being a good indicator of a high transmission and
76	bad quality of the control programs [10,12,17–20].
77	
78	Recently, studies mapping the occurrence of infectious diseases according to their
79	spatial distribution using "Geographic Information Systems (GIS)" have provided
80	important information for public health programs, revealing areas of priority for
81	interventions programs to more efficiently plan and implement control measures
82	[2,9,16,21-23]. The use of GIS in leprosy may allow the identification of spatial-
83	temporal distributions and profile of incidence in defined geographical areas, this
84	potentially contributing to the effectiveness of interventions.
85	
86	Despite breakthroughs in the epidemiological of leprosy, further improvements in
87	understanding of the disease dynamics in different regions is important for the support
88	of health services as a means for leprosy control. Spatial analyzes studies can provide
89	important understanding of the transmission patterns of <i>M. leprae</i> and allow the
90	identification of risk factors [21,23]. The aim of this study was to describe the various
91	clinical and epidemiological indicators, as well as to analyze the spatial distribution, of
92	leprosy cases in patients under 15 years old in an endemic area of Northeast Brazil.
93	
94	
	 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94

95 METHODS

96 Patient and Public Involvement and Study Design

An ecological and time series epidemiological study was conducted, based on data reported by SINAN (Information System on Notifiable Diseases), database of the Secretariat of Health, Sergipe. Sergipe is located on the coast of Northeast Brazil. The State has 75 municipalities and the capital is Aracaju. It has a population of 2,068,017 inhabitants and an area of 21,910,354km², equivalent to 0.26% of the national territory [16]. Population data were obtained from the IBGE (Brazilian Institute of Geography and Statistics), based on population estimates for the intercensus years (2002 - 2015). The historical (from 2002 to 2015) reporting of leprosy cases in children under 15 years old was analyzed. The incidence of leprosy (referred as the new case detection rate) in Sergipe in 2010 was 18.4 per 100,000 [8].

The clinical and epidemiologic indicators collected by Investigation and Notification Form, as recommended by SINAN, were: gender, age, ethnicity, operational classification (PB and MB), clinical form [according to the more refined Ridley-Jopling classification [24,25], based on histopathological analyses: indeterminate leprosy (IL), true tuberculoid (TT), borderline leprosy (BL) and lepromatous leprosy (LL)], leprosy reaction (LR), number of affected nerves, degree of physical disabilities, number of household contacts (HHC) registered and examined, and the patient detection mode.

The parameters adopted by BMH and ILA were followed for interpreting the incidence
rate of leprosy in patients under 15 years old. As such, this is classified as: low (<0.50

BMJ Open

118	cases per 100,000 inhabitants); medium (0.50 to 2.49); high (2.50 to 4.99); very high
119	(5.00 to 9.99) and hyperendemic (≥10.00) [4].
120	
121	Spatial analysis
122	Thematic maps were constructed in each municipality for the period examined
123	according to the leprosy incidence rate in patients under 15 years old and in general
124	population, and for patients presenting with physical disability (incapacity degree 1 or
125	2). The kernel intensity estimator was used by smoothing the statistically generated
126	surface density for the visual detection of hot spots, indicating cases agglomeration in
127	a spatial distribution and a continuous surface from point data [16,21].
128	
129	We performed either spatial autocorrelation analysis between disease detection rates
130	for each group. The Moran Global Index (MGI)[26] was calculated to identify clusters
131	with risks for disease occurrence. We construct a spatial proximity matrix obtained by
132	the contiguity of autocorrelation. The MGI was calculated as follows:
133	(Moran Global Index Mathematical Equation 1)
	$I = \frac{\left[(n \sum_{i}^{n} \sum_{j}^{n} \omega_{ij} (y_{i} - \bar{y}) (y_{j} - \bar{y}) \right]}{\left[(y_{i} - \bar{y})^{2} - (y_{i} - \bar{y})^{2} - (y_{i} - \bar{y})^{2} \right]}$
135	$[\Sigma_i^{\alpha}(\mathbf{y}_i - \bar{\mathbf{y}})^{\varepsilon} \Sigma_i^{\alpha} \Sigma_j^{\alpha} \omega_{ij}]$
136	ωij is a contiguity matrix element (ω); Yi is the incidence rate of municipality i; Yj is the
137	incidence rate of municipality j; $ar{Y}$ is the mean of sample and the symbol n represents
138	the total number of municipalities [26].
139	
140	The MGI provides a general grouping measure and it is possible to know if there are
141	significant differences between the analyzed areas. However, it does not indicate the
140 141	The MGI provides a general grouping measure and it is possible to know if there are significant differences between the analyzed areas. However, it does not indicate the

clusters localization. To do that, we performed the Moran Local Index diagram [26] to
build maps and identify the areas with spatial dependence (Local Index of Spatial
Association - LISA) of the annual detection means, as follows:

145 (Local Index of Spatial Association Mathematical Equation 2)

$$I = \frac{n[(Z_i \Sigma_j^n \omega_{\mathfrak{g}} Z_j)]}{(\Sigma_j^n Z_j^2)}$$

Zi = yi - \bar{y} ; Zi = yi - \bar{y} ; Ωij is a contiguous matrix element ω ; Yi is the incidence rate of municipality i; Yi is the incidence rate of municipality j; \bar{Y} is the sample mean and the symbol n represents the total number of cities [26]. The Moran Map was used to indicate the clusters and their relation with the neighbors. This analysis verifies the existence of spatial dependence and risk patterns: Q1 (high/high) and Q2 (Low/Low), which indicate municipalities with similar values between their neighbors and Q3 (high/low) and Q4 (low/high) for municipalities with different values between their neighbors and no spatial association [26]. Both Moran Index and Kernel maps were constructed using TerraView software 4.2.2.

159 Statistical analysis

Demographic and clinical data were compared across the different subgroups and according to operational classification and the patient detection mode. Percentage, mean and standard deviation of the groups were calculated. D'Agostino and Pearson tests were applied to analyze the normal distribution of data. Statistical differences between the groups were determined by Mann-Whitney and Kruskall-Wallis tests. All analysis was performed using SPSS Statistics, version 24.0. We assessed also the

166	tendency analyze by linear regression, where y (leprosy annual detection) = α +
167	β_1 (year). Results were considered statistically different when <i>p</i> -values < 0.05 were
168	obtained.
169	
170	Ethical Considerations
171	For conducting this study, authorization was previously requested from Coordination
172	of Epidemiological Surveillance, Sergipe state. This project involved research on human
173	subjects and was approved by the Ethics and Research Committee of the Federal
174	University of Sergipe, CAAE 0152.0.107.000-07.
175	
176	
177	RESULTS
178	Trends in reported leprosy incidence among children
179	The leprosy incidence rate in the general population of Sergipe decreased from 23.08
180	cases to 16.99 per 100,000 inhabitants between 2002 and 2015 (Figure 1A). The
181	occurrence of degree 2 physical disability, however, increased in this period (0.76 in
182	2002 to 1.2 in 2015, respectively). The incidence of leprosy in children under 15 years
183	old fluctuated, increasing from 2002 (6.29 cases per 100,000 inhabitants) to 2005
184	(9.82) but then showing a decline to 3.78 in 2015. There was an overall decrease in
185	leprosy incidence in the less than 15 year old group from 2002 to 2015 (p -value =
186	0.002; Figure 1B). The composition of leprosy cases according to the operational
187	classification (PB and MB) was relatively stable across this period, with the majority of
188	cases presenting as PB (Figure 2A). We also observed the mean number of HHC

registered (4.65 \pm 2.79) was slightly, but significantly, higher than the number examined (3.66 \pm 3.14; *p*-value < 0.0001; **Figure 2B**).

Demographics of childhood leprosy cases

Next, we evaluated the association among clinical and epidemiological variables according to the leprosy operational classification (patients presenting as PB and MB). Patients presenting as MB or PB were in similar age to $(10.5 \pm 2.81 \text{ and } 10.07 \pm 3.38)$, respectively). Despite the extended incubation period of *M. leprae*/leprosy, six cases (1.11%) were reported in children less than one year of age. Of the 538 leprosy cases identified among children under 15 years old the majority were PB [407 (75.7%) PB and 131 (24.3%) MB; Table 1]. When stratified on gender, however, the proportion of boys presenting with MB (63.4%) was significantly higher than presenting with PB (48.4%); p-value = 0.003). An interesting difference was observed when we calculated the ratio (PM/MB) according the ethnic groups. Among those identified as black, the ratio (43/24) was 1.79. Conversely, the ratio of white was higher 4.88 (88/18; p-value = 0.02).

As expected, the occurrence of leprosy reactions was significantly higher in MB (21.4%) than PB (4.9%; *p*-value < 0.0001) patients. The occurrence of degree 2 of physical disability was also higher in MB (4.6%), than in PB patients (0.74%; *p*-value = 0.0001). Consistent with this, we observed that the mean of number of affected nerves was higher in MB (0.5 ± 1.03), than PB (0.19 ± 0.54; *p*-value = 0.04).

212 Impact of case detection methods on leprosy presentation

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 11 of 28

1 2

BMJ Open

3
4
5
0 7
/
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

213	We also performed analysis of association among clinical and epidemiological variables
214	according to the leprosy patient detection mode. The patients were grouped in:
215	spontaneous demand (SDem: patients that looked for medical assistance by
216	themselves); forwarded (FW: patients that were forwarded from a primary clinic to a
217	leprosy reference center); examined HHC; and other. We observed that patients
218	detected by the examined HHC method presented lower mean age (9.6 \pm 3.38) than
219	those detected by either the SDem (10.54 \pm 3.28) or FW methods (10.02 \pm 3.15; p-
220	value = 0.04; Table 2). Interestingly, the percentage of leprosy reaction among the
221	examined HHC group (2.9%; p -value = 0.02) was lower than that observed among
222	SDem (7.3%) and FW (13.3%). In addition, degree 2 of physical disability was not
223	observed among patients detected in examined HHC group, while SDem and FW
224	presented 0.43% and 3.8%, respectively (p -value = 0.04). Furthermore, patients
225	identified among examined HHC presented with lower numbers of lesions (2.04 \pm 2.96;
226	p-value = 0.04) than SDem (3.64 ± 6.25) and FW (4.09 ± 8.68). Taken together, these
227	data reinforce the importance of HHC examination for the detection of leprosy
228	patients before advancement to more severe symptoms.

229

230 Spatial analyze data

Next, we performed the spatial analysis of leprosy cases in the general population, in
patients under 15 years old, and in patients presenting with physical disability (both
degree 1 and 2). Moran maps have showed higher risk clusters (Q1 - in red; Figure 3AC) in similar areas when comparing the maps regarding leprosy cases in children under
15 years old, in general population, and patients presenting some physical disability
(degree 1 and 2). The higher risk clusters (Q1) were localized in Sergipe state center

and in the metropolitan area around the capital of State. The municipalities with no
spatial association (Q3 - in blue) were localized in the Semiarid region, in the northwest
area and in the south region.

Similarly, The Kernel estimator, through data interpolation, showed densities (hot spots) of the highest incidence rates located at the northeast and east center regions and in the counties around the state capital (Aracaju city; **Figure 3D-F**). Lower intensity was observed on the western region. Municipalities with intermediate to high incidence values are seen in yellow and red tones of each subfigure. Low incidence areas were reported on west coast municipalities, mostly in smaller counties with small populations.

DISCUSSION

Previous studies have demonstrated that the high leprosy cases detection in patients under 15 years old is a bad parameter for leprosy control program, because it indicates early bacillus transmission from undiagnosed cases [18]. Some authors have speculated either about the risk of vertical/transplacental transmission or through breastfeeding [12].

In Brazil, the highest leprosy incidence rate in children was reported in the North area (11.91 cases per 100,000 inhabitants), followed by Northeast (8.12) [12]. We observed the leprosy incidence rate was reduced in children under 15 years old from 2002 to 2015 in Sergipe state, however considering the parameters adopted by BMH, the state was classified as very high endemicity in 2002, and still as high endemicity in 2015. It

BMJ Open

remains also with elevated incidence rate and stationary tendency of degree 2 of physical disability. Those data reinforce either that the transmission is intense at early age, there is lack of an effective public health and the disease control is focused in the MDT [12,18]. A similar study performed at Fortaleza city (Brazil), reported also that although a decreasing has been observed on overall detection rate, the number of new cases in those under 15 years old remains stable [13].

Leprosy reactions and physical disability are the most severe leprosy clinical complications [8,27,28]. In addition, the increase or stability of the prevalence of degree 2 of physical disability indicates persisting late diagnosis [13,28]. The early diagnosis of leprosy is essential to the prevention of deformities, whose repercussions are still more catastrophic in children and adolescents [27]. Our data reported 21.4% children with leprosy reaction (LR) and 31.3% with some physical disability in the MB groups. Furthermore, MB patients presented higher mean of affected nerves. Generally, patients under 15 years old do not use to present LR, but studies have reported a low frequency of LR, varying between 1.36% and 8.33% [27]. Those data reinforce that, although there is a decreasing incidence in leprosy, patients have been exposed to bacillus early in life and diagnosed belatedly and hence they have been also developing into some clinical complications.

We have observed either that the mean of HHC examined was significantly lower than those registered by SINAN. Moreover, leprosy patients detected by exam in HHC presented lower mean of age, affected nerves, number of lesions, occurrence of LR and no physical disability, when compared with those identified by spontaneous

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

demand or forwarded by others. On the other hand, mostly of patients presenting as degree 2 of physical disability were identified into those forwarded to a leprosy reference center, probably because they started presenting some physical disability. HHC and neighbors are the most important *M. leprae* active sources. The risk of a person developing leprosy is nine times greater among HHC and up to four times greater among contacts with neighbors [12]. Therefore, our data reinforce the importance of leprosy early diagnosis by exam in patients and their household contacts. Besides that, the treatment and the home visits by public health programs, and an efficient health program in schools could represent important actions for the early diagnosis and the reduction of leprosy clinical complications, especially in children.

Spatial analysis of health events aim to identify geographical patterns by maps of risk and to point out areas of higher severity and to facilitate the planning of public health interventions [9]. The Kernel maps showed the spatial dynamic of leprosy, with a heterogeneous geographical pattern and the highest risk areas for leprosy infection. The highest incidence on counties around the Capital can be due there was a leprosarium at the Nossa Senhora do Socorro (a city of the metropolitan area of Aracaju), that has presented elevated detection rate in mostly evaluated years. Moreover, that area presents reference center to leprosy diagnosis and treatment and hence they have several patients forwarded to these leprosy clinics. It can be also associated with weather featuring such as humidity, considering either that counties near to São Francisco River presented also elevated incidence. In the Malawian Karonga district, a positive relationship between the proximity of water and leprosy

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

incidence was previously reported [5]. Some authors have hypothesized that *M. leprae*survives longer outside of human body in humid compared to dry atmospheres [9,13].

Interestingly, higher risk clusters were identified in similar areas when we analyzed the occurrence of leprosy cases in children, in general population and patients presenting physical disability. It corroborates the hypothesis that the early transmission of *M*. *leprae* and the occurrence of leprosy in children under 15 years old is directly related to the late diagnosis, which explains the occurrence of patients with degree 2 of physical disability in the same geographic distribution [27].

In summary, our study demonstrated that the leprosy incidence rate has decreased in Sergipe state. However, it is still classified as high endemicity considering the WHO proposed ratios for children under 15 years. Patients detected by exam in collectivity or HHC presented better indicators. Altogether, the epidemiological data and spatial analysis indicate that there is persistence of active transmission of *M. leprae* and later case detection in Sergipe state, increasing the risk of transmission in children. In addition, the spatial analysis brings new advantages to comprehend the leprosy dynamic, and reinforce the superimposed regions of high occurrence areas of patients presenting degree 2 of physical disability and cases in children lower than 15 years, and highlights the need to strengthen effective disease control measures, mainly in primary health care.

1		
2 3	333	Acknowledgments The authors would like to thank the Manager of the Nucleus of
4 5	224	andomic/Division of Enidomiological Surveillance [Divisão do Vigilância
6	554	endernic/Division of Epiderniological Surveillance - [Divisao de vignancia
8	335	Epidemiológica (DIVEP)]/ Secretariat of Health of the Sergipe state (SES) for providing
9 10 11	336	information.
12 13	337	Funding This research received no specific grant from any funding agency in the public,
14 15	338	commercial or not-for-profit sectors.
16 17	339	Contributors The project was suggested by MS, AS and AJ. The manuscript was written
18 19 20	340	by MS. All authors contributed to refining the idea, analyzing the data, revising the
21 22	341	manuscript and have agreed the final version.
23 24	342	Competing interests The authors declare that they have no conflicts of interest.
25 26 27	343	Provenance and peer review Not commissioned; externally peer reviewed.
28 29	344	Data sharing statement No additional data are available.
30 31	345	
32 33 34	346	
35 36	347	
37 38		
39 40		
41 42		
43		
44		
45 46		
47		
48		
49		
50		
51		
52 53		
54		
55		
56		
57		
58		

59

1			
1			
2	3/8	Rofor	ion cos
3	540	Nerei	ences
4			
5	349		
6			
7			
8	250	1	Simon M. Scherleek, Duthic MC, at al. Clinical immunological and constin
0	350	T	Simon M, Scherlock J, Duthie MS, <i>et di</i> . Clinical, Immunological, and genetic
9			
10	351		aspects in leprosy. <i>Drug Dev Res</i> 2011: 72 :509–27. doi:10.1002/ddr.20457
11	001		
12			
13		_	
14	352	2	Duarte-Cunha M, Marcelo da Cunha G, Souza-Santos R. Geographical
15			
15	252		betaraganaity in the analysis of factors associated with lapracy in an ordemic
10	222		neterogeneity in the analysis of factors associated with reprosy in an endemic
17			
18	354		area of Brazil: are we eliminating the disease? BMC Infect Dis 2015:15:196.
19			
20			
21	355		doi:10.1186/s12879-015-0924-x
21			
22			
23	256	2	Fulton N. Anderson J. E. Watson J.M. et al. Lenrosy in England and Wales 1953-
24	330	5	ruton N, Anderson Er, Watson SN, et ul. Leprosy in England and Wales 1955-
25			
26	357		2012: Surveillance and challenges in low incidence countries. <i>BMJ Open</i>
20			
27			·····
28	358		2016; 6 :15–8. doi:10.1136/bmjopen-2015-010608
29			
30			
31	320	Л	Freitas LRS Duarte EC Garcia LR et al Trends of main indicators of lenrosy in
32	333	4	Treftas Elis, Duarte Ec, Garcia Er, et ul. Treftas of main indicators of reprosy in
33			
24	360		Brazilian municipalities with high risk of leprosy transmission, 2001–2012. BMC
34			
35			
36	361		Infect Dis 2016; 16 :472. doi:10.1186/s12879-016-1798-2
37			
38			
30	362	5	Duthie MS, Saunderson P, Reed SG. The potential for vaccination in lenrosy
40	502	5	buttle his, sudderson i, need set the potential for vaccination in teprosy
40			
41	363		elimination: New tools for targeted interventions. <i>Mem Inst Oswaldo Cruz</i>
42			
43	264		2012-107-100 C doi:10.1500/50074.0275201200000027
44	364		2012;107:190-6. d01:10.1590/50074-02762012000900027
45			
15			
40	365	6	Duthie MS. Gillis TP. Reed SG. Advances and hurdles on the way toward a
4/		-	
48			
49	366		leprosy vaccine. <i>Hum Vaccin</i> 2011; 7 :1172–83. doi:10.4161/hv.7.11.16848
50			
51			
52	367	7	Kumar A. Girdhar A. Girdhar BK. Six months fixed duration multidrug therapy in
52	507	,	Ramar Ay Giranar Ay Giranar Dis Six months fixed duration multidudg therapy in
22			
54	368		paucibacillary leprosy: Risk of relapse and disability in Agra PB cohort study. BMJ
55			
56	200		Onen 2012: 2:1 C dei: 10 1120 /hmisser 2012 001402
57	369		<i>Open</i> 2012; 2 :1–6. doi:10.1136/bmj0pen-2012-001403
58			
59			
55 60			For peer review only - http://bmiopen.hmi.com/site/about/quidelines.xhtml
00			· ····································

370	8	de Oliveira DT, Bezerra MM, de Almeida JAP, et al. Neurological disability in
371		leprosy: Incidence and gender association in Sergipe, Brazil. Geospat Health
372		2012; 6 . doi:10.4081/gh.2012.130
373	9	Alencar CH, Ramos AN, dos Santos ES, et al. Clusters of leprosy transmission and
374		of late diagnosis in a highly endemic area in Brazil: Focus on different spatial
375		analysis approaches. Trop Med Int Heal 2012;17:518–25. doi:10.1111/j.1365-
376		3156.2011.02945.x
377	10	Durrheim DN, Speare R. Global leprosy elimination: Time to change more than
378		the elimination target date. <i>J Epidemiol Community Health</i> 2003; 57 :316–7.
379		doi:10.1136/jech.57.5.316
380	11	Barth-Jaeggi T, Steinmann P, Mieras L, et al. Leprosy Post-Exposure Prophylaxis
381		(LPEP) programme: Study protocol for evaluating the feasibility and impact on
382		case detection rates of contact tracing and single dose rifampicin. BMJ Open
383		2016; 6 . doi:10.1136/bmjopen-2016-013633
384	12	Santos SD, Penna GO, Costa M da CN, et al. Leprosy in children and adolescents
385		under 15 years old in an urban centre in Brazil. Mem Inst Oswaldo Cruz
386		2016; 111 :359–64. doi:10.1590/0074-02760160002
387	13	Brito AL, Monteiro LD, Ramos Junior AN, et al. Tendência temporal da
388		hanseníase em uma capital do Nordeste do Brasil: epidemiologia e análise por
389		pontos de inflexão, 2001 a 2012. <i>Rev Bras Epidemiol</i> 2016; 19 :194–204.
390		doi:10.1590/1980-5497201600010017
391	14	Vieira GDD, Aragoso I, Carvalho RMB, et al. Hanseníase em Rondônia: incidência
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1			
2 3	392		e características dos casos notificados, 2001 a 2012. Epidemiol e Serviços Saúde
4 5 6	393		2014; 23 :269–75. doi:10.5123/S1679-49742014000200008
7 8 9	394	15	Queir??s MI, Ramos AN, Alencar CHM, et al. Clinical and epidemiological profile
10 11	395		of leprosy patients attended at Cear??, 2007-2011. An Bras Dermatol
12 13 14	396		2016; 91 :311–7. doi:10.1590/abd1806-4841.20164102
15 16 17	397	16	dos Santos AD, Lima ACR, Santos MB, et al. Spatial analysis for the identification
18 19	398		of risk areas for schistosomiasis mansoni in the state of Sergipe, Brazil, 2005-
20 21 22	399		2014. Rev Soc Bras Med Trop 2016; 49 :608–15. doi:10.1590/0037-8682-0137-
23 24	400		2016
25 26 27	401	17	Alencar CHM De, Barbosa JC, Ramos Jr AN, et al. Hanseníase no município de
28 29	402		Fortaleza, CE, Brasil: aspectos epidemiológicos e operacionais em menores de
30 31	403		15 anos (1995-2006). <i>Rev Bras Enferm</i> 2008; 61 :694–700. doi:10.1590/S0034-
32 33 34	404		71672008000700007
35 36 37	405	18	Pires CAA, Malcher CMSR, Abreu JMC, et al. Hanseníase em menores de 15
38 39	406		anos: A importância do exame de contato. <i>Rev Paul Pediatr</i> 2012; 30 :292–5.
40 41 42	407		doi:10.1590/S0103-05822012000200022
43 44	408	19	Carlos F, Lana F, Amaral EP, et al. Hanseníase em menores de 15 anos no Vale
45 46	409		do Jequitinhonha, Minas Gerais, Brasil. <i>Rev Bras Enferm</i> 2007; 60 :696–700.
47 48 49	410		doi:10.1590/S0034-71672007000600014
50 51 52	411	20	Fernandes C, Gonçalves HS, Cabral PB, et al. Increased frequency of CD4 and
53 54	412		CD8 regulatory T cells in individuals under 15 years with multibacillary leprosy.
55 56 57	413		PLoS One 2013;8. doi:10.1371/journal.pone.0079072
58 59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

414	21	Barreto AS, Alves B. ORIGINAL ARTICLE SPATIAL ANALYSIS AND
415		EPIDEMIOLOGICAL CHARACTERISTICS OF CASES OF LEPROSY IN AN ENDEMIC
416		AREA. J Nurs UFPE 2016;10. doi:10.5205/reuol.9881-87554-1-EDSM1011201604
417	22	Khan O, Davenhall W, Ali M, et al. Geographical information systems and
418		tropical medicine. Ann Trop Med Parasitol 2010; 104 :303–18.
419		doi:10.1179/136485910X12743554759867.Geographical
420	23	Fischer E, Pahan D, Chowdhury S, et al. The spatial distribution of leprosy in four
421		villages in Bangladesh: an observational study. BMC Infect Dis 2008;8:125.
422		doi:10.1186/1471-2334-8-125
423	24	Ridley DS JW. Classification of leprosy according to immunity. A five-group
424		system. Int J Lepr Other Mycobact Dis 1966; 34 :255–73.
425		doi:10.1126/science.1238286
426	25	Lockwood DNJ, Sarno E, Smith WC. Classifying leprosy patientssearching for
427		the perfect solution. <i>Lepr Rev</i> 2007; 78 :317–20.
428	26	Chen Y. New Approaches for Calculating Moran's Index of Spatial
429		Autocorrelation. PLoS One 2013;8. doi:10.1371/journal.pone.0068336
430	27	de Oliveira MBB, Diniz LM. Leprosy among children under 15 years of age:
431		Literature review. An Bras Dermatol 2016;91:196–203. doi:10.1590/abd1806-
432		4841.20163661
433	28	Kumar A, Girdhar A, Kumar Girdhar B. Risk of developing disability in pre and
434		post-multidrug therapy treatment among multibacillary leprosy: Agra MB
435		Cohort study. <i>BMJ Open</i> 2012; 2 :1–7. doi:10.1136/bmjopen-2011-000361
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Table 1. Association of demographic and clinical data according to the operational

437 classification of leprosy (PB and MB) in children under 15 years in Sergipe state,

438 Brazil (2002-2015).

	Operationa	l Classification	
Variables	РВ	MB	
	(n = 407)	(n = 131)	<i>p</i> -value
Age mean ± SD	10.07 ± 3.38	10.5 ± 2.81	*0.46
Gender n (%)			
Male	197 (48.4)	83 (63.4)	⁺ 0.003
Ethnicity n (%)			
White	88 (21.6)	18 (13.7)	[#] 0.02
Black	43 (10.5)	24 (18.3)	
Brown	251 (61.7)	78 (59.5)	
Indian	4 (0.9)	3 (2.3)	
Leprosy reaction n (%)	20 (4.9)	28 (21.4)	*<0.0001
Physical Disability			
Degree n (%)			
0	337 (82.8)	90 (68.7)	#0.0001
1	26 (6.4)	18 (13.7)	
2	3 (0.74)	6 (4.6)	
Number of affected nerves	0.19 ± 0.54	0.5 ± 1.03	*0.04
(mean ± SD)			
Number of Lesions (mean ±	1.61 ± 1.14	9.92 ± 12.03	*<0.0001
SD)			
HHC registered (mean ± SD)	4.6 ± 2.71	4.85 ± 3.04	*0.14
HHC examined (mean ± SD)	3.54 ± 3.04	4.05 ± 3.44	

*Mann-Whitney test; ⁺Fisher's exact test; [#]Chi-square test. SD = Standard Deviation. We missed data in
 some variables.

442 Table 2. Demographic and clinical aspects accordingly to the detection mode of

443 leprosy cases in children under 15 years in Sergipe state, Brazil (2002-2015).

		Patien	t detection mode		
Variables	Spontaneous	Forwarding	Examined HHC	Other	
Variables	demand				
	(n = 234)	(n = 210)	(n = 69)	(n = 25)	<i>p</i> -value
Age mean ± SD	10.54 ± 3.28	10.02 ± 3.15	9.6 ± 3.38	9.6 ± 3.22	*0.04
Gender n (%)					
Male	123 (52.6)	110 (52.4)	38 (55.1)	09 (36)	[#] 0.41
Leprosy reaction n (%)	17 (7.3)	28 (13.3)	2 (2.9)	1 (4.0)	[#] 0.02
Physical disability degree n (%)					
0	199 (85.1)	150 (71.4)	55 (79.7)	18 (72)	[#] 0.04
1	17 (7.3)	21 (10)	5 (7.2)	1 (4.0)	
2	1 (0.43)	08 (3.8)	0 (0.0)	0 (0.0)	
Number of affected nerves	0.24 ± 0.67	0.34 ± 0.81	0.06 ± 0.25	0.25 ± 0.5	*0.48
(mean ± SD)					
Number of lesion (mean ± SD)	3.64 ± 6.25	4.09 ± 8.68	2.04 ± 2.96	4 ± 5.2	*0.04
HHC registered (mean ± SD)	4.57 ± 2.53	4.59 ± 2.74	5.57 ± 3.81	3.45 ± 1.96	*0.04
HHC examined (mean ± SD)	3.71 ± 3.02	3.02 ± 2.98	4.64 ± 4.06	2.04 ± 1.77	*0.01

445 *Kruskal-Wallis test; [#]Chi-square test. SD = Standard Deviation. We missed data in some variables.

BMJ Open

5 ⊿	
4	
5	
0	
/	
0	
9 10	
10	
11	
12	
17	
14	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

Figure 1. Leprosy incidence rates in state of Sergipe, Northeast Brazil, 2002-2015. A) Leprosy incidence rate (per 100,000 inhabitants) in general population (\blacktriangle), in patients under 15 years old (\blacksquare), degree 2 of physical disability (\blacklozenge) and the tendency line. B) Tendency analyzes description. Data were considered statistically different when pvalue < 0.05. CI: Confidence Interval.

452

Figure 2. Epidemiological, clinical and operational indicators in leprosy patients, state
of Sergipe, Brazil, 2002-2015. A) Proportion of leprosy cases according to the clinical
operational classification (Paucibacilary - PB (■) and Multibacilary – MB (♦) forms). B)
Mean and standard deviation (mean ± SD) of the number of household contacts (HHC)
that were registered and examined for leprosy diagnosis. Data were considered
statistically different when p-value < 0.05. * Mann-Whitney test.

459

Figure 3. Spatial analysis maps. Moran Global Index maps and Kernel maps were constructed by TerraView Software 4.2.2. The Moran Global Index (*MGI) was calculated to identify the occurrence of clusters. Moran (A) and Kernel (B) maps of leprosy cases in patients under 15 years old. Moran (C) and Kernel (D) maps of leprosy cases in the general population. Moran (E) and Kernel (F) maps of occurrence of incapacity degree 1 and 2. Sergipe state, Northeast Brazil (2002 – 2015).

466

Figure 1. Leprosy incidence rates in state of Sergipe, Northeast Brazil, 2002-2015. A) Leprosy incidence rate (per 100,000 inhabitants) in general population (□), in patients under 15 years old (□), degree 2 of physical disability (□) and the tendency line. B) Tendency analyzes description. Data were considered statistically different when p-value < 0.05. CI: Confidence Interval.</p>

30x32mm (300 x 300 DPI)

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
10	A to the second
17	
12	Figure 2. Epidemiological, clinical and operational indicators in leprosy patients, state of Sergipe, Brazil,
13	2002-2015. A) Proportion of leprosy cases according to the clinical operational classification (Paucibacilary -
14	PB (\Box) and Multibacilary – MB (\Box) forms). B) Mean and standard deviation (mean ± SD) of the number of
15	household contacts (HHC) that were registered and examined for leprosy diagnosis. Data were considered
10	statistically different when p-value < 0.05 . * Mann-Whitney test.
17	17v7mm (200 v 200 DDI)
18	17X/IIIII (500 X 500 DF1)
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Figure 3. Spatial analysis maps. Moran Global Index maps and Kernel maps were constructed by TerraView Software 4.2.2. The Moran Global Index (*MGI) was calculated to identify the occurrence of clusters. Moran (A) and Kernel (B) maps of leprosy cases in patients under 15 years old. Moran (C) and Kernel (D) maps of leprosy cases in the general population. Moran (E) and Kernel (F) maps of occurrence of incapacity degree 1 and 2. Sergipe state, Northeast Brazil (2002 – 2015).

64x85mm (300 x 300 DPI)

1	
2	
3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
20	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
32	
31	
24 25	
22	
30	
3/	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
17	

STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of cross-sectional studies

Section/Topic	ltem #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	01
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	02
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	04-05
Objectives	3	State specific objectives, including any prespecified hypotheses	05
Methods			
Study design	4	Present key elements of study design early in the paper	06
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	06
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants	06
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	06
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	06-07
Bias	9	Describe any efforts to address potential sources of bias	-
Study size	10	Explain how the study size was arrived at	06
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	06-08
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	08-09
		(b) Describe any methods used to examine subgroups and interactions	08-09
		(c) Explain how missing data were addressed	08-09
		(d) If applicable, describe analytical methods taking account of sampling strategy	08-09
		(e) Describe any sensitivity analyses	08-09
Results			08-09

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility,	09
		confirmed eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	09-10
		(b) Indicate number of participants with missing data for each variable of interest	
Outcome data	15*	Report numbers of outcome events or summary measures	09-10
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence	10-12
		interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	10-12
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	12-13
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	09-11
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	12-14
Generalisability	21	Discuss the generalisability (external validity) of the study results	15
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on	
		which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Clinical and Epidemiological Indicators and Spatial Analysis of Leprosy Cases in Patients Under 15 Years Old in an Endemic Area of Northeast Brazil: an ecological and time series study

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-023420.R1
Article Type:	Research
Date Submitted by the Author:	06-Feb-2019
Complete List of Authors:	Santos, Márcio; Universidade Federal de Sergipe, Health Education; Universidade Federal de Sergipe, Laboratory of Immunology and Molecular Biology Santos, Allan; Universidade Federal de Sergipe, Nursing Barreto, Aline; Universidade Federal de Sergipe, Laboratory of Immunology and Molecular Biology Souza, Mariana; Universidade Federal de Sergipe, Laboratory of Immunology and Molecular Biology Goes, Marco; Universidade Federal de Sergipe, Medicine Barreto Alves, Jose Antonio; Universidade Federal de Sergipe, Nursing Barreto, Ikaro; Universidade Federal Rural de Pernambuco, Programa de Pos-Graduacao em Biometria e Estatistica Aplicada Silva, José-Rodrigo; Universidade Federal de Sergipe, Statistics and Actuarial Sciences Oliveira, Daniela; Universidade Federal de Sergipe, Laboratory of Immunology and Molecular Biology Araújo, Karina; Universidade Federal de Sergipe, Morphology Duthie, Malcolm; Infectious Diseases Research Institute Jesus, Amélia; Universidade Federal de Sergipe, Laboratory of Immunology and Molecular Biology; Universidade Federal de Sergipe, Morphology Duthie, Malcolm; Infectious Diseases Research Institute Jesus, Amélia; Universidade Federal de Sergipe, Laboratory of Immunology and Molecular Biology; Universidade Federal de Sergipe, Laboratory of Immunology and Molecular Biology; Universidade Federal de Sergipe, Laboratory of
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Infectious diseases, Public health
Keywords:	Leprosy, Children, Epidemiology < INFECTIOUS DISEASES, Spatial analysis
	·

BMJ Open

	L	
	L	
	L	
-	L	

2 3		
4	1	Clinical and Epidemiological Indicators and Spatial Analysis of Leprosy
5 6 7	2	Cases in Patients Under 15 Years Old in an Endemic Area of Northeast
8 9 10	3	Brazil: an ecological and time series study
11 12 13	4	
14 15	5	Márcio B Santos ^{1,2} , Allan D dos Santos ³ , Aline S Barreto ² , Mariana do R Souza ² , Marco A
16 17 18	6	de O Goes ⁴ , José-Antônio A Barreto ³ , Íkaro D C Barreto ⁵ , José-Rodrigo S Silva ⁶ , Daniela
19 20	7	T de Oliveira ³ , Karina G de Araujo ⁷ , Malcolm S Duthie ⁸ , Amélia R de Jesus ^{2,9,10} .
21 22 23	8	
23 24 25	9	¹ Departament of Health Education, Universidade Federal de Sergipe, Brazil; ² Laboratory of Immunology
26 27	10	and Molecular Biology, Universidade Federal de Sergipe, Brazil; ³ Departament of Nursing, Universidade
28 29	11	Federal de Sergipe, Brazil; ⁴ Departament of Medicine, Universidade Federal de Sergipe, Brazil; ⁵ Mestre,
30 31	12	Universidade Federal Rural de Pernambuco (UFPE), Programa de Pos-Graduacao em Biometria e
32 33	13	Estatistica Aplicada; ⁶ Doutor, Professor Adjunto do Departamento de Estatística e Ciencias Atuariais da
34 35	14	Universidade Federal de Sergipe (UFS); ⁷ Departament of Morphology, Universidade Federal de Sergipe,
36 37	15	Aracaju; ⁸ Infectious Diseases Research Institute (IDRI), Seatlle, USA. ⁹ Departament of Medicine,
38 39 40	16	Universidade Federal de Sergipe, Aracaju. ¹⁰ Instituto de Investigação em Imunologia, INCT, CNPq.
40 41 42	17	
42 43 44	18	Corresponding Author
45 46	19	Márcio B. Santos
47 48	20	Department of Health Science, Federal University of Sergipe
49 50 51	21	Av. Gov. Marcelo Déda - São José, Lagarto - SE, Brazil
52 53	22	Postal Code 49400-000
54 55 56 57 58 59 60	23	E-mail: bio_marcio2006@hotmail.com

24 ABSTRACT

Objective: This study aimed to analyze the clinical and epidemiological indicators,
 temporal trends and the spatial distribution of leprosy in patients under 15 years old in

Design: Regional surveillance study of all reported cases.

an endemic area of Northeast Brazil.

Setting: State of Sergipe, endemic area of Northeast Brazil.

Methods: An ecological and time series study was conducted, based on secondary
data reported by the Brazilian Information System on Notifiable Diseases (SINAN) for
leprosy cases diagnosed in Sergipe state (2002-2015). The analysis of temporal trends
was performed using the Joinpoint Regression Program through Poisson regression.
We performed spatial analysis by Kernel estimator and Moran index.

Results: The incidence rate was reduced from 6.29 to 3.78 cases per 100,000 inhabitants in 2002 and 2015, respectively. However, Sergipe was still classified as highly endemicity in 2015. The mean number of household contacts (HHC) examined was significantly lower than those registered. Clinical data indicated that 21.4% of the patients developed leprosy reactions, and 31.3% presented with some physical disability in the multibacillary (MB) groups. Patients diagnosed by exam within the HHC presented better indicators, such as lower percentage of leprosy reaction and physical disability. Spatial analysis showed the most risk areas distributed on the northeast and cities around the capital, Aracaju.

Conclusion: The data indicate that there is a persistence of active *M. leprae*45 transmission and a delay in disease detection, following a pattern of high endemicity in
46 many municipalities. The early detection by household contacts examination is

This is a surveillance study that includes all notified cases of lenrosy
State of Brazil with moderate prevalence of the disease.
 This is the first summary of leprosy cases in patients under 15 years of Sergipe state, Northeast Brazil.
 This study was conducted using secondary data reported by SINAN and
source of data may have datasets missing. We also manned the lenrosy cases and physical disability in children i
15 years in areas of higher prevalence of leprosy in the general popula
using geoprocessing tools.
We compared the leprosy patient detection mode and how it affect disease equation at disease and the economic of learness resting.
physical disabilities.

51 INTRODUCTION

Leprosy is a chronic infectious disease caused by infection with Mycobacterium leprae [1]. This pathogen exhibits tissue tropism for phagocytes in the skin and Schwann cells within peripheral nerves and it presents a long incubation time (from 2 to 7 years) [2,3]. The disease can manifest across a broad spectrum of symptoms and the diagnosis is made based on the clinical signs (cutaneous lesions with altered sensitivity and neurological lesions). Patients are then classified as multibacillary (MB) and paucibacillary (PB) for treatment purposes, according to criteria accepted by Brazilian Ministry of Health (BMH) and International Leprosy Association (ILA) [1,2,4–7].

Despite control efforts including the widespread use of multidrug therapy (MDT), and the stabilization of the reported new case detection rate in the last few years, leprosy remains endemic in many developing countries [3–6,8–11]. In 2014, the World Health Organization (WHO) reported 213,899 new leprosy cases in 121 countries or territories [4]. Brazil ranks as the second most burdened country in the world concerning number of new cases (31,064 in 2014) and has by far the highest number of cases reported in Americas [4,12,13]. Within Brazil, the highest prevalence has been reported in the North, Northeast and Midwest regions [8,9]. The incidence of leprosy (referred as the new case detection rate) in Sergipe in 2010 was 18.4 per 100,000 [8]. In 2013, 2,439 new cases were diagnosed in children under 15 years old in Brazil, yielding a detection rate of 5.03 per 100,000 inhabitants [4].

Studies have demonstrated that leprosy presents higher incidence in population with:
low educational degree, precarious health services and domiciliary infrastructure

BMJ Open

settlements, and reduced investment in prevention and control [14–16]. Moreover, the high incidence rate in children under 15 years is important to indicate there is early exposure of the population to the bacillus, that is associated to elevated prevalence in general population, being a good indicator of a high transmission and bad quality of the control programs [10,12,17–20]. There is no study reporting the incidence of leprosy in children under 15 years in Sergipe state.

Recently, studies mapping the occurrence of infectious diseases according to their spatial distribution using "Geographic Information Systems (GIS)" have provided important information for public health programs, revealing areas of priority for interventions programs to more efficiently plan and implement control measures [2,9,16,21–23]. The use of GIS in leprosy may allow the identification of spatialtemporal distributions and profile of incidence in defined geographical areas, this potentially contributing to the effectiveness of interventions.

Despite breakthroughs in the epidemiological of leprosy, further improvements in understanding of the disease dynamics in different regions is important for the support of health services as a means for leprosy control. Spatial analyzes studies can provide important understanding of the transmission patterns of *M. leprae* and allow the identification of risk factors [21,23]. The aim of this study was to describe the 1) various clinical and epidemiological indicators of leprosy; to analyze 2) temporal trends and 3) the spatial distribution of leprosy cases in patients under 15 years old in an endemic area of Northeast Brazil.
99 METHODS

100 Study Design

The source of all data from this study was the leprosy cases and the information of each individual case notified by the health centers of the municipalities to the SINAN (Information System on Notifiable Diseases) from the State of Sergipe, Brazil. This is an important database of the Secretariat of Health of all States of Brazil, to report information about sociodemographic, clinical features and the address of notifiable diseases. Leprosy is a notifiable disease in Brazil, and as a legislative requirement, all leprosy cases have to be notified to the SINAN, including information about social and demographic features, clinical forms and follow-up of each patient. Sergipe is located on the coast of Northeast Brazil. The State has 75 municipalities and the capital is Aracaju. It has a population of 2,068,017 inhabitants and an area of 21,910,354km², equivalent to 0.26% of the national territory. The median population per county was 27,573.56 in 2015 [16]. Population data were obtained from the IBGE (Brazilian Institute of Geography and Statistics), based on population estimates for the intercensus years (2002 - 2015). An ecological and time series epidemiological study was conducted, based on the leprosy cases reported by SINAN. The historical (from 2002 to 2015) reporting of leprosy cases in children under 15 years old was analyzed. We also compared those data with data in all ages and with the occurrence of physical disability. The incidence of leprosy (referred as the new case detection rate) in Sergipe in 2010 was 18.4 per 100,000 [8].

121 The clinical and epidemiologic indicators collected by Investigation and Notification 122 Form from SINAN, were: gender, age, ethnicity, address, operational classification (PB

BMJ Open

and MB), clinical form [according to the more refined Ridley-Jopling classification [24,25], based on histopathological analyses: indeterminate leprosy (IL), true tuberculoid (TT), borderline leprosy (BL) and lepromatous leprosy (LL)], leprosy reaction (LR), number of affected nerves, degree of physical disabilities, number of household contacts (HHC) registered and examined, and the patient detection mode.

The parameters adopted by BMH and ILA were followed for interpreting the incidence rate of leprosy in patients under 15 years old. As such, this is classified as: low (<0.50 cases per 100,000 inhabitants); medium (0.50 to 2.49); high (2.50 to 4.99); very high (5.00 to 9.99) and hyperendemic (\geq 10.00) [4].

134 Spatial analysis

Thematic maps were constructed in each municipality for the period examined according to the leprosy incidence rate in patients under 15 years old and in general population, and for patients presenting with physical disability (incapacity degree 1 or 2). The kernel technique was applied to identify the intensity of the distribution of leprosy cases in the state of Sergipe. This technique shows the statistically generated surface density for the visual detection of hot spots, that indicates agglomeration of cases in a spatial distribution. This is an appropriate data interpolation for application in point location data. The point distribution was transformed into a smoothed surface and presented as a continuous map, representing different levels of case intensity. The amount of smoothing, that is, the width of the radius of influence was defined as 3,000 meters, since this value generated an adequate representation of the distribution of

the leprosy cases in the municipalities, minimizing the overlapping bias or the occurrence of sub distribution patterns smoothed [16,21]. We performed either spatial autocorrelation analysis between disease detection rates for each group. The Moran Global Index (MGI)[26] was calculated to identify clusters with risks for disease occurrence. We construct a spatial proximity matrix obtained by the contiguity of spatial correlation. The MGI was calculated as follows: (Moran Global Index Mathematical Equation 1) $I = \frac{\left[(n\Sigma^{n_{i}}\Sigma^{n_{j}}\omega_{ij}(\gamma_{i}-\check{y})(\gamma_{j}-\check{y}))\right]}{\left[\Sigma^{n_{i}}(\gamma_{i}-\check{y})^{2}\Sigma^{n_{i}}\Sigma^{n_{j}}\omega_{ij} \right]}$ I = --- ω ij is a contiguity matrix element (ω); yi is the incidence rate of municipality i; yi is the incidence rate of municipality j; \bar{y} is the mean of sample and the symbol n represents the total number of municipalities [26]. The MGI provides a general grouping measure and it is possible to know if there are significant differences between the analyzed areas. However, it does not indicate the clusters localization. To do that, we performed the Moran Local Index diagram [26] to build maps and identify the areas with spatial dependence (Local Index of Spatial Association - LISA) of the annual detection means, as follows: (Local Index of Spatial Association Mathematical Equation 2) $I = \frac{n[(Z_i \Sigma^n_j \omega_{ij} Z_j)]}{(\Sigma^n_j Z_j^2)}$

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1

BMJ Open

9

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
3U 21	
27	
32	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
40	
47 48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

174	Zi = yi - \bar{y} ; Zi = yi - \bar{y} ; Ω ij is a contiguous matrix element ω ; yi is the incidence rate of
175	municipality i; yj is the incidence rate of municipality j; \bar{y} is the sample mean and the
176	symbol n represents the total number of cities [26]. The Moran Map was used to
177	indicate the clusters and their relationship with the neighbors. This analysis verifies the
178	existence of spatial dependence and risk patterns: Q1 (high/high) and Q2 (Low/Low),
179	which indicate municipalities with similar values between their neighbors and Q3
180	(high/low) and Q4 (low/high) for municipalities with different values between their
181	neighbors and no spatial association. A spatial proximity matrix obtained by the
182	contiguity criterion was adopted. The level of significance was 5% and the Moran
183	Global Index (I) varying between -1 and +1, representing the spatial autocorrelation of
184	leprosy detection rate in the geographic space analyzed to identify spatial clusters and
185	risk areas. Values between 0 and +1 indicate positive spatial autocorrelation (Q1 and
186	Q2) and between -1 and 0 negative spatial autocorrelation (Q3 and Q4) [26,27]. Both
187	Moran Index and Kernel maps were constructed using TerraView software 4.2.2.

188

189 Statistical analysis

190 Demographic and clinical data were compared across the different subgroups and 191 according to operational classification and the patient detection mode. Percentage, 192 mean and standard deviation of the groups were calculated. For groups' comparison, 193 we first analyze if the data followed normal distribution by the D'Agostino and Pearson 194 normality test, and statistical differences between the groups were determined by 195 Mann-Whitney and Kruskall-Wallis tests. All analysis was performed using SPSS Statistics, version 24.0. Results were considered statistically different when p-values < 0.05 were obtained.

In order to enable trend analysis, annual incidence of leprosy was calculated as dependent variables (y), and the years of the study period as the independent variables (x). Initially, trend analysis was performed with the Joinpoint program, version 4.0.4 (Surveillance Research, National Cancer Institute, USA). This program estimates the Annual Percentage Change (APC) of a segmented linear regression (Jointpont regression) and identifies inflection points. Each inflection point reflects changes in the increase or decline of le rates [27]. Poisson regression is used to determine the number of segments required to adequately explain the relationship between two variables [27]. We considered the points of trend change that presented ner p-value < 0.05.

Ethical Considerations

For conducting this study, authorization was previously requested from Coordination of Epidemiological Surveillance, Sergipe state. This project involved research on human subjects and was approved by the Ethics and Research Committee of the Federal University of Sergipe, CAAE 0152.0.107.000-07.

Patient and Public Involvement statement

There was no patient and public involvement in this study. The study was based on secondary data.

2		
3 4	220	RESULTS
5 6	221	Trends in reported leprosy incidence among children
7 8 9	222	The incidence of leprosy in children under 15 years old fluctuated, increasing from
10 11	223	2002 (6.29 cases per 100,000 inhabitants) to 2005 (9.82) but then showing a decline to
12 13 14	224	3.78 in 2015. There was an overall decrease trend in leprosy incidence in children
15 16	225	from 2002 to 2015, by Joinpoint regression analyzes (APC = -5.3 and p -value < 0.05;
17 18 10	226	Figure 1A and B). Similarly, the leprosy incidence rate in the general population of
20 21	227	Sergipe decreased from 23.08 cases to 16.99 per 100,000 inhabitants between 2002
22 23	228	and 2015 (Figure 1A and C). The occurrence of degree 2 physical disability, however,
24 25 26	229	increased in this period (0.76 in 2002 to 1.2 in 2015, respectively), however there is no
27 28	230	significant reduction (APC = 2.6 and p -value = 0.20; Figure 1A and D). The composition
29 30 31	231	of leprosy cases according to the operational classification (PB and MB) was relatively
32 33	232	stable across this period, with majority of cases presenting as PB (Figure 2A). We also
34 35 36	233	observed the mean number of HHC registered (4.65 \pm 2.79) was slightly, but
37 38	234	significantly, higher than the number examined (3.66 \pm 3.14; <i>p</i> -value < 0.0001; Figure
39 40	235	2B).
41 42 43	236	
44 45	237	Demographics of childhood leprosy cases
46 47 48	238	Next, we evaluated the association among clinical and epidemiological variables
49 50	239	according to the leprosy operational classification (patients presenting as PB and MB).
51 52 53	240	Patients presenting as MB or PB were in similar age to (10.5 \pm 2.81 and 10.07 \pm 3.38,
55 54 55	241	respectively). Despite the extended incubation period of <i>M. leprae</i> /leprosy, six cases
56 57	242	(1.11%) were reported in children less than one year of age. Of the 538 leprosy cases
50 59 60	243	identified among children under 15 years old the majority were PB [407 (75.7%) PB

and 131 (24.3%) MB; **Table 1**]. When stratified on gender, however, the proportion of boys presenting with MB (63.4%) was significantly higher than presenting with PB (48.4%; *p*-value = 0.003). An interesting difference was observed when we calculated the ratio (PB/MB) according the ethnic groups. Among those identified as black, the ratio (43/24) was 1.79. Conversely, the ratio of white was higher 4.88 (88/18; *p*-value = 0.02).

As expected, the occurrence of leprosy reactions was significantly higher in MB (21.4%) than PB (4.9%; *p*-value < 0.0001) patients. The occurrence of degree 2 of physical disability was also higher in MB (4.6%), than in PB patients (0.74%; *p*-value = 0.0001). Consistent with this, we observed that the mean of number of affected nerves was higher in MB (0.5 ± 1.03), than PB (0.19 ± 0.54; *p*-value = 0.04).

257 Impact of case detection methods on leprosy presentation

We also performed analysis of association among clinical and epidemiological variables according to the leprosy patient detection mode. The patients were grouped in: spontaneous demand (SDem: patients that looked for medical assistance by themselves); forwarded (FW: patients that were forwarded from a primary clinic to a leprosy reference center); examined HHC; and other. We observed that patients detected by the examined HHC method presented lower mean age (9.6 ± 3.38) than those detected by either the SDem (10.54 \pm 3.28) or FW methods (10.02 \pm 3.15; p-value = 0.04; Table 2). Interestingly, the percentage of leprosy reaction among the examined HHC group (2.9%; p-value = 0.02) was lower than that observed among SDem (7.3%) and FW (13.3%). In addition, degree 2 of physical disability was not Page 13 of 32

BMJ Open

observed among patients detected in examined HHC group, while SDem and FW presented 0.43% and 3.8%, respectively (*p*-value = 0.04). Furthermore, patients identified among examined HHC presented with lower numbers of lesions (2.04 ± 2.96; *p*-value = 0.04) than SDem (3.64 ± 6.25) and FW (4.09 ± 8.68). Taken together, these data reinforce the importance of HHC examination for the detection of leprosy patients before advancement to more severe symptoms.

275 Spatial analyze data

Next, we performed the spatial analysis of leprosy cases in the general population, in patients under 15 years old, and in patients presenting with physical disability (both degree 1 and 2). Moran maps have showed higher risk clusters (Q1 - in red; Figure 3A-C) in similar areas when comparing the maps regarding leprosy cases in children under 15 years old, in general population, and patients presenting some physical disability (degree 1 and 2). The higher risk clusters (Q1) were localized in Sergipe state center and in the metropolitan area around the capital of State. The municipalities with no spatial association (Q3 - in blue) were localized in the Semiarid region, in the northwest area and in the south region.

 Similarly, The Kernel estimator, through data interpolation, showed densities (hot spots) of the highest incidence rates located at the northeast and east center regions and in the counties around the state capital (Aracaju city; **Figure 3D-F**). Lower intensity was observed on the western region. Municipalities with intermediate to high incidence values are seen in yellow and red tones of each subfigure. Low incidence

areas were reported on west coast municipalities, mostly in smaller counties withsmall populations.

DISCUSSION

Previous studies have demonstrated that the high leprosy cases detection in patients under 15 years old is a bad parameter for leprosy control program, because it indicates early bacillus transmission from undiagnosed cases [18]. Some authors have speculated either about the risk of vertical/transplacental transmission or through breastfeeding [12].

In Brazil, the highest leprosy incidence rate in children was reported in the North area (11.91 cases per 100,000 inhabitants), followed by Northeast (8.12) [12]. We observed the leprosy incidence rate was reduced in children under 15 years old from 2002 to 2015 in Sergipe state, however considering the parameters adopted by BMH, the state was classified as very high endemicity in 2002, and still as high endemicity in 2015. It remains also with elevated incidence rate and stationary tendency of degree 2 of physical disability. Those data reinforce either that the transmission is intense at early age, there is lack of an effective public health and the disease control is focused in the MDT [12,18]. A similar study performed at Fortaleza city (Brazil), reported also that although a decreasing has been observed on overall detection rate, the number of new cases in those under 15 years old remains stable [13].

313 Leprosy reactions and physical disability are the most severe leprosy clinical 314 complications [8,28,29]. In addition, the increase or stability of the prevalence of

degree 2 of physical disability indicates persisting late diagnosis [13,29]. The early diagnosis of leprosy is essential to the prevention of deformities, whose repercussions are still more catastrophic in children and adolescents [28]. Our data reported 21.4% children with leprosy reaction (LR) and 31.3% with some physical disability in the MB groups. Furthermore, MB patients presented higher mean of affected nerves. Generally, patients under 15 years old do not use to present LR, but studies have reported a low frequency of LR, varying between 1.36% and 8.33% [28]. Those data reinforce that, although there is a decreasing incidence in leprosy, patients have been exposed to bacillus early in life and diagnosed belatedly and hence they have been also developing into some clinical complications.

We have observed either that the mean of HHC examined was significantly lower than those registered by SINAN. Moreover, leprosy patients detected by exam in HHC presented lower mean of age, affected nerves, number of lesions, occurrence of LR and no physical disability, when compared with those identified by spontaneous demand or forwarded by others. On the other hand, mostly of patients presenting as degree 2 of physical disability were identified into those forwarded to a leprosy reference center, probably because they started presenting some physical disability. HHC and neighbors are the most important *M. leprae* active sources. The risk of a person developing leprosy is nine times greater among HHC and up to four times greater among contacts with neighbors [12]. Therefore, our data reinforce the importance of leprosy early diagnosis by exam in patients and their household contacts. Besides that, the treatment and the home visits by public health programs, and an efficient health program in schools could represent important actions for the

early diagnosis and the reduction of leprosy clinical complications, especially inchildren.

Spatial analysis of health events aim to identify geographical patterns by maps of risk and to point out areas of higher severity and to facilitate the planning of public health interventions [9]. The Kernel maps showed the spatial dynamic of leprosy, with a heterogeneous geographical pattern and the highest risk areas for leprosy infection. The highest incidence on counties around the Capital can be due there was a leprosarium at the Nossa Senhora do Socorro (a city of the metropolitan area of Aracaju), that has presented elevated detection rate in mostly evaluated years. Moreover, that area presents reference center to leprosy diagnosis and treatment and hence they have several patients forwarded to these leprosy clinics. It can be also associated with weather featuring such as humidity, considering either that counties near to São Francisco River presented also elevated incidence. In the Malawian Karonga district, a positive relationship between the proximity of water and leprosy incidence was previously reported [5]. Some authors have hypothesized that *M. leprae* survives longer outside of human body in humid compared to dry atmospheres [9,13].

Interestingly, higher risk clusters were identified in similar areas when we analyzed the occurrence of leprosy cases in children, in general population and patients presenting physical disability. It corroborates the hypothesis that the early transmission of *M*. *leprae* and the occurrence of leprosy in children under 15 years old is directly related to the late diagnosis, which explains the occurrence of patients with degree 2 of physical disability in the same geographic distribution [28]. The maps present certain

BMJ Open

disagreements regarding the occurrence of leprosy cases in the state of Sergipe because they use distinct techniques of spatial analysis. The Kernel estimator produces a continuous surface, with densities calculated at all locations, based on total number of cases and no considering the geographical boundaries of the municipalities [27,30,31]. The Kernel technique presents greater advantages to the quick visualization of areas that deserve attention, besides not being affected by political-administrative division, while the Moran technique, constructs maps considering the political-administrative divisions of the state and the clusters are based on the number of cases by the municipalities population rates [27,30].

Our study had some limitations, particularly because it was conducted using secondary data reported by SINAN. This source of date can present numbers under notification and datasets missing. However, in Brazil we have a specific normative that is an obligation to notify several diseases to SINAN, and leprosy is one of them. SINAN is an important database of the Secretariat of Health of all States of Brazil, to report information about sociodemographic, clinical features and the address of each diagnosed case. This source of data can present under notification because Leprosy is an asymptomatic disease and the active search would be important to detect more cases, but all diagnosed cases are reported to SINAN. The limitation mentioned about missing data is not very important in the case of the disease prevalence, but the complete information about the cases follow-up, such as degree of neurological disability at the end of treatment, leprosy reactions and treatment details, because it is a secondary database that depends on other doctors or nurses from the health care centers to fulfill the information. Despite this, those data reported high endemicity of

387 leprosy cases in patients under 15 years old, and this study do not focus on patient388 follow-up.

In summary, our study demonstrated that the leprosy incidence rate has decreased in Sergipe state. However, it is still classified as high endemicity considering the WHO proposed ratios for children under 15 years. Patients detected by exam in collectivity or HHC presented better indicators. Altogether, the epidemiological data and spatial analysis indicate that there is persistence of active transmission of *M. leprae* and later case detection in Sergipe state, increasing the risk of transmission in children. In addition, the spatial analysis brings new advantages to comprehend the leprosy dynamic, and reinforce the superimposed regions of high occurrence areas of patients presenting degree 2 of physical disability and cases in children lower than 15 years, and highlights the need to strengthen effective disease control measures, mainly in primary health care.

401 Acknowledgments The authors would like to thank the Manager of the Nucleus of
402 endemic/Division of Epidemiological Surveillance - [Divisão de Vigilância
403 Epidemiológica (DIVEP)]/ Secretariat of Health of the Sergipe state (SES) for providing
404 information.

405 Funding This research received no specific grant from any funding agency in the public,
406 commercial or not-for-profit sectors.

Contributors The project was suggested by MB-S, MA, JB and AS. The statistical 408 analyzes was performed by MB-S, IB, JS and AJ. The spatial analyzes was performed by 409 MS, AS, AB and KA. The manuscript was written by MB-S, AB, DO, MD and AJ. All

1		
2 3 4	410	authors contributed to refining the idea, revising the manuscript and have agreed the
5 6	411	final version.
/ 8 9	412	Competing interests The authors declare that they have no conflicts of interest.
10 11	413	Provenance and peer review Not commissioned; externally peer reviewed.
12 13 14	414	Data sharing statement No additional data are available.
15 16	415	
17 18 19	416	References
20 21 22 23	417	
24 25	418	1 Simon M, Scherlock J, Duthie MS, <i>et al.</i> Clinical, immunological, and genetic
26 27 28	419	aspects in leprosy. <i>Drug Dev Res</i> 2011; 72 :509–27. doi:10.1002/ddr.20457
29 30 31	420	2 Duarte-Cunha M, Marcelo da Cunha G, Souza-Santos R. Geographical
32 33	421	heterogeneity in the analysis of factors associated with leprosy in an endemic
34 35 36	422	area of Brazil: are we eliminating the disease? BMC Infect Dis 2015;15:196.
37 38 30	423	doi:10.1186/s12879-015-0924-x
40 41 42	424	3 Fulton N, Anderson LF, Watson JM, et al. Leprosy in England and Wales 1953-
43 44	425	2012: Surveillance and challenges in low incidence countries. BMJ Open
45 46 47	426	2016; 6 :15–8. doi:10.1136/bmjopen-2015-010608
48 49 50	427	4 Freitas LRS, Duarte EC, Garcia LP, <i>et al</i> . Trends of main indicators of leprosy in
51 52	428	Brazilian municipalities with high risk of leprosy transmission, 2001–2012. BMC
53 54 55	429	Infect Dis 2016; 16 :472. doi:10.1186/s12879-016-1798-2
56 57 58	430	5 Duthie MS, Saunderson P, Reed SG. The potential for vaccination in leprosy
59 60	431	elimination: New tools for targeted interventions. Mem Inst Oswaldo Cruz

Page 20 of 32

1			20
2 3 4 5	432		2012; 107 :190–6. doi:10.1590/S0074-02762012000900027
6 7	433	6	Duthie MS, Gillis TP, Reed SG. Advances and hurdles on the way toward a
8 9 10 11	434		leprosy vaccine. <i>Hum Vaccin</i> 2011; 7 :1172–83. doi:10.4161/hv.7.11.16848
12 13	435	7	Kumar A, Girdhar A, Girdhar BK. Six months fixed duration multidrug therapy in
14 15	436		paucibacillary leprosy: Risk of relapse and disability in Agra PB cohort study. BMJ
10 17 18 19	437		<i>Open</i> 2012; 2 :1–6. doi:10.1136/bmjopen-2012-001403
20 21	438	8	de Oliveira DT, Bezerra MM, de Almeida JAP, et al. Neurological disability in
22 23 24	439		leprosy: Incidence and gender association in Sergipe, Brazil. Geospat Health
25 26 27	440		2012; 6 . doi:10.4081/gh.2012.130
28 29	441	9	Alencar CH, Ramos AN, dos Santos ES, et al. Clusters of leprosy transmission and
30 31 32	442		of late diagnosis in a highly endemic area in Brazil: Focus on different spatial
33 34	443		analysis approaches. <i>Trop Med Int Heal</i> 2012; 17 :518–25. doi:10.1111/j.1365-
35 36 37 38	444		3156.2011.02945.x
39 40	445	10	Durrheim DN, Speare R. Global leprosy elimination: Time to change more than
41 42	446		the elimination target date. <i>J Epidemiol Community Health</i> 2003; 57 :316–7.
43 44 45 46	447		doi:10.1136/jech.57.5.316
47 48	448	11	Barth-Jaeggi T, Steinmann P, Mieras L, et al. Leprosy Post-Exposure Prophylaxis
49 50	449		(LPEP) programme: Study protocol for evaluating the feasibility and impact on
52 53	450		case detection rates of contact tracing and single dose rifampicin. BMJ Open
54 55 56	451		2016; 6 . doi:10.1136/bmjopen-2016-013633
57 58 59	452	12	Santos SD, Penna GO, Costa M da CN, et al. Leprosy in children and adolescents
60	453		under 15 years old in an urban centre in Brazil. Mem Inst Oswaldo Cruz

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

2 3 4 5	454		2016; 111 :359–64. doi:10.1590/0074-02760160002
6 7	455	13	Brito AL, Monteiro LD, Ramos Junior AN, et al. Tendência temporal da
8 9 10	456		hanseníase em uma capital do Nordeste do Brasil: epidemiologia e análise por
11 12	457		pontos de inflexão, 2001 a 2012. Rev Bras Epidemiol 2016;19:194–204.
13 14 15	458		doi:10.1590/1980-5497201600010017
16 17 18	459	14	Vieira GDD, Aragoso I, Carvalho RMB, et al. Hanseníase em Rondônia: incidência
19 20 21	460		e características dos casos notificados, 2001 a 2012. Epidemiol e Serviços Saúde
21 22 23 24	461		2014; 23 :269–75. doi:10.5123/S1679-49742014000200008
25 26	462	15	Queir??s MI, Ramos AN, Alencar CHM, et al. Clinical and epidemiological profile
27 28 29	463		of leprosy patients attended at Cear??, 2007-2011. An Bras Dermatol
30 31 32	464		2016; 91 :311–7. doi:10.1590/abd1806-4841.20164102
33 34	465	16	dos Santos AD, Lima ACR, Santos MB, et al. Spatial analysis for the identification
35 36 37	466		of risk areas for schistosomiasis mansoni in the state of Sergipe, Brazil, 2005-
38 39	467		2014. Rev Soc Bras Med Trop 2016; 49 :608–15. doi:10.1590/0037-8682-0137-
40 41 42	468		2016
43 44 45	469	17	Alencar CHM De, Barbosa JC, Ramos Jr AN, et al. Hanseníase no município de
46 47	470		Fortaleza, CE, Brasil: aspectos epidemiológicos e operacionais em menores de
48 49 50	471		15 anos (1995-2006). Rev Bras Enferm 2008; 61 :694–700. doi:10.1590/S0034-
51 52 53	472		71672008000700007
54 55	473	18	Pires CAA, Malcher CMSR, Abreu JMC, et al. Hanseníase em menores de 15
50 57 58	474		anos: A importância do exame de contato. <i>Rev Paul Pediatr</i> 2012; 30 :292–5.
59 60	475		doi:10.1590/S0103-05822012000200022

Page 22 of 32

BMJ Open

1			
2 3 4	476	19	Carlos F, Lana F, Amaral EP, <i>et al.</i> Hanseníase em menores de 15 anos no Vale
5 6	477		do Jequitinhonha, Minas Gerais, Brasil. <i>Rev Bras Enferm</i> 2007; 60 :696–700.
/ 8 9	478		doi:10.1590/S0034-71672007000600014
10 11 12	479	20	Fernandes C, Gonçalves HS, Cabral PB, et al. Increased frequency of CD4 and
13 14 15	480		CD8 regulatory T cells in individuals under 15 years with multibacillary leprosy.
16 17 18	481		PLoS One 2013;8. doi:10.1371/journal.pone.0079072
19 20	482	21	Barreto AS, Alves B. ORIGINAL ARTICLE SPATIAL ANALYSIS AND
21 22 23	483		EPIDEMIOLOGICAL CHARACTERISTICS OF CASES OF LEPROSY IN AN ENDEMIC
24 25 26	484		AREA. J Nurs UFPE 2016; 10 . doi:10.5205/reuol.9881-87554-1-EDSM1011201604
27 28 20	485	22	Khan O, Davenhall W, Ali M, et al. Geographical information systems and
30 31	486		tropical medicine. Ann Trop Med Parasitol 2010; 104 :303–18.
32 33 34	487		doi:10.1179/136485910X12743554759867.Geographical
35 36 37	488	23	Fischer E, Pahan D, Chowdhury S, et al. The spatial distribution of leprosy in four
38 39	489		villages in Bangladesh: an observational study. <i>BMC Infect Dis</i> 2008; 8 :125.
40 41 42 42	490		doi:10.1186/1471-2334-8-125
43 44 45	491	24	Ridley DS JW. Classification of leprosy according to immunity. A five-group
46 47	492		system. Int J Lepr Other Mycobact Dis 1966; 34 :255–73.
48 49 50 51	493		doi:10.1126/science.1238286
52 53	494	25	Lockwood DNJ, Sarno E, Smith WC. Classifying leprosy patientssearching for
54 55 56	495		the perfect solution. <i>Lepr Rev</i> 2007; 78 :317–20.
57 58 59	496	26	Chen Y. New Approaches for Calculating Moran's Index of Spatial
60	497		Autocorrelation. PLoS One 2013;8. doi:10.1371/journal.pone.0068336

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

2 3 4	498	27	Goes JAP, Souza DDG, Andrade LA, et al. Trend and spatial analysis of prostate
5 6	499		cancer mortality in the state of Sergipe, Brazil. Geospat Health 2018;13.
7 8 9	500		doi:10.4081/gh.2018.732
10 11 12	501	28	de Oliveira MBB, Diniz LM. Leprosy among children under 15 years of age:
13 14 15	502		Literature review. An Bras Dermatol 2016; 91 :196–203. doi:10.1590/abd1806-
16 17 18	503		4841.20163661
19 20	504	29	Kumar A, Girdhar A, Kumar Girdhar B. Risk of developing disability in pre and
21 22 23	505		post-multidrug therapy treatment among multibacillary leprosy: Agra MB
23 24 25 26	506		Cohort study. <i>BMJ Open</i> 2012; 2 :1–7. doi:10.1136/bmjopen-2011-000361
27 28 29	507	30	dos Santos AD, Lima ACR, Santos MB, et al. Spatial analysis for the identification
30 31	508		of risk areas for schistosomiasis mansoni in the state of Sergipe, Brazil, 2005-
32 33 34	509		2014. <i>Rev Soc Bras Med Trop</i> 2016; 49 . doi:10.1590/0037-8682-0137-2016
35 36 37	510	31	Santos MB, dos Santos AD, da Silva PP, et al. Spatial analysis of viral hepatitis
38 39	511		and schistosomiasis coinfection in an endemic area in Northeastern Brazil. Rev
40 41	512		Soc Bras Med Trop 2017; 50 . doi:10.1590/0037-8682-0411-2016
42 43 44 45	513		
46 47 48	514		
49 50 51 52	515		
53 54 55	516		
50 57 58 59 60	517		

Table 1. Association of dem	ographic and cli	nical data according	g to the ope
classification of leprosy (PB	and MB) in child	lren under 15 years	s in Sergipe
Brazil (2002-2015).			
	Operationa	l Classification	
Variables	РВ	MB	
	(n = 407)	(n = 131)	<i>p</i> -value
Age mean ± SD	10.07 ± 3.38	10.5 ± 2.81	*0.46
Gender n (%)			
Male	197 (48.4)	83 (63.4)	+0.003
Ethnicity n (%)			
White	88 (21.6)	18 (13.7)	#0.02
Black	43 (10.5)	24 (18.3)	
Brown	251 (61.7)	78 (59.5)	
Indian	4 (0.9)	3 (2.3)	
Leprosy reaction n (%)	20 (4.9)	28 (21.4)	+<0.000
Physical Disability			
Degree n (%)			
0	337 (82.8)	90 (68.7)	[#] 0.000
1	26 (6.4)	18 (13.7)	
2	3 (0.74)	6 (4.6)	
Number of affected nerves	0.19 ± 0.54	0.5 ± 1.03	*0.0
(mean ± SD)			
Number of Lesions (mean ±	1.61 ± 1.14	9.92 ± 12.03	*<0.00

2	5
	-

HHC registered (mean ± SD)	4.6 ± 2.71	4.85 ± 3.04	*0.14
HHC examined (mean ± SD)	3.54 ± 3.04	4.05 ± 3.44	
*Mann-Whitney test; *Fisher's exact = household contacts; SD = Standard	test; #Chi-square t Deviation. We mis	est. PB = paucibacillary; ssed data in some varial	MB = multibacillary; HH bles.

527 Table 2. Demographic and clinical aspects accordingly to the detection mode of 528 leprosy cases in children under 15 years in Sergipe state, Brazil (2002-2015).

	Patient detection mode						
Variables	Spontaneous	Forwarding	Examined HHC	Other			
Variables	demand						
	(n = 234)	(n = 210)	(n = 69)	(n = 25)	<i>p</i> -value		
Age mean ± SD	10.54 ± 3.28	10.02 ± 3.15	9.6 ± 3.38	9.6 ± 3.22	*0.04		
Gender n (%)							
Male	123 (52.6)	110 (52.4)	38 (55.1)	09 (36)	[#] 0.41		
Leprosy reaction n (%)	17 (7.3)	28 (13.3)	2 (2.9)	1 (4.0)	[#] 0.02		
Physical disability degree n (%)							
0	199 (85.1)	150 (71.4)	55 (79.7)	18 (72)	[#] 0.04		
1	17 (7.3)	21 (10)	5 (7.2)	1 (4.0)			
2	1 (0.43)	08 (3.8)	0 (0.0)	0 (0.0)			
Number of affected nerves	0.24 ± 0.67	0.34 ± 0.81	0.06 ± 0.25	0.25 ± 0.5	*0.48		
(mean ± SD)							
Number of lesion (mean ± SD)	3.64 ± 6.25	4.09 ± 8.68	2.04 ± 2.96	4 ± 5.2	*0.04		
HHC registered (mean ± SD)	4.57 ± 2.53	4.59 ± 2.74	5.57 ± 3.81	3.45 ± 1.96	*0.04		
HHC examined (mean ± SD)	3.71 ± 3.02	3.02 ± 2.98	4.64 ± 4.06	2.04 ± 1.77	*0.01		

*Kruskal-Wallis test; *Chi-square test. PB = paucibacillary; MB = multibacillary; HHC = household
 contacts; SD = Standard Deviation. We missed data in some variables.

BMJ Open

Figure 1. Leprosy incidence rates and temporal trend in state of Sergipe, Northeast Brazil, 2002-2015. A) Leprosy incidence rate (per 100,000 inhabitants) in general population (\blacktriangle), in patients under 15 years old (\blacksquare), degree 2 of physical disability (\blacklozenge) and the tendency line. Temporal trend of standardized incidence rates by Joinpoint Regression for B) patients under 15 years old, C) General population and D) incapacity Data were considered statistically different when p-value < 0.05. CI: degree. Confidence Interval. Figure 2. Epidemiological, clinical and operational indicators in leprosy patients, state of Sergipe, Brazil, 2002-2015. A) Number of leprosy cases according to the clinical operational classification (Paucibacilary - PB (■) and Multibacilary – MB (■) forms). B) Mean and standard deviation (mean ± SD) of the number of household contacts (HHC) that were registered and examined for leprosy diagnosis. Data were considered statistically different when p-value < 0.05. * Mann-Whitney test. Figure 3. Spatial analysis maps. Moran Global Index maps and Kernel maps were constructed by TerraView Software 4.2.2. The Moran Global Index (*MGI) was calculated to identify the occurrence of clusters. Moran (A) and Kernel (B) maps of

leprosy cases in patients under 15 years old. Moran (C) and Kernel (D) maps of leprosy cases in the general population. Moran (E) and Kernel (F) maps of occurrence of incapacity degree 1 and 2. Sergipe state, Northeast Brazil (2002 – 2015).

85x101mm (300 x 300 DPI)

Figure 2. Epidemiological, clinical and operational indicators in leprosy patients, state of Sergipe, Brazil, 2002-2015. A) Number of leprosy cases according to the clinical operational classification (Paucibacilary - PB (□) and Multibacilary – MB (□) forms). B) Mean and standard deviation (mean ± SD) of the number of household contacts (HHC) that were registered and examined for leprosy diagnosis. Data were considered statistically different when p-value < 0.05. * Mann-Whitney test.

46x17mm (300 x 300 DPI)

Figure 3. Spatial analysis maps. Moran Global Index maps and Kernel maps were constructed by TerraView Software 4.2.2. The Moran Global Index (*MGI) was calculated to identify the occurrence of clusters. Moran (A) and Kernel (B) maps of leprosy cases in patients under 15 years old. Moran (C) and Kernel (D) maps of leprosy cases in the general population. Moran (E) and Kernel (F) maps of occurrence of incapacity degree 1 and 2. Sergipe state, Northeast Brazil (2002 – 2015).

48x64mm (300 x 300 DPI)

1	
2	
3	
4	
-	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
10	
10	
1/	
18	
19	
20	
21	
22	
23	
24	
25	
25	
20	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
30	
2/	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
77	

STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of cross-sectional studies

Section/Topic	ltem #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	01
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	02
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	04-05
Objectives	3	State specific objectives, including any prespecified hypotheses	05
Methods			
Study design	4	Present key elements of study design early in the paper	06
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	06
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants	06
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	06
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	06-07
Bias	9	Describe any efforts to address potential sources of bias	-
Study size	10	Explain how the study size was arrived at	06
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	06-08
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	08-09
		(b) Describe any methods used to examine subgroups and interactions	08-09
		(c) Explain how missing data were addressed	08-09
		(d) If applicable, describe analytical methods taking account of sampling strategy	08-09
		(e) Describe any sensitivity analyses	08-09
Results			08-09

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility,	09
·		confirmed eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	09-10
		(b) Indicate number of participants with missing data for each variable of interest	
Outcome data	15*	Report numbers of outcome events or summary measures	09-10
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence	10-12
		interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	10-12
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	12-13
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	09-11
Interpretation	nterpretation 20 Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence		12-14
Generalisability	21	Discuss the generalisability (external validity) of the study results	15
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Clinical and Epidemiological Indicators and Spatial Analysis of Leprosy Cases in Patients Under 15 Years Old in an Endemic Area of Northeast Brazil: an ecological and time series study

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-023420.R2
Article Type:	Research
Date Submitted by the Author:	20-Mar-2019
Complete List of Authors:	Santos, Márcio; Universidade Federal de Sergipe, Health Education; Universidade Federal de Sergipe, Laboratory of Immunology and Molecular Biology Santos, Allan; Universidade Federal de Sergipe, Nursing Barreto, Aline; Universidade Federal de Sergipe, Laboratory of Immunology and Molecular Biology Souza, Mariana; Universidade Federal de Sergipe, Laboratory of Immunology and Molecular Biology Goes, Marco; Universidade Federal de Sergipe, Medicine Barreto Alves, Jose Antonio; Universidade Federal de Sergipe, Nursing Barreto, Ikaro; Universidade Federal Rural de Pernambuco, Programa de Pos-Graduacao em Biometria e Estatistica Aplicada Silva, José-Rodrigo; Universidade Federal de Sergipe, Statistics and Actuarial Sciences Oliveira, Daniela; Universidade Federal de Sergipe, Morphology Duthie, Malcolm; Infectious Diseases Research Institute Jesus, Amélia; Universidade Federal de Sergipe, Laboratory of Immunology and Molecular Biology; Universidade Federal de Sergipe, Morphology Duthie, Malcolm; Infectious Diseases Research Institute Jesus, Amélia; Universidade Federal de Sergipe, Laboratory of Immunology and Molecular Biology; Universidade Federal de Sergipe, Laboratory of Immunology and Molecular Biology; Universidade Federal de Sergipe, Morphology
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Infectious diseases, Public health
Keywords:	Leprosy, Children, Epidemiology < INFECTIOUS DISEASES, Spatial analysis
	·

1	

Page 1 of 31	BMJ Open	
1	1	L
2 3 4	Clinical and Epidemiological Indicators and Spatial Analysis of Leprosy	
5 6 7	Cases in Patients Under 15 Years Old in an Endemic Area of Northeast	
8 9 10	Brazil: an ecological and time series study	
11 12 13		
14 15	Márcio B Santos ^{1,2} , Allan D dos Santos ³ , Aline S Barreto ² , Mariana do R Souza ² , Marco A	•
16 17	de O Goes⁴, José-Antônio A Barreto³, Íkaro D C Barreto⁵, José-Rodrigo S Silva⁶, Daniela 1	
19 20	de Oliveira ³ , Karina G de Araujo ⁷ , Malcolm S Duthie ⁸ , Amélia R de Jesus ^{2,9,10} .	
21 22 23		
23 24 25	¹ Departament of Health Education, Universidade Federal de Sergipe, Brazil; ² Laboratory of Immunology	/
26 1 27	and Molecular Biology, Universidade Federal de Sergipe, Brazil; ³ Departament of Nursing, Universidade	j
28 1 29	Federal de Sergipe, Brazil; ⁴ Departament of Medicine, Universidade Federal de Sergipe, Brazil; ⁵ Mestre	,
30 1 31	Universidade Federal Rural de Pernambuco (UFPE), Programa de Pos-Graduacao em Biometria e	ć
32 <u>1</u> 33	Estatistica Aplicada; ⁶ Doutor, Professor Adjunto do Departamento de Estatística e Ciencias Atuariais da	3
34 <u>1</u> 35	Universidade Federal de Sergipe (UFS); ⁷ Departament of Morphology, Universidade Federal de Sergipe	,
36 <u>1</u> 37	Aracaju; ⁸ Infectious Diseases Research Institute (IDRI), Seatlle, USA. ⁹ Departament of Medicine	,
38 <u>1</u> 39	Universidade Federal de Sergipe, Aracaju. ¹⁰ Instituto de Investigação em Imunologia, INCT, CNPq.	
40 41		
42 43	Corresponding Author	
45 1 46	Márcio B. Santos	
47 48 49	Department of Health Science, Federal University of Sergipe	
49 50 2 51	Av. Gov. Marcelo Déda - São José, Lagarto - SE, Brazil	
52 53	Postal Code 49400-000	
54 55 2 56 57 58 59	E-mail: bio_marcio2006@hotmail.com	
60		

24 ABSTRACT

Objective: This study aimed to analyze the clinical and epidemiological indicators,
temporal trends and the spatial distribution of leprosy in patients under 15 years old in

27 an endemic area of Northeast Brazil.

Design: Regional surveillance study of all reported cases.

29 Setting: State of Sergipe, endemic area of Northeast Brazil.

Methods: An ecological and time series study was conducted, based on secondary data reported by the Brazilian Information System on Notifiable Diseases (SINAN) for leprosy cases diagnosed in Sergipe state (2002-2015). The analysis of temporal trends was performed using the Joinpoint Regression Program through Poisson regression. We performed spatial analysis by Kernel estimator and Moran index.

Results: The incidence rate was reduced from 6.29 to 3.78 cases per 100,000 inhabitants in 2002 and 2015, respectively. However, Sergipe was still classified as highly endemicity in 2015. The mean number of household contacts (HHC) examined was significantly lower than those registered. Clinical data indicated that 21.4% of the patients developed leprosy reactions, and 31.3% presented with some physical disability in the multibacillary (MB) groups. Patients diagnosed by exam within the HHC presented better indicators, such as lower percentage of leprosy reaction and physical disability. Spatial analysis showed the most risk areas distributed on the northeast and cities around the capital, Aracaju.

Conclusion: The data indicate that there is a persistence of active *M. leprae* transmission
45 and a delay in disease detection, following a pattern of high endemicity in many
46 municipalities. The early detection by household contacts examination is important not
47 only to stop transmission but also to detect the cases in a less severe state.

2	
3	
4	
4	
5	
6	
7	
/	
8	
9	
10	
10	
11	
12	
13	
13	
14	
15	
16	
17	
17	
18	
19	
20	
20	
21	
22	
22	
23	
24	
25	
26	
20	
27	
28	
20	
29	
30	
31	
22	
52	
33	
34	
35	
55	
36	
37	
28	
50	
39	
40	
⊿1	
42	
42	
43	
44	
45	
46	
47	
10	
48	
49	
50	
51	
21	
52	
53	
51	
54	
55	
56	
57	

58 59 60 48 **Keywords**: Leprosy; Children; Epidemiology; Spatial analysis.

49

Strengths and limitations of this study

- This is a surveillance study that includes all notified cases of leprosy, in a State of Brazil with moderate prevalence of the disease.
- This is the first summary of leprosy cases in patients under 15 years old in Sergipe state, Northeast Brazil.
- This study was conducted using secondary data reported by SINAN and this source of data may have datasets missing.
- We also mapped the leprosy cases and physical disability in children under 15 years in areas of higher prevalence of leprosy in the general population, using geoprocessing tools.
- We compared the leprosy patient detection mode and how it affects the disease severity at diagnosis and the occurrence of leprosy reactions and physical disabilities.

INTRODUCTION

Leprosy is a chronic infectious disease caused by infection with Mycobacterium leprae [1]. This pathogen exhibits tissue tropism for phagocytes in the skin and Schwann cells within peripheral nerves and it presents a long incubation time (from 2 to 7 years) [2,3]. The disease can manifest across a broad spectrum of symptoms and the diagnosis is made based on the clinical signs (cutaneous lesions with altered sensitivity and neurological lesions). Patients are then classified as multibacillary (MB) and paucibacillary (PB) for treatment purposes, according to criteria accepted by Brazilian Ministry of Health (BMH) and International Leprosy Association (ILA) [1,2,4–7].

Despite control efforts including the widespread use of multidrug therapy (MDT), and the stabilization of the reported new case detection rate in the last few years, leprosy remains endemic in many developing countries [3–6,8–11]. In 2014, the World Health Organization (WHO) reported 213,899 new leprosy cases in 121 countries or territories [4]. Brazil ranks as the second most burdened country in the world concerning number of new cases (31,064 in 2014) and has by far the highest number of cases reported in Americas [4,12,13]. Within Brazil, the highest prevalence has been reported in the North, Northeast and Midwest regions [8,9]. The incidence of leprosy (referred as the new case detection rate) in Sergipe in 2010 was 18.4 per 100,000 [8]. In 2013, 2,439 new cases were diagnosed in children under 15 years old in Brazil, yielding a detection rate of 5.03 per 100,000 inhabitants [4].

Studies have demonstrated that leprosy presents higher incidence in population with:
low educational degree, precarious health services and domiciliary infrastructure

BMJ Open

settlements, and reduced investment in prevention and control [14–16]. Moreover, the high incidence rate in children under 15 years is important to indicate there is early exposure of the population to the bacillus, that is associated to elevated prevalence in general population, being a good indicator of a high transmission and bad quality of the control programs [10,12,17–20]. There is no study reporting the incidence of leprosy in children under 15 years in Sergipe state.

Recently, studies mapping the occurrence of infectious diseases according to their spatial distribution using "Geographic Information Systems (GIS)" have provided important information for public health programs, revealing areas of priority for interventions programs to more efficiently plan and implement control measures [2,9,16,21–23]. The use of GIS in leprosy may allow the identification of spatial-temporal distributions and profile of incidence in defined geographical areas, this potentially contributing to the effectiveness of interventions.

Despite breakthroughs in the epidemiological of leprosy, further improvements in understanding of the disease dynamics in different regions is important for the support of health services as a means for leprosy control. Spatial analyzes studies can provide important understanding of the transmission patterns of *M. leprae* and allow the identification of risk factors [21,23]. The aim of this study was to describe the 1) various clinical and epidemiological indicators of leprosy; to analyze 2) temporal trends and 3) the spatial distribution of leprosy cases in patients under 15 years old in an endemic area of Northeast Brazil.

98 METHODS

99 Study Design

The source of all data from this study was the leprosy cases and the information of each individual case notified by the health centers of the municipalities to the SINAN (Information System on Notifiable Diseases) from the State of Sergipe, Brazil. This is an important database of the Secretariat of Health of all States of Brazil, to report information about sociodemographic, clinical features and the address of notifiable diseases. Leprosy is a notifiable disease in Brazil, and as a legislative requirement, all leprosy cases have to be notified to the SINAN, including information about social and demographic features, clinical forms and follow-up of each patient. Sergipe is located on the coast of Northeast Brazil. The State has 75 municipalities and the capital is Aracaju. It has a population of 2,068,017 inhabitants and an area of 21,910,354km², equivalent to 0.26% of the national territory. The median population per county was 27,573.56 in 2015 [16]. Population data were obtained from the IBGE (Brazilian Institute of Geography and Statistics), based on population estimates for the intercensus years (2002 - 2015). An ecological and time series epidemiological study was conducted, based on the leprosy cases reported by SINAN. The historical (from 2002 to 2015) reporting of leprosy cases in children under 15 years old was analyzed. We also compared those data with data in all ages and with the occurrence of physical disability. The incidence of leprosy (referred as the new case detection rate) in Sergipe in 2010 was 18.4 per 100,000 [8].

The clinical and epidemiologic indicators collected by Investigation and Notification
Form from SINAN, were: gender, age, ethnicity, address, operational classification (PB

BMJ Open

and MB), clinical form [according to the more refined Ridley-Jopling classification [24,25], based on histopathological analyses: indeterminate leprosy (IL), true tuberculoid (TT), borderline leprosy (BL) and lepromatous leprosy (LL)], leprosy reaction (LR), number of affected nerves, degree of physical disabilities, number of household contacts (HHC) registered and examined, and the patient detection mode.

The parameters adopted by BMH and ILA were followed for interpreting the incidence rate of leprosy in patients under 15 years old. As such, this is classified as: low (<0.50 cases per 100,000 inhabitants); medium (0.50 to 2.49); high (2.50 to 4.99); very high (5.00 to 9.99) and hyperendemic (\geq 10.00) [4].

133 Spatial analysis

Thematic maps were constructed in each municipality for the period examined according to the leprosy incidence rate in patients under 15 years old and in general population, and for patients presenting with physical disability (incapacity degree 1 or 2). The kernel technique was applied to identify the intensity of the distribution of leprosy cases in the state of Sergipe. This technique shows the statistically generated surface density for the visual detection of hot spots, that indicates agglomeration of cases in a spatial distribution. This is an appropriate data interpolation for application in point location data. The point distribution was transformed into a smoothed surface and presented as a continuous map, representing different levels of case intensity. The amount of smoothing, that is, the width of the radius of influence was defined as 3,000 meters, since this value generated an adequate representation of the distribution of the

2 3	145	langer cases in the municipalities, minimizing the overlapping bias or the occurrence of
4	145	leprosy cases in the municipanties, minimizing the overlapping bias of the occurrence of
5 6 7	146	sub distribution patterns smoothed [16,21].
7 8 9	147	
10 11 12	148	We performed either spatial autocorrelation analysis between disease detection rates
13 14	149	for each group. The Moran Global Index (MGI)[26] was calculated to identify clusters
15 16	150	with risks for disease occurrence. We construct a spatial proximity matrix obtained by
17 18	151	the contiguity of spatial correlation. The MGI was calculated as follows:
20 21	152	(Moran Global Index Mathematical Equation 1)
22	152	$\left[\left(n\sum_{i=1}^{n}\sum_{j=1}^{n}\alpha_{i},\left(\nu_{i}-\breve{\nu}\right)\right)\left(\nu_{i}-\breve{\nu}\right)\right]$
23	157	$I = \frac{\prod_{i \neq j} \bigcup_{j \neq j} \bigcup_{i \neq j} \bigcup_{j \neq j$
25	155	$\sum \frac{1}{(\sum n, (n-\tilde{y})^2 \sum n, \sum n, \omega)}$
26 27	156	
27	150	
29 30	157	ω_{ij} is a contiguity matrix element (ω); γ_i is the incidence rate of municipality $_i$; γ_j is the
31 32 33	158	incidence rate of municipality $_j$; \check{y} is the mean of sample and the symbol n represents
34 35	159	the total number of municipalities [26].
36 37 38	160	
39 40	161	The MGI provides a general grouping measure and it is possible to know if there are
41 42 43	162	significant differences between the analyzed areas. However, it does not indicate the
44 45	163	clusters localization. To do that, we performed the Moran Local Index diagram [26] to
46 47 48	164	build maps and identify the areas with spatial dependence (Local Index of Spatial
49 50	165	Association - LISA) of the annual detection means, as follows:
51 52 53	166	(Local Index of Spatial Association Mathematical Equation 2)
54 55	167	
56 57	168	$n[(Z_i \Sigma_i^n \omega_{ii} Z_i)]$
58	169	I =
59	170	$(\Sigma^n_i Z^2_i)$
60	-	
172

9

1	
2	
3	
4	
5	
6	
7	
/	
ð	
9	
10	
11	
12	
13	
14	
15	
16	
17	
10	
10	
עו רכ	
∠U ⊃1	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
30	
22	
J∠ 22	
22 24	
34 25	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
<u>4</u> 5	
16	
-1U //7	
4/	
4ð	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
50	
59	
OU -	

173	$Z_i = yi - \bar{y}; Z_j = y_j - \bar{y}; \omega_{ij}$ is a contiguous matrix element $\omega; y_i$ is the incidence rate of
174	municipality <i>i</i> ; <i>yj</i> is the incidence rate of municipality <i>j</i> ; \bar{y} is the sample mean and the
175	symbol <i>n</i> represents the total number of cities [26]. The Moran Map was used to indicate
176	the clusters and their relationship with the neighbors. This analysis verifies the existence
177	of spatial dependence and risk patterns: Q1 (high/high) and Q2 (Low/Low), which
178	indicate municipalities with similar values between their neighbors and Q3 (high/low)
179	and Q4 (low/high) for municipalities with different values between their neighbors and
180	no spatial association. A spatial proximity matrix obtained by the contiguity criterion was
181	adopted. The level of significance was 5% and the Moran Global Index (I) varying
182	between -1 and +1, representing the spatial autocorrelation of leprosy detection rate in
183	the geographic space analyzed to identify spatial clusters and risk areas. Values between
184	0 and +1 indicate positive spatial autocorrelation (Q1 and Q2) and between -1 and 0
185	negative spatial autocorrelation (Q3 and Q4) [26,27]. Both Moran Index and Kernel
186	maps were constructed using TerraView software 4.2.2.
187	
188	Statistical analysis

The annual incidence rates were calculated for the general population, according to the population data from IBGE. For patients younger than 15 years the annual rates were age-standardised, and the standard population used was the population under 15 years from IBGE. Demographic and clinical data were compared across the different subgroups and according to operational classification and the patient detection mode. Percentage, mean and standard deviation of the groups were calculated. For groups'

comparison, we first analyze if the data followed normal distribution by the D'Agostino
 and Pearson normality test, and statistical differences between the groups were
 determined by Mann-Whitney and Kruskall-Wallis tests. All analysis was performed
 using SPSS Statistics, version 24.0. Results were considered statistically different when
 p-values < 0.05 were obtained.

In order to enable trend analysis, annual incidence rate of leprosy was calculated as dependent variables (y), and the years of the study period as the independent variables (x). Initially, trend analysis was performed with the Joinpoint program, version 4.0.4 (Surveillance Research, National Cancer Institute, USA). This program estimates the Annual Percentage Change (APC) of a segmented linear regression (Jointpont regression) and identifies inflection points. Each inflection point reflects changes in the increase or decline of leprosy rates [27]. The joinpoint regression provided the adjustment of a series of lines as well as their inflection points on a logarithmic scale by means of the annual trend test. To obtain the adjustment based on the best line of each analyzed segment, the Monte Carlo permutation method was used as a test of significance. From the definition of the follow-ups, the annual percentage change (APC) and the average annual percentage change (AAPC), with their respective 95% confidence intervals, were estimated and tested. If the occurrence of an inflection point with inverted direction was verified, the study periods were analyzed separately. The number of inflections used in the analysis was the result of models defined by the program itself, in order to allow the best representation of the trend, with the lowest number of inflection points. The result showed growth (positive APC values), reduction (APC negative values) or maintenance (APC value equal to zero) of the trend throughout the historical series

2		
3 4	219	analyzed (2006-2014). Poisson regression is used to determine the number of segments
5 6	220	required to adequately explain the relationship between two variables [27]. We
7 8 0	221	considered the points of trend change that presented p-value < 0.05.
9 10		
11 12	222	
13 14 15	223	Ethical Considerations
15 16 17	224	For conducting this study, authorization was previously requested from Coordination of
18 19	225	Epidemiological Surveillance, Sergipe state. This project involved research on human
20 21 22	226	subjects and was approved by the Ethics and Research Committee of the Federal
23 24	227	University of Sergipe, CAAE 0152.0.107.000-07.
25 26 27	228	
27 28 29	229	Patient and Public Involvement statement
30 31	230	There was no patient and public involvement in this study. The study was based on
32 33 34	231	secondary data.
35 36	232	
37 38	233	RESULTS
39 40 41	234	Trends in reported leprosy incidence among children
41 42 43	235	The incidence of leprosy in children under 15 years has declined from 6.29 cases per
44 45	236	100,000 inhabitants in 2002, to 3.78 in 2015, confirmed by Joinpoint regression analyzes
46 47 48	237	(APC = -5.3 and <i>p</i> -value < 0.05; Figure 1A and B). Similarly, the leprosy incidence rate in
49 50	238	the general population of Sergipe decreased from 23.08 cases to 16.99 per 100,000
51 52	239	inhabitants between 2002 and 2015 (Figure 1A and C). The occurrence of degree 2
53 54	235	ninabitants between 2002 and 2015 (Figure 1A and C). The becamenee of degree 2
55 56 57	240	physical disability, nowever, increased in this period (0.76 in 2002 to 1.2 in 2015,
57 58 59	241	respectively), however it is a non-significant increasing trend (APC = 2.6 and p -value =
60	242	0.20; Figure 1A and D). The composition of leprosy cases according to the operational

classification (PB and MB) was relatively stable across this period, with majority of cases presenting as PB (**Figure 2A**). We also observed the mean number of HHC registered (4.65 ± 2.79) was slightly, but significantly, higher than the number examined (3.66 ± 3.14 ; *p*-value < 0.0001; **Figure 2B**).

Demographics of childhood leprosy cases

Next, we evaluated the association among clinical and epidemiological variables according to the leprosy operational classification (patients presenting as PB and MB). Patients presenting as MB or PB were in similar age to $(10.5 \pm 2.81 \text{ and } 10.07 \pm 3.38)$, respectively). Despite the extended incubation period of *M. leprae*/leprosy, six cases (1.11%) were reported in children less than one year of age. Of the 538 leprosy cases identified among children under 15 years old the majority were PB [407 (75.7%) PB and 131 (24.3%) MB; Table 1]. When stratified on gender, however, the proportion of boys presenting with MB (63.4%) was significantly higher than presenting with PB (48.4%; p-value = 0.003). An interesting difference was observed when we calculated the ratio (PB/MB) according the ethnic groups. Among those identified as black, the ratio (43/24) was 1.79. Conversely, the ratio of white was higher 4.88 (88/18; *p*-value = 0.02).

As expected, the occurrence of leprosy reactions was significantly higher in MB (21.4%) than PB (4.9%; *p*-value < 0.0001) patients. The occurrence of degree 2 of physical disability was also higher in MB (4.6%), than in PB patients (0.74%; *p*-value = 0.0001). Consistent with this, we observed that the mean of number of affected nerves was higher in MB (0.5 ± 1.03), than PB (0.19 ± 0.54; *p*-value = 0.04).

Page 13 of 31

267 Impact of case detection methods on leprosy presentation

We also performed analysis of association among clinical and epidemiological variables according to the leprosy patient detection mode. The patients were grouped in: spontaneous demand (SDem: patients that looked for medical assistance by themselves); forwarded (FW: patients that were forwarded from a primary clinic to a leprosy reference center); examined HHC; and other. We observed that patients detected by the examined HHC method presented lower mean age (9.6 ± 3.38) than those detected by either the SDem (10.54 \pm 3.28) or FW methods (10.02 \pm 3.15; p-value = 0.04; **Table 2**). Interestingly, the percentage of leprosy reaction among the examined HHC group (2.9%; p-value = 0.02) was lower than that observed among SDem (7.3%) and FW (13.3%). In addition, degree 2 of physical disability was not observed among patients detected in examined HHC group, while SDem and FW presented 0.43% and 3.8%, respectively (p-value = 0.04). Furthermore, patients identified among examined HHC presented with lower numbers of lesions (2.04 \pm 2.96; *p*-value = 0.04) than SDem (3.64 \pm 6.25) and FW (4.09 \pm 8.68). Taken together, these data reinforce the importance of HHC examination for the detection of leprosy patients before advancement to more severe symptoms.

285 Spatial analyze data

Next, we performed the spatial analysis of leprosy cases in the general population, in
patients under 15 years old, and in patients presenting with physical disability (both
degree 1 and 2). Moran maps have showed higher risk clusters (Q1 - in red; Figure 3AC) in similar areas when comparing the maps regarding leprosy cases in children under
years old, in general population, and patients presenting some physical disability

(degree 1 and 2). The higher risk clusters (Q1) were localized in Sergipe state center and in the metropolitan area around the capital of State. The municipalities with no spatial association (Q3 - in blue) were localized in the Semiarid region, in the northwest area and in the south region.

Similarly, The Kernel estimator, through data interpolation, showed densities (hot spots) of the highest incidence rates located at the northeast and east center regions and in the counties around the state capital (Aracaju city; Figure 3D-F). Lower intensity was observed on the western region. Municipalities with intermediate to high incidence values are seen in yellow and red tones of each subfigure. Low incidence areas were reported on west coast municipalities, mostly in smaller counties with small populations. CZ.

DISCUSSION

Previous studies have demonstrated that the high leprosy cases detection in patients under 15 years old is a bad parameter for leprosy control program, because it indicates early bacillus transmission from undiagnosed cases [18]. Some authors have speculated either about the risk of vertical/transplacental transmission or through breastfeeding [12].

In Brazil, the highest leprosy incidence rate in children was reported in the North area (11.91 cases per 100,000 inhabitants), followed by Northeast (8.12) [12]. We observed the leprosy incidence rate was reduced in children under 15 years old from 2002 to 2015 in Sergipe state, however considering the parameters adopted by BMH, the state was

BMJ Open

classified as very high endemicity in 2002, and still as high endemicity in 2015. It remains
also with elevated incidence rate and stationary tendency of degree 2 of physical
disability. Those data reinforce either that the transmission is intense at early age, there
is lack of an effective public health and the disease control is focused in the MDT [12,18].
A similar study performed at Fortaleza city (Brazil), reported also that although a
decreasing has been observed on overall detection rate, the number of new cases in
those under 15 years old remains stable [13].

Leprosy reactions and physical disability are the most severe leprosy clinical complications [8,28,29]. In addition, the increase or stability of the prevalence of degree 2 of physical disability indicates persisting late diagnosis [13,29]. The early diagnosis of leprosy is essential to the prevention of deformities, whose repercussions are still more catastrophic in children and adolescents [28]. Our data reported 21.4% children with leprosy reaction (LR) and 31.3% with some physical disability in the MB groups. Furthermore, MB patients presented higher mean of affected nerves. Generally, patients under 15 years old do not use to present LR, but studies have reported a low frequency of LR, varying between 1.36% and 8.33% [28]. Those data reinforce that, although there is a decreasing incidence in leprosy, patients have been exposed to bacillus early in life and diagnosed belatedly and hence they have been also developing into some clinical complications.

We have observed either that the mean of HHC examined was significantly lower than those registered by SINAN. Moreover, leprosy patients detected by exam in HHC presented lower mean of age, affected nerves, number of lesions, occurrence of LR and

2	
3	
4	
5	
6	
7	
, 0	
0	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
10	
19	
20	
21	
22	
23	
21 21	
24	
25	
26	
27	
28	
29	
30	
21	
21	
32	
33	
34	
35	
36	
37	
20	
20	
39	
40	
41	
42	
43	
44	
15	
45	
40	
47	
48	
49	
50	
51	
57	
52 57	
23	
54	
55	
56	
57	
58	
50	
55	

1

339 no physical disability, when compared with those identified by spontaneous demand or 340 forwarded by others. On the other hand, mostly of patients presenting as degree 2 of physical disability were identified into those forwarded to a leprosy reference center, 341 probably because they started presenting some physical disability. HHC and neighbors 342 343 are the most important *M. leprae* active sources. The risk of a person developing leprosy 344 is nine times greater among HHC and up to four times greater among contacts with 345 neighbors [12]. Therefore, our data reinforce the importance of leprosy early diagnosis 346 by exam in patients and their household contacts. Besides that, the treatment and the home visits by public health programs, and an efficient health program in schools could 347 represent important actions for the early diagnosis and the reduction of leprosy clinical 348 349 complications, especially in children.

350

Spatial analysis of health events aim to identify geographical patterns by maps of risk 351 and to point out areas of higher severity and to facilitate the planning of public health 352 353 interventions [9]. The Kernel maps showed the spatial dynamic of leprosy, with a 354 heterogeneous geographical pattern and the highest risk areas for leprosy infection. The 355 highest incidence on counties around the Capital can be due there was a leprosarium at the Nossa Senhora do Socorro (a city of the metropolitan area of Aracaju), that has 356 357 presented elevated detection rate in mostly evaluated years. Moreover, that area 358 presents reference center to leprosy diagnosis and treatment and hence they have 359 several patients forwarded to these leprosy clinics. It can be also associated with 360 weather featuring such as humidity, considering either that counties near to São 361 Francisco River presented also elevated incidence. In the Malawian Karonga district, a 362 positive relationship between the proximity of water and leprosy incidence was

BMJ Open

2	
3	
4	
5	
5	
6	
7	
0	
ð	
9	
10	
11	
11	
12	
12	
15	
14	
15	
16	
10	
17	
18	
10	
19	
20	
21	
22	
23	
24	
27	
25	
26	
72	
27	
28	
29	
20	
30	
31	
วว	
22	
33	
34	
25	
55	
36	
37	
20	
38	
39	
Δn	
-TU	
41	
42	
⊿२	
44	
45	
л <i>-</i>	
+0	
47	
48	
10	
49	
50	
51	
51	
52	
53	
51	
55	
56	
57	
57	
58	
-0	

previously reported [5]. Some authors have hypothesized that *M. leprae* survives longer
outside of human body in humid compared to dry atmospheres [9,13].

365

Interestingly, higher risk clusters were identified in similar areas when we analyzed the 366 367 occurrence of leprosy cases in children, in general population and patients presenting 368 physical disability. It corroborates the hypothesis that the early transmission of M. 369 *leprae* and the occurrence of leprosy in children under 15 years old is directly related to 370 the late diagnosis, which explains the occurrence of patients with degree 2 of physical disability in the same geographic distribution [28]. The maps present certain 371 372 disagreements regarding the occurrence of leprosy cases in the state of Sergipe because 373 they use distinct techniques of spatial analysis. The Kernel estimator produces a 374 continuous surface, with densities calculated at all locations, based on total number of cases and no considering the geographical boundaries of the municipalities [27,30,31]. 375 376 The Kernel technique presents greater advantages to the quick visualization of areas 377 that deserve attention, besides not being affected by political-administrative division, 378 while the Moran technique, constructs maps considering the political-administrative 379 divisions of the state and the clusters are based on the number of cases divided by the 380 municipalities [27,30].

381

60

Our study had some limitations, particularly because it was conducted using secondary data reported by SINAN. This source of date can present numbers under notification and datasets missing. However, in Brazil we have a specific normative that is an obligation to notify several diseases to SINAN, and leprosy is one of them. SINAN is an important database of the Secretariat of Health of all States of Brazil, to report information about

sociodemographic, clinical features and the address of each diagnosed case. This source of data can present under notification because Leprosy is an asymptomatic disease and the active search would be important to detect more cases, but all diagnosed cases are reported to SINAN. The limitation mentioned about missing data is not very important in the case of the disease prevalence, but the complete information about the cases follow-up, such as degree of neurological disability at the end of treatment, leprosy reactions and treatment details, because it is a secondary database that depends on other doctors or nurses from the health care centers to fulfill the information. Despite this, those data reported high endemicity of leprosy cases in patients under 15 years old, and this study do not focus on patient follow-up.

In summary, our study demonstrated that the leprosy incidence rate has decreased in Sergipe state. However, it is still classified as high endemicity considering the WHO proposed ratios for children under 15 years. Patients detected by exam in collectivity or HHC presented better indicators. Altogether, the epidemiological data and spatial analysis indicate that there is persistence of active transmission of *M. leprae* and later case detection in Sergipe state, increasing the risk of transmission in children. In addition, the spatial analysis brings new advantages to comprehend the leprosy dynamic, and reinforce the superimposed regions of high occurrence areas of patients presenting degree 2 of physical disability and cases in children lower than 15 years, and highlights the need to strengthen effective disease control measures, mainly in primary health care.

409 Acknowledgments The authors would like to thank the Manager of the Nucleus of
410 endemic/Division of Epidemiological Surveillance - [Divisão de Vigilância

1		15
2 3 4	411	Epidemiológica (DIVEP)]/ Secretariat of Health of the Sergipe state (SES) for providing
5 6 7	412	information.
8 9 10	413	Funding This research received no specific grant from any funding agency in the public,
11 12	414	commercial or not-for-profit sectors.
13 14 15	415	Contributors The project was suggested by MB-S, MA, JB and AS. The statistical analyzes
16 17	416	was performed by MB-S, IB, JS and AJ. The spatial analyzes was performed by MS, AS,
18 19	417	AB and KA. The manuscript was written by MB-S, AB, DO, MD and AJ. All authors
20 21 22	418	contributed to refining the idea, revising the manuscript and have agreed the final
23 24	419	version.
25 26 27	420	Competing interests The authors declare that they have no conflicts of interest.
28 29	421	Provenance and peer review Not commissioned; externally peer reviewed.
30 31 32	422	Data sharing statement No additional data are available.
32 33 34	423	
35 36 37	424	References
38 39 40	425	
41 42 43	426	1 Simon M, Scherlock J, Duthie MS, et al. Clinical, immunological, and genetic
44 45 46	427	aspects in leprosy. <i>Drug Dev Res</i> 2011; 72 :509–27. doi:10.1002/ddr.20457
47 48 49	428	2 Duarte-Cunha M, Marcelo da Cunha G, Souza-Santos R. Geographical
50 51	429	heterogeneity in the analysis of factors associated with leprosy in an endemic
52 53 54	430	area of Brazil: are we eliminating the disease? BMC Infect Dis 2015;15:196.
55 56 57	431	doi:10.1186/s12879-015-0924-x
58 59 60	432	3 Fulton N, Anderson LF, Watson JM, <i>et al.</i> Leprosy in England and Wales 1953-

Page 20 of 31

1			20
2 3 4	433		2012: Surveillance and challenges in low incidence countries. BMJ Open
5 6 7	434		2016; 6 :15–8. doi:10.1136/bmjopen-2015-010608
8 9 10	435	4	Freitas LRS, Duarte EC, Garcia LP, et al. Trends of main indicators of leprosy in
11 12	436		Brazilian municipalities with high risk of leprosy transmission, 2001–2012. BMC
13 14 15	437		Infect Dis 2016; 16 :472. doi:10.1186/s12879-016-1798-2
16 17 18	438	5	Duthie MS, Saunderson P, Reed SG. The potential for vaccination in leprosy
19 20	439		elimination: New tools for targeted interventions. Mem Inst Oswaldo Cruz
21 22 23 24	440		2012; 107 :190–6. doi:10.1590/S0074-02762012000900027
25 26	441	6	Duthie MS, Gillis TP, Reed SG. Advances and hurdles on the way toward a
27 28 29	442		leprosy vaccine. <i>Hum Vaccin</i> 2011; 7 :1172–83. doi:10.4161/hv.7.11.16848
30 31 32	443	7	Kumar A, Girdhar A, Girdhar BK. Six months fixed duration multidrug therapy in
33 34	444		paucibacillary leprosy: Risk of relapse and disability in Agra PB cohort study. BMJ
35 36 37	445		<i>Open</i> 2012; 2 :1–6. doi:10.1136/bmjopen-2012-001403
38 39 40	446	8	de Oliveira DT, Bezerra MM, de Almeida JAP, et al. Neurological disability in
41 42	447		leprosy: Incidence and gender association in Sergipe, Brazil. Geospat Health
43 44 45 46	448		2012; 6 . doi:10.4081/gh.2012.130
40 47 48	449	9	Alencar CH, Ramos AN, dos Santos ES, et al. Clusters of leprosy transmission and
49 50 51	450		of late diagnosis in a highly endemic area in Brazil: Focus on different spatial
52 53	451		analysis approaches. Trop Med Int Heal 2012;17:518–25. doi:10.1111/j.1365-
54 55 56	452		3156.2011.02945.x
57 58 59	453	10	Durrheim DN, Speare R. Global leprosy elimination: Time to change more than
60	454		the elimination target date. <i>J Epidemiol Community Health</i> 2003; 57 :316–7.

1			
2 3 4 5	455		doi:10.1136/jech.57.5.316
6 7	456	11	Barth-Jaeggi T, Steinmann P, Mieras L, <i>et al.</i> Leprosy Post-Exposure Prophylaxis
8 9 10	457		(LPEP) programme: Study protocol for evaluating the feasibility and impact on
10 11 12	458		case detection rates of contact tracing and single dose rifampicin. BMJ Open
13 14 15	459		2016; 6 . doi:10.1136/bmjopen-2016-013633
16 17 18	460	12	Santos SD, Penna GO, Costa M da CN, et al. Leprosy in children and adolescents
19 20	461		under 15 years old in an urban centre in Brazil. Mem Inst Oswaldo Cruz
21 22 23 24	462		2016; 111 :359–64. doi:10.1590/0074-02760160002
25 26	463	13	Brito AL, Monteiro LD, Ramos Junior AN, et al. Tendência temporal da
27 28	464		hanseníase em uma capital do Nordeste do Brasil: epidemiologia e análise por
29 30 31	465		pontos de inflexão, 2001 a 2012. <i>Rev Bras Epidemiol</i> 2016; 19 :194–204.
32 33	466		doi:10.1590/1980-5497201600010017
34 35 36 37	467	14	Vieira GDD, Aragoso I, Carvalho RMB, et al. Hanseníase em Rondônia: incidência
38 39	468		e características dos casos notificados, 2001 a 2012. Epidemiol e Serviços Saúde
40 41 42	469		2014; 23 :269–75. doi:10.5123/S1679-49742014000200008
43 44 45	470	15	Queir??s MI, Ramos AN, Alencar CHM, et al. Clinical and epidemiological profile
46 47	471		of leprosy patients attended at Cear??, 2007-2011. An Bras Dermatol
48 49 50	472		2016; 91 :311–7. doi:10.1590/abd1806-4841.20164102
51 52 53	473	16	dos Santos AD, Lima ACR, Santos MB, et al. Spatial analysis for the identification
54 55	474		of risk areas for schistosomiasis mansoni in the state of Sergipe, Brazil, 2005-
56 57 58	475		2014. Rev Soc Bras Med Trop 2016; 49 :608–15. doi:10.1590/0037-8682-0137-
59 60	476		2016

Page 22 of 31

BMJ Open

2			
2 3 4	477	17	Alencar CHM De, Barbosa JC, Ramos Jr AN, et al. Hanseníase no município de
5 6	478		Fortaleza, CE, Brasil: aspectos epidemiológicos e operacionais em menores de
/ 8 9	479		15 anos (1995-2006). Rev Bras Enferm 2008; 61 :694–700. doi:10.1590/S0034-
10 11 12	480		71672008000700007
13 14 15	481	18	Pires CAA, Malcher CMSR, Abreu JMC, et al. Hanseníase em menores de 15
16 17	482		anos: A importância do exame de contato. <i>Rev Paul Pediatr</i> 2012; 30 :292–5.
18 19 20	483		doi:10.1590/S0103-05822012000200022
21 22 23	484	19	Carlos F, Lana F, Amaral EP, et al. Hanseníase em menores de 15 anos no Vale
24 25	485		do Jequitinhonha, Minas Gerais, Brasil. <i>Rev Bras Enferm</i> 2007; 60 :696–700.
26 27 28 20	486		doi:10.1590/S0034-71672007000600014
30 31	487	20	Fernandes C, Gonçalves HS, Cabral PB, et al. Increased frequency of CD4 and
32 33	488		CD8 regulatory T cells in individuals under 15 years with multibacillary leprosy.
34 35 36 37	489		<i>PLoS One</i> 2013; 8 . doi:10.1371/journal.pone.0079072
38 39	490	21	Barreto AS, Alves B. ORIGINAL ARTICLE SPATIAL ANALYSIS AND
40 41	491		EPIDEMIOLOGICAL CHARACTERISTICS OF CASES OF LEPROSY IN AN ENDEMIC
42 43 44 45	492		AREA. J Nurs UFPE 2016;10. doi:10.5205/reuol.9881-87554-1-EDSM1011201604
46 47	493	22	Khan O, Davenhall W, Ali M, et al. Geographical information systems and
48 49 50	494		tropical medicine. Ann Trop Med Parasitol 2010;104:303–18.
50 51 52 53	495		doi:10.1179/136485910X12743554759867.Geographical
54 55	496	23	Fischer E, Pahan D, Chowdhury S, et al. The spatial distribution of leprosy in four
50 57 58	497		villages in Bangladesh: an observational study. BMC Infect Dis 2008;8:125.
59 60	498		doi:10.1186/1471-2334-8-125

Page 23 of 31

BMJ Open

2	2
	~
~	-

1			
2			
3 4	499	24	Ridley DS JW. Classification of leprosy according to immunity. A five-group
5 6 7	500		system. Int J Lepr Other Mycobact Dis 1966; 34 :255–73.
7 8 9	501		doi:10.1126/science.1238286
10 11 12	502	25	Lockwood DNJ, Sarno E, Smith WC. Classifying leprosy patientssearching for
13 14 15	503		the perfect solution. <i>Lepr Rev</i> 2007; 78 :317–20.
16 17 18	504	26	Chen Y. New Approaches for Calculating Moran's Index of Spatial
19 20 21	505		Autocorrelation. <i>PLoS One</i> 2013; 8 . doi:10.1371/journal.pone.0068336
22 23 24	506	27	Goes JAP, Souza DDG, Andrade LA, et al. Trend and spatial analysis of prostate
25 26	507		cancer mortality in the state of Sergipe, Brazil. Geospat Health 2018;13.
27 28 29	508		doi:10.4081/gh.2018.732
30 31 32	509	28	de Oliveira MBB, Diniz LM. Leprosy among children under 15 years of age:
33 34	510		Literature review. An Bras Dermatol 2016; 91 :196–203. doi:10.1590/abd1806-
35 36 37 38	511		4841.20163661
39 40	512	29	Kumar A, Girdhar A, Kumar Girdhar B. Risk of developing disability in pre and
41 42	513		post-multidrug therapy treatment among multibacillary leprosy: Agra MB
43 44 45 46	514		Cohort study. <i>BMJ Open</i> 2012; 2 :1–7. doi:10.1136/bmjopen-2011-000361
47 48	515	30	dos Santos AD, Lima ACR, Santos MB, et al. Spatial analysis for the identification
49 50 51	516		of risk areas for schistosomiasis mansoni in the state of Sergipe, Brazil, 2005-
52 53 54	517		2014. Rev Soc Bras Med Trop 2016; 49 . doi:10.1590/0037-8682-0137-2016
55 56	518	31	Santos MB, dos Santos AD, da Silva PP, et al. Spatial analysis of viral hepatitis
57 58 59	519		and schistosomiasis coinfection in an endemic area in Northeastern Brazil. Rev
60	520		Soc Bras Med Trop 2017; 50 . doi:10.1590/0037-8682-0411-2016

Table 1. Association of demographic and clinical data according to the operational

522 classification of leprosy (PB and MB) in children under 15 years in Sergipe state,

523 Brazil (2002-2015).

	Operationa		
Variables	РВ	MB	
	(n = 407)	(n = 131)	<i>p</i> -value
Age mean ± SD	10.07 ± 3.38	10.5 ± 2.81	*0.46
Gender n (%)			
Male	197 (48.4)	83 (63.4)	+0.003
Ethnicity n (%)			
White	88 (21.6)	18 (13.7)	[#] 0.02
Black	43 (10.5)	24 (18.3)	
Brown	251 (61.7)	78 (59.5)	
Indian	4 (0.9)	3 (2.3)	
Leprosy reaction n (%)	20 (4.9)	28 (21.4)	+<0.0001
Physical Disability			
Degree n (%)			
0	337 (82.8)	90 (68.7)	#0.0001
1	26 (6.4)	18 (13.7)	
2	3 (0.74)	6 (4.6)	
Number of affected nerves	0.19 ± 0.54	0.5 ± 1.03	*0.04
(mean ± SD)			
Number of Lesions (mean ±	1.61 ± 1.14	9.92 ± 12.03	*<0.0001
SD)			
HHC registered (mean ± SD)	4.6 ± 2.71	4.85 ± 3.04	*0.14
HHC examined (mean ± SD)	3.54 ± 3.04	4.05 ± 3.44	

*Mann-Whitney test; *Fisher's exact test; #Chi-square test. PB = paucibacillary; MB = multibacillary; HHC
 = household contacts; SD = Standard Deviation. We missed data in some variables.

Table 2. Demographic and clinical aspects accordingly to the detection mode of leprosy

528 cases in children under 15 years in Sergipe state, Brazil (2002-2015).

		Patien	t detection mode		
Variables	Spontaneous	Forwarding	Examined HHC	Other	
Variables	demand				
	(n = 234)	(n = 210)	(n = 69)	(n = 25)	<i>p</i> -value
Age mean ± SD	10.54 ± 3.28	10.02 ± 3.15	9.6 ± 3.38	9.6 ± 3.22	*0.04
Gender n (%)					
Male	123 (52.6)	110 (52.4)	38 (55.1)	09 (36)	[#] 0.41
	17 (7 2)	20/12 2)	2 (2 0)	1 (4 0)	#0.02
	17 (7.5)	28 (15.5)	2 (2.9)	1 (4.0)	°0.02
Physical disability degree n (%)					
0	199 (85.1)	150 (71.4)	55 (79.7)	18 (72)	[#] 0.04
1	17 (7.3)	21 (10)	5 (7.2)	1 (4.0)	
2	1 (0.43)	08 (3.8)	0 (0.0)	0 (0.0)	
Number of affected nerves	0.24 ± 0.67	0.34 ± 0.81	0.06 ± 0.25	0.25 ± 0.5	*0.48
(mean ± SD)					
Number of lesion (mean ± SD)	3.64 ± 6.25	4.09 ± 8.68	2.04 ± 2.96	4 ± 5.2	*0.04
HHC registered (mean ± SD)	4.57 ± 2.53	4.59 ± 2.74	5.57 ± 3.81	3.45 ± 1.96	*0.04
HHC examined (mean ± SD)	3.71 ± 3.02	3.02 ± 2.98	4.64 ± 4.06	2.04 ± 1.77	*0.01

*Kruskal-Wallis test; #Chi-square test. PB = paucibacillary; MB = multibacillary; HHC = household contacts;
 SD = Standard Deviation. We missed data in some variables.

Figure 1. Leprosy incidence rates and temporal trend in state of Sergipe, Northeast Brazil, 2002-2015. A) Leprosy incidence rate (per 100,000 inhabitants) in general population (\blacktriangle), in patients under 15 years old (\blacksquare), degree 2 of physical disability (\blacklozenge) and the tendency line. Temporal trend of standardized incidence rates by Joinpoint Regression for B) patients under 15 years old, C) General population and D) incapacity degree. Data were considered statistically different when p-value < 0.05. CI: Confidence Interval.

Figure 2. Epidemiological, clinical and operational indicators in leprosy patients, state of Sergipe, Brazil, 2002-2015. A) Number of leprosy cases according to the clinical operational classification (Paucibacilary - PB (■) and Multibacilary – MB (■) forms). B) Mean and standard deviation (mean ± SD) of the number of household contacts (HHC) that were registered and examined for leprosy diagnosis. Data were considered statistically different when p-value < 0.05. * Mann-Whitney test.

Figure 3. Spatial analysis maps. Moran Global Index maps and Kernel maps were constructed by TerraView Software 4.2.2. The Moran Global Index (*MGI) was calculated to identify the occurrence of clusters. Moran (A) and Kernel (B) maps of leprosy cases in patients under 15 years old. Moran (C) and Kernel (D) maps of leprosy cases in the general population. Moran (E) and Kernel (F) maps of occurrence of incapacity degree 1 and 2. Sergipe state, Northeast Brazil (2002 – 2015).

Page 27 of 31

Figure 1. Leprosy incidence rates and temporal trend in state of Sergipe, Northeast Brazil, 2002-2015. A) Leprosy incidence rate (per 100,000 inhabitants) in general population (□), in patients under 15 years old (□), degree 2 of physical disability (□) and the tendency line. Temporal trend of standardized incidence rates by Joinpoint Regression for B) patients under 15 years old, C) General population and D) incapacity degree. Data were considered statistically different when p-value < 0.05. CI: Confidence Interval.</p>

85x101mm (300 x 300 DPI)

Figure 2. Epidemiological, clinical and operational indicators in leprosy patients, state of Sergipe, Brazil, 2002-2015. A) Number of leprosy cases according to the clinical operational classification (Paucibacilary - PB (□) and Multibacilary – MB (□) forms). B) Mean and standard deviation (mean ± SD) of the number of household contacts (HHC) that were registered and examined for leprosy diagnosis. Data were considered statistically different when p-value < 0.05. * Mann-Whitney test.

46x18mm (300 x 300 DPI)

Figure 3. Spatial analysis maps. Moran Global Index maps and Kernel maps were constructed by TerraView Software 4.2.2. The Moran Global Index (*MGI) was calculated to identify the occurrence of clusters. Moran (A) and Kernel (B) maps of leprosy cases in patients under 15 years old. Moran (C) and Kernel (D) maps of leprosy cases in the general population. Moran (E) and Kernel (F) maps of occurrence of incapacity degree 1 and 2. Sergipe state, Northeast Brazil (2002 – 2015).

48x64mm (300 x 300 DPI)

STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of cross-sectional studies

Section/Topic	ltem #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	01
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	02
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	04-05
Objectives	3	State specific objectives, including any prespecified hypotheses	05
Methods			
Study design	4	Present key elements of study design early in the paper	06
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	06
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants	06
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	06
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	06-07
Bias	9	Describe any efforts to address potential sources of bias	-
Study size	10	Explain how the study size was arrived at	06
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	06-08
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	08-09
		(b) Describe any methods used to examine subgroups and interactions	08-09
		(c) Explain how missing data were addressed	08-09
		(d) If applicable, describe analytical methods taking account of sampling strategy	08-09
		(e) Describe any sensitivity analyses	08-09
Results			08-09

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 BMJ Open

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	09
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	09-10
		(b) Indicate number of participants with missing data for each variable of interest	
Outcome data	15*	Report numbers of outcome events or summary measures	09-10
Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	10-12
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	10-12
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	12-13
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	09-11
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	12-14
Generalisability	21	Discuss the generalisability (external validity) of the study results	15
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on	
		which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Clinical and Epidemiological Indicators and Spatial Analysis of Leprosy Cases in Patients Under 15 Years Old in an Endemic Area of Northeast Brazil: an ecological and time series study

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-023420.R3
Article Type:	Research
Date Submitted by the Author:	27-May-2019
Complete List of Authors:	Santos, Márcio; Universidade Federal de Sergipe, Health Education; Universidade Federal de Sergipe, Laboratory of Immunology and Molecular Biology Santos, Allan; Universidade Federal de Sergipe, Nursing Barreto, Aline; Universidade Federal de Sergipe, Laboratory of Immunology and Molecular Biology Souza, Mariana; Universidade Federal de Sergipe, Laboratory of Immunology and Molecular Biology Goes, Marco; Universidade Federal de Sergipe, Medicine Barreto Alves, Jose Antonio; Universidade Federal de Sergipe, Nursing Barreto, Ikaro; Universidade Federal Rural de Pernambuco, Programa de Pos-Graduacao em Biometria e Estatistica Aplicada Silva, José-Rodrigo; Universidade Federal de Sergipe, Statistics and Actuarial Sciences Oliveira, Daniela; Universidade Federal de Sergipe, Laboratory of Immunology and Molecular Biology Araújo, Karina; Universidade Federal de Sergipe, Morphology Duthie, Malcolm; Infectious Diseases Research Institute Jesus, Amélia; Universidade Federal de Sergipe, Laboratory of Immunology and Molecular Biology; Universidade Federal de Sergipe, Morphology Duthie, Malcolm; Infectious Diseases Research Institute Jesus, Amélia; Universidade Federal de Sergipe, Laboratory of Immunology and Molecular Biology; Universidade Federal de Sergipe, Laboratory of Immunology and Molecular Biology; Universidade Federal de Sergipe, Laboratory of
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Infectious diseases, Public health
Keywords:	Leprosy, Children, Epidemiology < INFECTIOUS DISEASES, Spatial analysis
	·

BMJ Open

-	

2 3 4	1	Clinical and Epidemiological Indicators and Spatial Analysis of Leprosy
5 6 7	2	Cases in Patients Under 15 Years Old in an Endemic Area of Northeast
8 9 10	3	Brazil: an ecological and time series study
11 12	4	
13 14 15	5	Márcio B Santos ^{1,2} , Allan D dos Santos ³ , Aline S Barreto ² , Mariana do R Souza ² , Marco A
16 17 18	6	de O Goes ⁴ , José-Antônio A Barreto ³ , Íkaro D C Barreto ⁵ , José-Rodrigo S Silva ⁶ , Daniela T
19 20	7	de Oliveira ³ , Karina G de Araujo ⁷ , Malcolm S Duthie ⁸ , Amélia R de Jesus ^{2,9,10} .
21 22 23	8	
24	9	¹ Departament of Health Education, Universidade Federal de Sergipe, Brazil; ² Laboratory of Immunology
25 26 27	10	and Molecular Biology, Universidade Federal de Sergipe, Brazil; ³ Departament of Nursing, Universidade
28	11	Federal de Sergipe, Brazil; ⁴ Departament of Medicine, Universidade Federal de Sergipe, Brazil; ⁵ Mestre,
29 30 31	12	Universidade Federal Rural de Pernambuco (UFPE), Programa de Pos-Graduacao em Biometria e
32	13	Estatistica Aplicada; 6Doutor, Professor Adjunto do Departamento de Estatística e Ciencias Atuariais da
34 35	14	Universidade Federal de Sergipe (UFS); ⁷ Departament of Morphology, Universidade Federal de Sergipe,
36 37	15	Aracaju; ⁸ Infectious Diseases Research Institute (IDRI), Seatlle, USA. ⁹ Departament of Medicine,
38 39	16	Universidade Federal de Sergipe, Aracaju. ¹⁰ Instituto de Investigação em Imunologia, INCT, CNPq.
40 41 42	17	
42	18	Corresponding Author
44 45 46	19	Márcio B. Santos
47 48	20	Department of Health Science, Federal University of Sergipe
49 50 51	21	Av. Gov. Marcelo Déda - São José, Lagarto - SE, Brazil
52 53	22	Postal Code 49400-000
54 55 56 57 58 59 60	23	E-mail: bio_marcio2006@hotmail.com

24 ABSTRACT

Objective: This study aimed to analyze the clinical and epidemiological indicators,
temporal trends and the spatial distribution of leprosy in patients under 15 years old in

27 an endemic area of Northeast Brazil.

Design: Regional surveillance study of all reported cases.

29 Setting: State of Sergipe, endemic area of Northeast Brazil.

Methods: An ecological and time series study was conducted, based on secondary data reported by the Brazilian Information System on Notifiable Diseases (SINAN) for leprosy cases diagnosed in Sergipe state (2002-2015). The analysis of temporal trends was performed using the Joinpoint Regression Program through Poisson regression. We performed spatial analysis by Kernel estimator and Moran index.

Results: The incidence rate was reduced from 6.29 to 3.78 cases per 100,000 inhabitants in 2002 and 2015, respectively. However, Sergipe was still classified as highly endemicity in 2015. The mean number of household contacts (HHC) examined was significantly lower than those registered. Clinical data indicated that 21.4% of the patients developed leprosy reactions, and 31.3% presented with some physical disability in the multibacillary (MB) groups. Patients diagnosed by exam within the HHC presented better indicators, such as lower percentage of leprosy reaction and physical disability. Spatial analysis showed the most risk areas distributed on the northeast and cities around the capital, Aracaju.

Conclusion: The data indicate that there is a persistence of active *M. leprae* transmission
45 and a delay in disease detection, following a pattern of high endemicity in many
46 municipalities. The early detection by household contacts examination is important not
47 only to stop transmission but also to detect the cases in a less severe state.

1

2	
3	
4	
5	
6	
7	
0	
0	
9	
10	
11	
12	
13	
14	
15	
16	
10	
17	
18	
19	
20	
21	
22	
23	
24	
27	
25	
26	
27	
28	
29	
30	
31	
32	
33	
24	
24	
35	
36	
37	
38	
39	
40	
41	
12	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
51	
52	
53	
54	
55	
56	
57	

58 59 60 48 **Keywords**: Leprosy; Children; Epidemiology; Spatial analysis.

Strengths and limitations of this study

- This is a surveillance study that includes all notified cases of leprosy, in a State of Brazil with moderate prevalence of the disease.
- This is the first summary of leprosy cases in patients under 15 years old in Sergipe state, Northeast Brazil.
- This study was conducted using secondary data reported by SINAN and this source of data may have datasets missing.
- We also mapped the leprosy cases and physical disability in children under 15 years in areas of higher prevalence of leprosy in the general population, using geoprocessing tools.
- We compared the leprosy patient detection mode and how it affects the disease severity at diagnosis and the occurrence of leprosy reactions and physical disabilities.

ά

INTRODUCTION

Leprosy is a chronic infectious disease caused by infection with Mycobacterium leprae [1]. This pathogen exhibits tissue tropism for phagocytes in the skin and Schwann cells within peripheral nerves and it presents a long incubation time (from 2 to 7 years) [2,3]. The disease can manifest across a broad spectrum of symptoms and the diagnosis is made based on the clinical signs (cutaneous lesions with altered sensitivity and neurological lesions). Patients are then classified as multibacillary (MB) and paucibacillary (PB) for treatment purposes, according to criteria accepted by Brazilian Ministry of Health (BMH) and International Leprosy Association (ILA) [1,2,4–7].

Despite control efforts including the widespread use of multidrug therapy (MDT), and the stabilization of the reported new case detection rate in the last few years, leprosy remains endemic in many developing countries [3–6,8–11]. In 2014, the World Health Organization (WHO) reported 213,899 new leprosy cases in 121 countries or territories [4]. Brazil ranks as the second most burdened country in the world concerning number of new cases (31,064 in 2014) and has by far the highest number of cases reported in Americas [4,12,13]. Within Brazil, the highest prevalence has been reported in the North, Northeast and Midwest regions [8,9]. The incidence of leprosy (referred as the new case detection rate) in Sergipe in 2010 was 18.4 per 100,000 [8]. In 2013, 2,439 new cases were diagnosed in children under 15 years old in Brazil, yielding a detection rate of 5.03 per 100,000 inhabitants [4].

Studies have demonstrated that leprosy presents higher incidence in population with:
low educational degree, precarious health services and domiciliary infrastructure

BMJ Open

settlements, and reduced investment in prevention and control [14–16]. Moreover, the high incidence rate in children under 15 years is important to indicate there is early exposure of the population to the bacillus, that is associated to elevated prevalence in general population, being a good indicator of a high transmission and bad quality of the control programs [10,12,17–20]. There is no study reporting the incidence of leprosy in children under 15 years in Sergipe state.

Recently, studies mapping the occurrence of infectious diseases according to their spatial distribution using "Geographic Information Systems (GIS)" have provided important information for public health programs, revealing areas of priority for interventions programs to more efficiently plan and implement control measures [2,9,16,21–23]. The use of GIS in leprosy may allow the identification of spatial-temporal distributions and profile of incidence in defined geographical areas, this potentially contributing to the effectiveness of interventions.

Despite breakthroughs in the epidemiological of leprosy, further improvements in understanding of the disease dynamics in different regions is important for the support of health services as a means for leprosy control. Spatial analyzes studies can provide important understanding of the transmission patterns of *M. leprae* and allow the identification of risk factors [21,23]. The aim of this study was to describe the 1) various clinical and epidemiological indicators of leprosy; to analyze 2) temporal trends and 3) the spatial distribution of leprosy cases in patients under 15 years old in an endemic area of Northeast Brazil.

98 METHODS

99 Study Design

The source of all data from this study was the leprosy cases and the information of each individual case notified by the health centers of the municipalities to the SINAN (Information System on Notifiable Diseases) from the State of Sergipe, Brazil. This is an important database of the Secretariat of Health of all States of Brazil, to report information about sociodemographic, clinical features and the address of notifiable diseases. Leprosy is a notifiable disease in Brazil, and as a legislative requirement, all leprosy cases have to be notified to the SINAN, including information about social and demographic features, clinical forms and follow-up of each patient. Sergipe is located on the coast of Northeast Brazil. The State has 75 municipalities and the capital is Aracaju. It has a population of 2,068,017 inhabitants and an area of 21,910,354km², equivalent to 0.26% of the national territory. The median population per county was 27,573.56 in 2015 [16]. Population data were obtained from the IBGE (Brazilian Institute of Geography and Statistics), based on population estimates for the intercensus years (2002 - 2015). An ecological and time series epidemiological study was conducted, based on the leprosy cases reported by SINAN. The historical (from 2002 to 2015) reporting of leprosy cases in children under 15 years old was analyzed. We also compared those data with data in all ages and with the occurrence of physical disability. The incidence of leprosy (referred as the new case detection rate) in Sergipe in 2010 was 18.4 per 100,000 [8].

The clinical and epidemiologic indicators collected by Investigation and Notification
 Form from SINAN, were: gender, age, ethnicity, address, operational classification (PB

BMJ Open

and MB), clinical form [according to the more refined Ridley-Jopling classification [24,25], based on histopathological analyses: indeterminate leprosy (IL), true tuberculoid (TT), borderline leprosy (BL) and lepromatous leprosy (LL)], leprosy reaction (LR), number of affected nerves, degree of physical disabilities, number of household contacts (HHC) registered and examined, and the patient detection mode.

The parameters adopted by BMH and ILA were followed for interpreting the incidence rate of leprosy in patients under 15 years old. As such, this is classified as: low (<0.50 cases per 100,000 inhabitants); medium (0.50 to 2.49); high (2.50 to 4.99); very high (5.00 to 9.99) and hyperendemic (\geq 10.00) [4].

133 Spatial analysis

Thematic maps were constructed in each municipality for the period examined according to the leprosy incidence rate in patients under 15 years old and in general population, and for patients presenting with physical disability (incapacity degree 1 or 2). The kernel technique was applied to identify the intensity of the distribution of leprosy cases in the state of Sergipe. This technique shows the statistically generated surface density for the visual detection of hot spots, that indicates agglomeration of cases in a spatial distribution. This is an appropriate data interpolation for application in point location data. The point distribution was transformed into a smoothed surface and presented as a continuous map, representing different levels of case intensity. The amount of smoothing, that is, the width of the radius of influence was defined as 3,000 meters, since this value generated an adequate representation of the distribution of the

2 3 4	145	leprosy cases in the municipalities, minimizing the overlapping bias or the occurrence of
5 6 7	146	sub distribution patterns smoothed [16,21].
7 8 9	147	
10 11	148	We performed either spatial autocorrelation analysis between disease detection rates
12 13 14	149	for each group. The Moran Global Index (MGI)[26] was calculated to identify clusters
15 16	150	with risks for disease occurrence. We construct a spatial proximity matrix obtained by
17 18 19	151	the contiguity of spatial correlation. The MGI was calculated as follows:
20 21	152	(Moran Global Index Mathematical Equation 1)
22	150	$\int (n \sum n \sum n \langle \alpha \rangle - \alpha \rangle = \alpha $
23 24	153	$\left[(n \mathcal{L}_{i} \mathcal{L}_{j} \omega_{ij} (\gamma_{i} - y) (\gamma_{j} - y) \right]$
25	154	$I = \frac{1}{(\sum_{i=1}^{n} (1 - \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum$
26	155	$[\Sigma^{n}_{i}(\gamma_{i}-\gamma)^{2}\Sigma^{n}_{i}\Sigma^{n}_{j}\omega_{ij}]$
27	156	
28		
29	157	ω_{ij} is a contiguity matrix element (ω); γ_i is the incidence rate of municipality i ; γ_j is the
30 31		
32	158	incidence rate of municipality $: \check{v}$ is the mean of sample and the symbol <i>n</i> represents
33	150	incluence rate of maneparity j, y is the mean of sample and the symbol n represents
34	150	the total number of municipalities [20]
35	159	the total number of municipalities [26].
36		
3/	160	
39		
40	161	The MGI provides a general grouping measure and it is possible to know if there are
41		
42	162	significant differences between the analyzed areas. However, it does not indicate the
43		
44 45	163	clusters localization. To do that, we performed the Moran Local Index diagram [26] to
46		
47	164	build maps and identify the areas with spatial dependence (Local Index of Spatial
48		
49	165	Association - LISA) of the annual detection means, as follows:
50 E 1		
52	166	(Local Index of Spatial Association Mathematical Equation 2)
53		
54	167	
55		
56 57	168	$n[(Z_i, \Sigma^n, \omega_i, Z_i)]$
57 58	160	$I = \underline{\qquad}$
59	103	$I = \frac{1}{(\sum n \ \mathbf{Z}^2)}$
60	170	$(\mathcal{Z}_{j}^{n}\mathcal{Z}_{j}^{2})$

9

192

172	
173	$Z_i = yi - \bar{y}; Z_j = y_j - \bar{y}; \omega_{ij}$ is a contiguous matrix element $\omega; y_i$ is the incidence rate of
174	municipality <i>i</i> ; <i>yj</i> is the incidence rate of municipality <i>j</i> ; \bar{y} is the sample mean and the
175	symbol <i>n</i> represents the total number of cities [26]. The Moran Map was used to indicate
176	the clusters and their relationship with the neighbors. This analysis verifies the existence
177	of spatial dependence and risk patterns: Q1 (high/high) and Q2 (Low/Low), which
178	indicate municipalities with similar values between their neighbors and Q3 (high/low)
179	and Q4 (low/high) for municipalities with different values between their neighbors and
180	no spatial association. A spatial proximity matrix obtained by the contiguity criterion was
181	adopted. The level of significance was 5% and the Moran Global Index (I) varying
182	between -1 and +1, representing the spatial autocorrelation of leprosy detection rate in
183	the geographic space analyzed to identify spatial clusters and risk areas. Values between
184	0 and +1 indicate positive spatial autocorrelation (Q1 and Q2) and between -1 and 0
185	negative spatial autocorrelation (Q3 and Q4) [26,27]. Both Moran Index and Kernel
186	maps were constructed using TerraView software 4.2.2.
187	
188	Statistical analysis
189	The crude annual incidence rates were calculated for the general population, according
190	to the population data from IBGE. For patients younger than 15 years the annual rates
191	were age-standardised, and the standard population used was the population under 15

193 subgroups and according to operational classification and the patient detection mode.

194 Percentage, mean and standard deviation of the groups were calculated. For groups'

years from IBGE. Demographic and clinical data were compared across the different

comparison, we first analyze if the data followed normal distribution by the D'Agostino and Pearson normality test, and statistical differences between the groups were determined by Mann-Whitney and Kruskall-Wallis tests. All analysis was performed using SPSS Statistics, version 24.0. Results were considered statistically different when *p*-values < 0.05 were obtained.

In order to enable trend analysis, annual incidence rate of leprosy was calculated as dependent variables (y), and the years of the study period as the independent variables (x). Initially, trend analysis was performed with the Joinpoint program, version 4.0.4 (Surveillance Research, National Cancer Institute, USA). This program estimates the Annual Percentage Change (APC) of a segmented linear regression (Jointpont regression) and identifies inflection points. Each inflection point reflects changes in the increase or decline of leprosy rates [27]. The joinpoint regression provided the adjustment of a series of lines as well as their inflection points on a logarithmic scale by means of the annual trend test. All the models were run under the same specifications. The minimum number of observations from a joinpoint to either end of the data was 3 and the minimum number of observations between two joinpoints was 4. The maximum number of joinpoints allowed was 2. To obtain the adjustment based on the best line of each analyzed segment, the Monte Carlo permutation method was used as a test of significance. From the definition of the follow-ups, the annual percentage change (APC) and the average annual percentage change (AAPC), with their respective 95% confidence intervals, were estimated and tested. If the occurrence of an inflection point with inverted direction was verified, the study periods were analyzed separately. The number of inflections used in the analysis was the result of models defined by the program itself, in

BMJ Open

2		
3	219	order to allow the best representation of the trend, with the lowest number of inflection
4 5		
6 7	220	points. The result showed growth (positive APC values), reduction (APC negative values)
8 9	221	or maintenance (APC value equal to zero) of the trend throughout the historical series
10 11	222	analyzed (2006-2014). Poisson regression is used to determine the number of segments
12 13 14	223	required to adequately explain the relationship between two variables [27]. We
15 16	224	considered the points of trend change that presented p-value < 0.05.
17 18 10	225	
20		
21 22	226	Ethical Considerations
23 24 25	227	For conducting this study, authorization was previously requested from Coordination of
25 26 27	228	Epidemiological Surveillance, Sergipe state. This project involved research on human
28 29	229	subjects and was approved by the Ethics and Research Committee of the Federal
30 31 32	230	University of Sergipe, CAAE 0152.0.107.000-07.
33 34	231	
35 36	232	Patient and Public Involvement statement
37 38 39	233	There was no patient and public involvement in this study. The study was based on
40 41	234	secondary data.
42 43	235	
44 45 46	236	RESULTS
47 48	237	Trends in reported leprosy incidence among children
49 50 51	238	The incidence of leprosy in children under 15 years has declined from 6.29 cases per
52 53	239	100,000 inhabitants in 2002, to 3.78 in 2015, confirmed by Joinpoint regression analyzes
54 55	240	(APC = -5.3 and <i>p</i> -value < 0.05; Figure 1A and B). Similarly, the leprosy incidence rate in
56 57 58	241	the general population of Sergipe decreased from 23.08 cases to 16.99 per 100,000
59 60	242	inhabitants between 2002 and 2015 (Figure 1A and C). The occurrence of degree 2

physical disability, however, increased in this period (0.76 in 2002 to 1.2 in 2015, respectively), however it is a non-significant increasing trend (APC = 2.6 and *p*-value = 0.20; **Figure 1A and D**). The composition of leprosy cases according to the operational classification (PB and MB) was relatively stable across this period, with majority of cases presenting as PB (**Figure 2A**). We also observed the mean number of HHC registered (4.65 ± 2.79) was slightly, but significantly, higher than the number examined (3.66 ± 3.14; *p*-value < 0.0001; **Figure 2B**).

Demographics of childhood leprosy cases

Next, we evaluated the association among clinical and epidemiological variables according to the leprosy operational classification (patients presenting as PB and MB). Patients presenting as MB or PB were in similar age to $(10.5 \pm 2.81 \text{ and } 10.07 \pm 3.38)$, respectively). Despite the extended incubation period of *M. leprae*/leprosy, six cases (1.11%) were reported in children less than one year of age. Of the 538 leprosy cases identified among children under 15 years old the majority were PB [407 (75.7%) PB and 131 (24.3%) MB; **Table 1**]. When stratified on gender, however, the proportion of boys presenting with MB (63.4%) was significantly higher than presenting with PB (48.4%; pvalue = 0.003). An interesting difference was observed when we calculated the ratio (PB/MB) according the ethnic groups. Among those identified as black, the ratio (43/24) was 1.79. Conversely, the ratio of white was higher 4.88 (88/18; *p*-value = 0.02).

As expected, the occurrence of leprosy reactions was significantly higher in MB (21.4%) than PB (4.9%; *p*-value < 0.0001) patients. The occurrence of degree 2 of physical disability was also higher in MB (4.6%), than in PB patients (0.74%; *p*-value = 0.0001).
13

1 ว		
2 3 4	267	Consistent with this, we observed that the mean of number of affected nerves was
5 6 7	268	higher in MB (0.5 ± 1.03), than PB (0.19 ± 0.54; <i>p</i> -value = 0.04).
7 8 9	269	
10 11 12	270	Impact of case detection methods on leprosy presentation
12 13 14	271	We also performed analysis of association among clinical and epidemiological variables
15 16 17	272	according to the leprosy patient detection mode. The patients were grouped in:
17 18 19	273	spontaneous demand (SDem: patients that looked for medical assistance by
20 21	274	themselves); forwarded (FW: patients that were forwarded from a primary clinic to a
22 23 24	275	leprosy reference center); examined HHC; and other. We observed that patients
25 26	276	detected by the examined HHC method presented lower mean age (9.6 \pm 3.38) than
27 28 29	277	those detected by either the SDem (10.54 \pm 3.28) or FW methods (10.02 \pm 3.15; <i>p</i> -value
30 31	278	= 0.04; Table 2). Interestingly, the percentage of leprosy reaction among the examined
32 33 34	279	HHC group (2.9%; <i>p</i> -value = 0.02) was lower than that observed among SDem (7.3%) and
35 36	280	FW (13.3%). In addition, degree 2 of physical disability was not observed among patients
37 38 30	281	detected in examined HHC group, while SDem and FW presented 0.43% and 3.8%,
40 41	282	respectively (p-value = 0.04). Furthermore, patients identified among examined HHC
42 43	283	presented with lower numbers of lesions (2.04 \pm 2.96; <i>p</i> -value = 0.04) than SDem (3.64
44 45 46	284	\pm 6.25) and FW (4.09 \pm 8.68). Taken together, these data reinforce the importance of
47 48	285	HHC examination for the detection of leprosy patients before advancement to more
49 50 51	286	severe symptoms.
52 53	287	

288 Spatial analyze data

54

55 56 57

58 59

60

289 Next, we performed the spatial analysis of leprosy cases in the general population, in 290 patients under 15 years old, and in patients presenting with physical disability (both

degree 1 and 2). Moran maps have showed higher risk clusters (Q1 - in red; **Figure 3A**-**C**) in similar areas when comparing the maps regarding leprosy cases in children under 15 years old, in general population, and patients presenting some physical disability (degree 1 and 2). The higher risk clusters (Q1) were localized in Sergipe state center and in the metropolitan area around the capital of State. The municipalities with no spatial association (Q3 - in blue) were localized in the Semiarid region, in the northwest area and in the south region.

Similarly, The Kernel estimator, through data interpolation, showed densities (hot spots) of the highest incidence rates located at the northeast and east center regions and in the counties around the state capital (Aracaju city; **Figure 3D-F**). Lower intensity was observed on the western region. Municipalities with intermediate to high incidence values are seen in yellow and red tones of each subfigure. Low incidence areas were reported on west coast municipalities, mostly in smaller counties with small populations.

307 DISCUSSION

Previous studies have demonstrated that the high leprosy cases detection in patients
under 15 years old is a bad parameter for leprosy control program, because it indicates
early bacillus transmission from undiagnosed cases [18]. Some authors have speculated
either about the risk of vertical/transplacental transmission or through breastfeeding
[12].

BMJ Open

In Brazil, the highest leprosy incidence rate in children was reported in the North area (11.91 cases per 100,000 inhabitants), followed by Northeast (8.12) [12]. We observed the leprosy incidence rate was reduced in children under 15 years old from 2002 to 2015 in Sergipe state, however considering the parameters adopted by BMH, the state was classified as very high endemicity in 2002, and still as high endemicity in 2015. It remains also with elevated incidence rate and stationary tendency of degree 2 of physical disability. Those data reinforce either that the transmission is intense at early age, there is lack of an effective public health and the disease control is focused in the MDT [12,18]. A similar study performed at Fortaleza city (Brazil), reported also that although a decreasing has been observed on overall detection rate, the number of new cases in those under 15 years old remains stable [13].

Leprosy reactions and physical disability are the most severe leprosy clinical complications [8,28,29]. In addition, the increase or stability of the prevalence of degree 2 of physical disability indicates persisting late diagnosis [13,29]. The early diagnosis of leprosy is essential to the prevention of deformities, whose repercussions are still more catastrophic in children and adolescents [28]. Our data reported 21.4% children with leprosy reaction (LR) and 31.3% with some physical disability in the MB groups. Furthermore, MB patients presented higher mean of affected nerves. Generally, patients under 15 years old do not use to present LR, but studies have reported a low frequency of LR, varying between 1.36% and 8.33% [28]. Those data reinforce that, although there is a decreasing incidence in leprosy, patients have been exposed to bacillus early in life and diagnosed belatedly and hence they have been also developing into some clinical complications.

2	
ر ۸	
4	
5	
6	
7	
8	
9	
10	
10	
11	
12	
13	
14	
15	
16	
10	
17	
18	
19	
20	
21	
22	
22	
∠⊃ > ⁄	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
34	
35	
20	
30	
37	
38	
39	
40	
41	
12	
42	
43	
44	
45	
46	
47	
48	
10	
79 50	
50	
51	
52	
53	
54	
55	
55	
20	
57	
58	
59	
60	

338

339 We have observed either that the mean of HHC examined was significantly lower than those registered by SINAN. Moreover, leprosy patients detected by exam in HHC 340 presented lower mean of age, affected nerves, number of lesions, occurrence of LR and 341 342 no physical disability, when compared with those identified by spontaneous demand or 343 forwarded by others. On the other hand, mostly of patients presenting as degree 2 of 344 physical disability were identified into those forwarded to a leprosy reference center, 345 probably because they started presenting some physical disability. HHC and neighbors 346 are the most important *M. leprae* active sources. The risk of a person developing leprosy is nine times greater among HHC and up to four times greater among contacts with 347 348 neighbors [12]. Therefore, our data reinforce the importance of leprosy early diagnosis 349 by exam in patients and their household contacts. Besides that, the treatment and the home visits by public health programs, and an efficient health program in schools could 350 represent important actions for the early diagnosis and the reduction of leprosy clinical 351 complications, especially in children. 352

353

354 Spatial analysis of health events aim to identify geographical patterns by maps of risk and to point out areas of higher severity and to facilitate the planning of public health 355 356 interventions [9]. The Kernel maps showed the spatial dynamic of leprosy, with a 357 heterogeneous geographical pattern and the highest risk areas for leprosy infection. The 358 highest incidence on counties around the Capital can be due there was a leprosarium at 359 the Nossa Senhora do Socorro (a city of the metropolitan area of Aracaju), that has 360 presented elevated detection rate in mostly evaluated years. Moreover, that area 361 presents reference center to leprosy diagnosis and treatment and hence they have

Page 17 of 32

BMJ Open

several patients forwarded to these leprosy clinics. It can be also associated with weather featuring such as humidity, considering either that counties near to São Francisco River presented also elevated incidence. In the Malawian Karonga district, a positive relationship between the proximity of water and leprosy incidence was previously reported [5]. Some authors have hypothesized that *M. leprae* survives longer outside of human body in humid compared to dry atmospheres [9,13].

Interestingly, higher risk clusters were identified in similar areas when we analyzed the occurrence of leprosy cases in children, in general population and patients presenting physical disability. It corroborates the hypothesis that the early transmission of M. *leprae* and the occurrence of leprosy in children under 15 years old is directly related to the late diagnosis, which explains the occurrence of patients with degree 2 of physical disability in the same geographic distribution [28]. The maps present certain disagreements regarding the occurrence of leprosy cases in the state of Sergipe because they use distinct techniques of spatial analysis. The Kernel estimator produces a continuous surface, with densities calculated at all locations, based on total number of cases and no considering the geographical boundaries of the municipalities [27,30,31]. The Kernel technique presents greater advantages to the quick visualization of areas that deserve attention, besides not being affected by political-administrative division, while the Moran technique, constructs maps considering the political-administrative divisions of the state and the clusters are based on the number of cases divided by the municipalities [27,30].

Our study had some limitations, particularly because it was conducted using secondary data reported by SINAN. This source of date can present numbers under notification and datasets missing. However, in Brazil we have a specific normative that is an obligation to notify several diseases to SINAN, and leprosy is one of them. SINAN is an important database of the Secretariat of Health of all States of Brazil, to report information about sociodemographic, clinical features and the address of each diagnosed case. This source of data can present under notification because Leprosy is an asymptomatic disease and the active search would be important to detect more cases, but all diagnosed cases are reported to SINAN. The limitation mentioned about missing data is not very important in the case of the disease prevalence, but the complete information about the cases follow-up, such as degree of neurological disability at the end of treatment, leprosy reactions and treatment details, because it is a secondary database that depends on other doctors or nurses from the health care centers to fulfill the information. Despite this, those data reported high endemicity of leprosy cases in patients under 15 years old, and this study do not focus on patient follow-up.

In summary, our study demonstrated that the leprosy incidence rate has decreased in Sergipe state. However, it is still classified as high endemicity considering the WHO proposed ratios for children under 15 years. Patients detected by exam in collectivity or HHC presented better indicators. Altogether, the epidemiological data and spatial analysis indicate that there is persistence of active transmission of *M. leprae* and later case detection in Sergipe state, increasing the risk of transmission in children. In addition, the spatial analysis brings new advantages to comprehend the leprosy dynamic, and reinforce the superimposed regions of high occurrence areas of patients

BMJ Open

19

3 4	409	presenting degree 2 of physical disability and cases in children lower than 15 years, and
5 6 7	410	highlights the need to strengthen effective disease control measures, mainly in primary
8 9	411	health care.
10 11 12	412	Acknowledgments The authors would like to thank the Manager of the Nucleus of
12 13 14	413	endemic/Division of Epidemiological Surveillance - [Divisão de Vigilância
15 16	414	Epidemiológica (DIVEP)]/ Secretariat of Health of the Sergipe state (SES) for providing
17 18 19	415	information.
20 21 22	416	Funding This research received no specific grant from any funding agency in the public,
23 24 25	417	commercial or not-for-profit sectors.
25 26 27	418	Contributors The project was suggested by MB-S, MA, JB and AS. The statistical analyzes
28 29	419	was performed by MB-S, IB, JS and AJ. The spatial analyzes was performed by MS, AS,
30 31 32	420	AB and KA. The manuscript was written by MB-S, AB, DO, MD and AJ. All authors
33 34	421	contributed to refining the idea, revising the manuscript and have agreed the final
35		
36 37	422	version.
36 37 38 39	422 423	Competing interests The authors declare that they have no conflicts of interest.
36 37 38 39 40 41 42	422 423 424	Competing interests The authors declare that they have no conflicts of interest. Provenance and peer review Not commissioned; externally peer reviewed.
36 37 38 39 40 41 42 43 44	422 423 424 425	Competing interests The authors declare that they have no conflicts of interest. Provenance and peer review Not commissioned; externally peer reviewed. Data sharing statement The source of all data from this study was the leprosy cases and
36 37 38 39 40 41 42 43 44 45 46 47	422 423 424 425 426	 Competing interests The authors declare that they have no conflicts of interest. Provenance and peer review Not commissioned; externally peer reviewed. Data sharing statement The source of all data from this study was the leprosy cases and the information of each individual case notified by the health centers of the
36 37 38 39 40 41 42 43 44 45 46 47 48 49	422 423 424 425 426 427	 Competing interests The authors declare that they have no conflicts of interest. Provenance and peer review Not commissioned; externally peer reviewed. Data sharing statement The source of all data from this study was the leprosy cases and the information of each individual case notified by the health centers of the municipalities to the SINAN (Information System on Notifiable Diseases) from the State
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 51	422 423 424 425 426 427 428	 Competing interests The authors declare that they have no conflicts of interest. Provenance and peer review Not commissioned; externally peer reviewed. Data sharing statement The source of all data from this study was the leprosy cases and the information of each individual case notified by the health centers of the municipalities to the SINAN (Information System on Notifiable Diseases) from the State of Sergipe, Brazil. SINAN is an important database of the Secretariat of Health of all
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	422 423 424 425 426 427 428 429	 Competing interests The authors declare that they have no conflicts of interest. Provenance and peer review Not commissioned; externally peer reviewed. Data sharing statement The source of all data from this study was the leprosy cases and the information of each individual case notified by the health centers of the municipalities to the SINAN (Information System on Notifiable Diseases) from the State of Sergipe, Brazil. SINAN is an important database of the Secretariat of Health of all States of Brazil, to report information about sociodemographic, clinical features and the
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56	422 423 424 425 426 427 428 429 430	Competing interests The authors declare that they have no conflicts of interest. Provenance and peer review Not commissioned; externally peer reviewed. Data sharing statement The source of all data from this study was the leprosy cases and the information of each individual case notified by the health centers of the municipalities to the SINAN (Information System on Notifiable Diseases) from the State of Sergipe, Brazil. SINAN is an important database of the Secretariat of Health of all States of Brazil, to report information about sociodemographic, clinical features and the address of notifiable diseases, such as leprosy.
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59	422 423 424 425 426 427 428 429 430 431	Competing interests The authors declare that they have no conflicts of interest. Provenance and peer review Not commissioned; externally peer reviewed. Data sharing statement The source of all data from this study was the leprosy cases and the information of each individual case notified by the health centers of the municipalities to the SINAN (Information System on Notifiable Diseases) from the State of Sergipe, Brazil. SINAN is an important database of the Secretariat of Health of all States of Brazil, to report information about sociodemographic, clinical features and the address of notifiable diseases, such as leprosy.
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60	422 423 424 425 426 427 428 429 430 431 432	Competing interests The authors declare that they have no conflicts of interest. Provenance and peer review Not commissioned; externally peer reviewed. Data sharing statement The source of all data from this study was the leprosy cases and the information of each individual case notified by the health centers of the municipalities to the SINAN (Information System on Notifiable Diseases) from the State of Sergipe, Brazil. SINAN is an important database of the Secretariat of Health of all States of Brazil, to report information about sociodemographic, clinical features and the address of notifiable diseases, such as leprosy.

1			
2			
3	433		
4			
5			
6	434	Refer	ences
/			
8			
9	135		
10	433		
11			
12	126	1	Simon M. Scharlack I. Duthia MS. at al. Clinical immunological and genetic
14	450	т	Sinon W, Schenock J, Duthie WS, et ul. Chincal, infinunological, and genetic
15			
16	437		aspects in leprosy. <i>Drug Dev Res</i> 2011; 72 :509–27. doi:10.1002/ddr.20457
17			
18			
19	438	2	Duarte-Cunha M, Marcelo da Cunha G, Souza-Santos R. Geographical
20			
21	439		heterogeneity in the analysis of factors associated with leprosy in an endemic
22	100		
23	440		area of Brazily are use aliminating the disaase? RMC infact Dis 2015,15,106
24	440		area of Brazil: are we eliminating the disease? Bivic Inject Dis 2015;15:196.
25			
26	441		doi:10.1186/s12879-015-0924-x
27			
28			
29	442	3	Fulton N, Anderson LF, Watson JM, et al. Leprosy in England and Wales 1953-
30 21			
31 27	443		2012: Surveillance and challenges in low incidence countries BMI Open
32	110		
34			2016-6-15 9 dai:10.1126/hmianan 2015 010609
35	444		2010; 0 :15-8. doi:10.1136/binjopen-2015-010608
36			
37			
38	445	4	Freitas LRS, Duarte EC, García LP, et dí. Trends of main indicators of ieprosy in
39			
40	446		Brazilian municipalities with high risk of leprosy transmission, 2001–2012. BMC
41			
42	447		Infect Dis 2016:16:472. doi:10.1186/s12879-016-1798-2
43			
44			
45	448	5	Duthie MS Saunderson P Reed SG. The notential for vaccination in lenrosy
46	440	5	but the two, but the cost of the potential for vacentation in teprosy
47 79	440		aligning tion. Now to all for towards digtory outlings. Many last Orwalds Course
40 40	449		elimination: New tools for targeted interventions. Wern inst Oswaldo Cruz
50			
51	450		2012; 107 :190–6. doi:10.1590/S0074-02762012000900027
52			
53			
54	451	6	Duthie MS, Gillis TP, Reed SG. Advances and hurdles on the way toward a
55			
56	452		leprosy vaccine. <i>Hum Vaccin</i> 2011: 7 :1172–83. doi:10.4161/hv.7.11.16848
57			· · · · · · · · · · · · · · · · · · ·
58			
59	453	7	Kumar A. Girdhar A. Girdhar BK. Six months fixed duration multidrug therapy in
υo			, ,

Page 21 of 32

BMJ Open

1			
2 3	454		naucibacillary loprosy: Pick of rolance and disability in Agra DP cohort study. PMI
4	454		paucipaciliary leprosy. Risk of relapse and disability in Agra PB conort study. <i>Bivis</i>
5 6 7	455		<i>Open</i> 2012; 2 :1–6. doi:10.1136/bmjopen-2012-001403
8 9 10	456	8	de Oliveira DT, Bezerra MM, de Almeida JAP, et al. Neurological disability in
11 12	457		leprosy: Incidence and gender association in Sergipe, Brazil. Geospat Health
13 14 15 16	458		2012; 6 . doi:10.4081/gh.2012.130
17 18	459	9	Alencar CH, Ramos AN, dos Santos ES, et al. Clusters of leprosy transmission and
19 20 21	460		of late diagnosis in a highly endemic area in Brazil: Focus on different spatial
21 22 23	461		analysis approaches. <i>Trop Med Int Heal</i> 2012; 17 :518–25. doi:10.1111/j.1365-
24 25 26	462		3156.2011.02945.x
27 28 29	463	10	Durrheim DN, Speare R. Global leprosy elimination: Time to change more than
30 31	464		the elimination target date. <i>J Epidemiol Community Health</i> 2003; 57 :316–7.
32 33 34	465		doi:10.1136/jech.57.5.316
35 36 37	466	11	Barth-Jaeggi T, Steinmann P, Mieras L, <i>et al.</i> Leprosy Post-Exposure Prophylaxis
38 39	467		(LPEP) programme: Study protocol for evaluating the feasibility and impact on
40 41 42	468		case detection rates of contact tracing and single dose rifampicin. BMJ Open
42 43 44 45	469		2016; 6 . doi:10.1136/bmjopen-2016-013633
46 47	470	12	Santos SD, Penna GO, Costa M da CN, et al. Leprosy in children and adolescents
48 49 50	471		under 15 years old in an urban centre in Brazil. Mem Inst Oswaldo Cruz
51 52 53	472		2016; 111 :359–64. doi:10.1590/0074-02760160002
54 55	473	13	Brito AL, Monteiro LD, Ramos Junior AN, et al. Tendência temporal da
50 57 58	474		hanseníase em uma capital do Nordeste do Brasil: epidemiologia e análise por
59 60	475		pontos de inflexão, 2001 a 2012. <i>Rev Bras Epidemiol</i> 2016; 19 :194–204.

Page 22 of 32

1			
2 3 4 5	476		doi:10.1590/1980-5497201600010017
6 7	477	14	Vieira GDD, Aragoso I, Carvalho RMB, et al. Hanseníase em Rondônia: incidência
8 9 10	478		e características dos casos notificados, 2001 a 2012. Epidemiol e Serviços Saúde
11 12 13	479		2014; 23 :269–75. doi:10.5123/S1679-49742014000200008
14 15	480	15	Queir??s MI, Ramos AN, Alencar CHM, et al. Clinical and epidemiological profile
16 17 18	481		of leprosy patients attended at Cear??, 2007-2011. An Bras Dermatol
19 20	482		2016; 91 :311–7. doi:10.1590/abd1806-4841.20164102
21 22	402	10	des Centes AD Line ACD Centes MD et al Centiel explusis for the identification
23 24	483	10	dos Santos AD, Lima ACR, Santos MB, et di. Spatial analysis for the identification
25 26	484		of risk areas for schistosomiasis mansoni in the state of Sergipe, Brazil, 2005-
27 28 20	485		2014. Rev Soc Bras Med Trop 2016; 49 :608–15. doi:10.1590/0037-8682-0137-
29 30 31 32	486		2016
33 34	487	17	Alencar CHM De, Barbosa JC, Ramos Jr AN, et al. Hanseníase no município de
35 36 37	488		Fortaleza, CE, Brasil: aspectos epidemiológicos e operacionais em menores de
38 39	489		15 anos (1995-2006). Rev Bras Enferm 2008; 61 :694–700. doi:10.1590/S0034-
40 41 42	490		71672008000700007
43 44 45	491	18	Pires CAA, Malcher CMSR, Abreu JMC, et al. Hanseníase em menores de 15
46 47	492		anos: A importância do exame de contato. <i>Rev Paul Pediatr</i> 2012; 30 :292–5.
48 49 50 51	493		doi:10.1590/S0103-05822012000200022
52 53	494	19	Carlos F, Lana F, Amaral EP, et al. Hanseníase em menores de 15 anos no Vale
54 55 56	495		do Jequitinhonha, Minas Gerais, Brasil. <i>Rev Bras Enferm</i> 2007; 60 :696–700.
50 57 58 59	496		doi:10.1590/S0034-71672007000600014
60	497	20	Fernandes C, Gonçalves HS, Cabral PB, et al. Increased frequency of CD4 and

Page 23 of 32

BMJ Open

1			
2 3	498		CD8 regulatory T cells in individuals under 15 years with multibacillary leprosy.
4			
5 6 7	499		<i>PLoS One</i> 2013; 8 . doi:10.1371/journal.pone.0079072
8 9 10	500	21	Barreto AS, Alves B. ORIGINAL ARTICLE SPATIAL ANALYSIS AND
11 12	501		EPIDEMIOLOGICAL CHARACTERISTICS OF CASES OF LEPROSY IN AN ENDEMIC
13 14 15	502		AREA. J Nurs UFPE 2016; 10 . doi:10.5205/reuol.9881-87554-1-EDSM1011201604
16 17 18	503	22	Khan O, Davenhall W, Ali M, et al. Geographical information systems and
19 20 21	504		tropical medicine. Ann Trop Med Parasitol 2010; 104 :303–18.
22 23 24	505		doi:10.1179/136485910X12743554759867.Geographical
25 26	506	23	Fischer E, Pahan D, Chowdhury S, et al. The spatial distribution of leprosy in four
27 28 29	507		villages in Bangladesh: an observational study. BMC Infect Dis 2008;8:125.
30 31 32	508		doi:10.1186/1471-2334-8-125
33 34	509	24	Ridley DS JW. Classification of leprosy according to immunity. A five-group
35 36 37	510		system. Int J Lepr Other Mycobact Dis 1966; 34 :255–73.
38 39	511		doi:10.1126/science.1238286
40 41 42	512	25	Lockwood DNJ, Sarno E, Smith WC. Classifying leprosy patientssearching for
43 44 45 46	513		the perfect solution. <i>Lepr Rev</i> 2007; 78 :317–20.
47 48	514	26	Chen Y. New Approaches for Calculating Moran's Index of Spatial
49 50 51	515		Autocorrelation. PLoS One 2013;8. doi:10.1371/journal.pone.0068336
52 53 54	516	27	Goes JAP, Souza DDG, Andrade LA, et al. Trend and spatial analysis of prostate
55 56	517		cancer mortality in the state of Sergipe, Brazil. Geospat Health 2018;13.
57 58 59 60	518		doi:10.4081/gh.2018.732

de Oliveira MBB, Diniz LM. Leprosy among children under 15 years of age:

520		Literature review. An Br	as Dermatol 2	016; 91 :196–203.	doi:10.1590/abd1806-
521		4841.20163661			
522	29	Kumar A, Girdhar A, Kun	nar Girdhar B.	Risk of developir	ng disability in pre and
523		post-multidrug therapy	treatment am	ong multibacillar	y leprosy: Agra MB
524		Cohort study. BMJ Open	2012; 2 :1–7. c	loi:10.1136/bmjc	open-2011-000361
525	30	dos Santos AD, Lima ACI	R, Santos MB,	<i>et al</i> . Spatial anal	lysis for the identification
526		of risk areas for schistos	omiasis manso	oni in the state of	f Sergipe, Brazil, 2005-
527		2014. Rev Soc Bras Med	Trop 2016; 49	. doi:10.1590/003	37-8682-0137-2016
528	31	Santos MB, dos Santos A	AD, da Silva PP	, et al. Spatial an	alysis of viral hepatitis
529		and schistosomiasis coir	fection in an o	endemic area in N	Northeastern Brazil. <i>Rev</i>
530		<i>Soc Bras Med Trop</i> 2017; 50 . doi:10.1590/0037-8682-0411-2016			
531	Table	e 1. Association of demog	raphic and cli	nical data accord	ing to the operational
532	class	ification of leprosy (PB an	nd MB) in child	lren under 15 ye	ars in Sergipe state,
533	Brazi	l (2002-2015).			
			Operationa	I Classification	
	Var	iables	PB	MB	
	Var	iables	PB (n = 407)	MB (n = 131)	<i>p</i> -value
	Var Age	iables e mean ± SD	PB (n = 407) 10.07 ± 3.38	MB (n = 131) 10.5 ± 2.81	<i>p</i> -value *0.46
	Var Age Ger	iables e mean ± SD nder n (%)	PB (n = 407) 10.07 ± 3.38	MB (n = 131) 10.5 ± 2.81	<i>p</i> -value *0.46
	Var Age Ger	iables e mean ± SD nder n (%) 1/ale	PB (n = 407) 10.07 ± 3.38 197 (48.4)	MB (n = 131) 10.5 ± 2.81 83 (63.4)	<i>p</i> -value *0.46 ⁺0.003
	Var Age Ger N Eth	iables e mean ± SD nder n (%) ⁄lale nicity n (%)	PB (n = 407) 10.07 ± 3.38 197 (48.4)	MB (n = 131) 10.5 ± 2.81 83 (63.4)	<i>p</i> -value *0.46 *0.003

1	-
,	5
_	J

Black 43 (10.5) 24 (18.3) Brown 251 (61.7) 78 (59.5) Indian 4 (0.9) 3 (2.3) Leprosy reaction n (%) 20 (4.9) 28 (21.4) $*<0.0001$ Physical Disability Degree n (%) 0 337 (82.8) 90 (68.7) "0.0001 1 26 (6.4) 18 (13.7) 2 3 (0.74) 6 (4.6) Number of affected nerves 0.19 ± 0.54 0.5 ± 1.03 *0.04 (mean ± SD) 1.61 ± 1.14 9.92 ± 12.03 *<0.0001 SD)					
Brown 251 (61.7) 78 (59.5) Indian 4 (0.9) 3 (2.3) Leprosy reaction n (%) 20 (4.9) 28 (21.4) -<0.0001		Black	43 (10.5)	24 (18.3)	
Indian $4 (0.9)$ $3 (2.3)$ Leprosy reaction n (%) $20 (4.9)$ $28 (21.4)$ *<0.0001		Brown	251 (61.7)	78 (59.5)	
Leprosy reaction n (%) $20 (4.9)$ $28 (21.4)$ $*<0.0001$ Physical Disability Degree n (%) 0 $337 (82.8)$ $90 (68.7)$ $"0.0001$ 1 $26 (6.4)$ $18 (13.7)$ 2 $3 (0.74)$ $6 (4.6)$ Number of affected nerves 0.19 ± 0.54 0.5 ± 1.03 $*0.04$ (mean \pm SD) Number of Lesions (mean \pm 1.61 ± 1.14 9.92 ± 12.03 $*<0.0001$ SD) HHC registered (mean \pm SD) 3.54 ± 3.04 4.05 ± 3.44 $*0.14$ HHC examined (mean \pm SD) 3.54 ± 3.04 4.05 ± 3.44 $*$ *Mann-Whitney test; 'Fisher's exact test; "Chi-square test. PB = paucibacillary; MB = multibacillar $*$ *Mann-Whitney test; 'Fisher's exact test; "Chi-square test. PB = paucibacillary; MB = multibacillar $*$ *Mann-Whitney test; 'Fisher's exact test; "Chi-square test. PB = paucibacillary; MB = multibacillar $*$ *Mann-Whitney test; 'Fisher's exact test; "Chi-square test. PB = paucibacillary; MB = multibacillar $*$ *Mann-Whitney test; 'Fisher's exact test; "Chi-square test. PB = paucibacillary; MB = multibacillar $*$ *Mann-Whitney test; 'Fisher's exact test; "Chi-square test. PB = paucibacillary; MB = multibacillar $*$ *Ma		Indian	4 (0.9)	3 (2.3)	
Physical Disability Degree n (%) 0 $337 (82.8)$ $90 (68.7)$ "0.0001 1 $26 (6.4)$ $18 (13.7)$ 2 2 $3 (0.74)$ $6 (4.6)$ Number of affected nerves 0.19 ± 0.54 0.5 ± 1.03 *0.04 (mean ± SD) Number of Lesions (mean ± 1.61 ± 1.14 9.92 ± 12.03 *<0.0001		Leprosy reaction n (%)	20 (4.9)	28 (21.4)	+<0.0001
Degree n (%) 0 337 (82.8) 90 (68.7) "0.0001 1 26 (6.4) 18 (13.7) 2 3 (0.74) 6 (4.6) Number of affected nerves 0.19 ± 0.54 0.5 ± 1.03 *0.04 (mean ± SD) Number of Lesions (mean ± 1.61 ± 1.14 9.92 ± 12.03 *<0.0001		Physical Disability			
0 337 (82.8) 90 (68.7) *0.001 1 26 (6.4) 18 (13.7) 2 3 (0.74) 6 (4.6) Number of affected nerves 0.19 ± 0.54 0.5 ± 1.03 *0.04 (mean ± SD) Number of Lesions (mean ± 1.61 ± 1.14 9.92 ± 12.03 *<0.0001		Degree n (%)			
1 26 (6.4) 18 (13.7) 2 3 (0.74) 6 (4.6) Number of affected nerves 0.19 ± 0.54 0.5 ± 1.03 *0.04 (mean ± SD) Number of Lesions (mean ± 1.61 ± 1.14 9.92 ± 12.03 *<0.0001		0	337 (82.8)	90 (68.7)	[#] 0.0001
2 3 (0.74) 6 (4.6) Number of affected nerves 0.19 ± 0.54 0.5 ± 1.03 *0.04 (mean ± SD) Number of Lesions (mean ± 1.61 ± 1.14 9.92 ± 12.03 *<0.0001		1	26 (6.4)	18 (13.7)	
Number of affected nerves 0.19 ± 0.54 0.5 ± 1.03 *0.04 (mean ± SD) Number of Lesions (mean ± 1.61 ± 1.14 9.92 ± 12.03 *<0.0001		2	3 (0.74)	6 (4.6)	
(mean ± SD) Number of Lesions (mean ± 1.61 ± 1.14 9.92 ± 12.03 *<0.0001 SD) HHC registered (mean ± SD) 4.6 ± 2.71 4.85 ± 3.04 *0.14 HHC examined (mean ± SD) 3.54 ± 3.04 4.05 ± 3.44 *Mann-Whitney test; *Fisher's exact test; #Chi-square test. PB = paucibacillary; MB = multibacillar = household contacts; SD = Standard Deviation. We missed data in some variables.		Number of affected nerves	0.19 ± 0.54	0.5 ± 1.03	*0.04
Number of Lesions (mean ± 1.61 ± 1.14 9.92 ± 12.03 *<0.0001 SD) HHC registered (mean ± SD) 4.6 ± 2.71 4.85 ± 3.04 *0.14 HHC examined (mean ± SD) 3.54 ± 3.04 4.05 ± 3.44 *0.14 *Mann-Whitney test; *Fisher's exact test; #Chi-square test. PB = paucibacillary; MB = multibacillar = household contacts; SD = Standard Deviation. We missed data in some variables.		(mean ± SD)			
SD) HHC registered (mean ± SD) 4.6 ± 2.71 4.85 ± 3.04 *0.14 HHC examined (mean ± SD) 3.54 ± 3.04 4.05 ± 3.44 *Mann-Whitney test; *Fisher's exact test; #Chi-square test. PB = paucibacillary; MB = multibacillar = household contacts; SD = Standard Deviation. We missed data in some variables.		Number of Lesions (mean ±	1.61 ± 1.14	9.92 ± 12.03	*<0.0001
HHC registered (mean ± SD) 4.6 ± 2.71 4.85 ± 3.04 *0.14 HHC examined (mean ± SD) 3.54 ± 3.04 4.05 ± 3.44 *Mann-Whitney test; *Fisher's exact test; #Chi-square test. PB = paucibacillary; MB = multibacillar = household contacts; SD = Standard Deviation. We missed data in some variables.		(D)			
HHC examined (mean ± SD) 3.54 ± 3.04 4.05 ± 3.44 *Mann-Whitney test; *Fisher's exact test; #Chi-square test. PB = paucibacillary; MB = multibacillar = household contacts; SD = Standard Deviation. We missed data in some variables.		SD)			
 *Mann-Whitney test; *Fisher's exact test; *Chi-square test. PB = paucibacillary; MB = multibacillar = household contacts; SD = Standard Deviation. We missed data in some variables. 		SD) HHC registered (mean ± SD)	4.6 ± 2.71	4.85 ± 3.04	*0.14
	-24	SD) HHC registered (mean ± SD) HHC examined (mean ± SD)	4.6 ± 2.71 3.54 ± 3.04	4.85 ± 3.04 4.05 ± 3.44	*0.14
	534 535 536	SD) HHC registered (mean ± SD) HHC examined (mean ± SD) *Mann-Whitney test; *Fisher's exact = household contacts; SD = Standard	4.6 ± 2.71 3.54 ± 3.04 test; #Chi-square t Deviation. We mi	4.85 ± 3.04 4.05 ± 3.44 rest. PB = paucibacillar ssed data in some varia	*0.14 y; MB = multibacillar ables.
	534 535 536	SD) HHC registered (mean ± SD) HHC examined (mean ± SD) *Mann-Whitney test; *Fisher's exact = household contacts; SD = Standard	4.6 ± 2.71 3.54 ± 3.04 test; #Chi-square t Deviation. We mi	4.85 ± 3.04 4.05 ± 3.44 rest. PB = paucibacillar ssed data in some varia	*0.14 y; MB = multibacillar ables.
	534 535 536	SD) HHC registered (mean ± SD) HHC examined (mean ± SD) *Mann-Whitney test; *Fisher's exact = household contacts; SD = Standard	4.6 ± 2.71 3.54 ± 3.04 test; #Chi-square t Deviation. We mi	4.85 ± 3.04 4.05 ± 3.44 rest. PB = paucibacillar ssed data in some varia	*0.14 y; MB = multibacillar ables.
	534 535 536	SD) HHC registered (mean ± SD) HHC examined (mean ± SD) *Mann-Whitney test; *Fisher's exact = household contacts; SD = Standard	4.6 ± 2.71 3.54 ± 3.04 test; #Chi-square t Deviation. We mis	4.85 ± 3.04 4.05 ± 3.44	*0.14 y; MB = multibacillar ables.

Table 2. Demographic and clinical aspects accordingly to the detection mode of leprosy

538 cases in children under 15 years in Sergipe state, Brazil (2002-2015).

		Patient detection mode					
Variables	Spontaneous	Forwarding	Examined HHC	Other			
variables	demand						
	(n = 234)	(n = 210)	(n = 69)	(n = 25)	<i>p</i> -value		
Age mean ± SD	10.54 ± 3.28	10.02 ± 3.15	9.6 ± 3.38	9.6 ± 3.22	*0.04		
Gender n (%)							
Male	123 (52.6)	110 (52.4)	38 (55.1)	09 (36)	[#] 0.41		
Leprosy reaction n (%)	17 (7.3)	28 (13.3)	2 (2.9)	1 (4.0)	[#] 0.02		
Physical disability degree n (%)							
0	199 (85.1)	150 (71.4)	55 (79.7)	18 (72)	[#] 0.04		
1	17 (7.3)	21 (10)	5 (7.2)	1 (4.0)			
2	1 (0.43)	08 (3.8)	0 (0.0)	0 (0.0)			
Number of affected nerves	0.24 ± 0.67	0.34 ± 0.81	0.06 ± 0.25	0.25 ± 0.5	*0.48		
(mean ± SD)							
Number of lesion (mean ± SD)	3.64 ± 6.25	4.09 ± 8.68	2.04 ± 2.96	4 ± 5.2	*0.04		
HHC registered (mean ± SD)	4.57 ± 2.53	4.59 ± 2.74	5.57 ± 3.81	3.45 ± 1.96	*0.04		
HHC examined (mean ± SD)	3.71 ± 3.02	3.02 ± 2.98	4.64 ± 4.06	2.04 ± 1.77	*0.01		

540 *Kruskal-Wallis test; *Chi-square test. PB = paucibacillary; MB = multibacillary; HHC = household contacts;
541 SD = Standard Deviation. We missed data in some variables.
542

BMJ Open

Figure 1. Leprosy incidence rates and temporal trend in state of Sergipe, Northeast Brazil, 2002-2015. A) Leprosy incidence rate (per 100,000 inhabitants) in general population (\blacktriangle), in patients under 15 years old (\blacksquare), degree 2 of physical disability (\blacklozenge) and the tendency line. Temporal trend of standardized incidence rates by Joinpoint Regression for B) patients under 15 years old, C) General population and D) incapacity degree. Data were considered statistically different when p-value < 0.05. CI: Confidence Interval.

Figure 2. Epidemiological, clinical and operational indicators in leprosy patients, state of Sergipe, Brazil, 2002-2015. A) Number of leprosy cases according to the clinical operational classification (Paucibacilary - PB (■) and Multibacilary – MB (■) forms). B) Mean and standard deviation (mean ± SD) of the number of household contacts (HHC) that were registered and examined for leprosy diagnosis. Data were considered statistically different when p-value < 0.05. * Mann-Whitney test.

Figure 3. Spatial analysis maps. Moran Global Index maps and Kernel maps were constructed by TerraView Software 4.2.2. The Moran Global Index (*MGI) was calculated to identify the occurrence of clusters. Moran (A) and Kernel (B) maps of leprosy cases in patients under 15 years old. Moran (C) and Kernel (D) maps of leprosy cases in the general population. Moran (E) and Kernel (F) maps of occurrence of incapacity degree 1 and 2. Sergipe state, Northeast Brazil (2002 – 2015).

Figure 1. Leprosy incidence rates and temporal trend in state of Sergipe, Northeast Brazil, 2002-2015. A) Leprosy incidence rate (per 100,000 inhabitants) in general population (□), in patients under 15 years old (□), degree 2 of physical disability (□) and the tendency line. Temporal trend of standardized incidence rates by Joinpoint Regression for B) patients under 15 years old, C) General population and D) incapacity degree. Data were considered statistically different when p-value < 0.05. CI: Confidence Interval.</p>

85x101mm (300 x 300 DPI)

Figure 2. Epidemiological, clinical and operational indicators in leprosy patients, state of Sergipe, Brazil, 2002-2015. A) Number of leprosy cases according to the clinical operational classification (Paucibacilary - PB (□) and Multibacilary - MB (□) forms). B) Mean and standard deviation (mean ± SD) of the number of household contacts (HHC) that were registered and examined for leprosy diagnosis. Data were considered statistically different when p-value < 0.05. * Mann-Whitney test.

46x18mm (300 x 300 DPI)

Figure 3. Spatial analysis maps. Moran Global Index maps and Kernel maps were constructed by TerraView Software 4.2.2. The Moran Global Index (*MGI) was calculated to identify the occurrence of clusters. Moran (A) and Kernel (B) maps of leprosy cases in patients under 15 years old. Moran (C) and Kernel (D) maps of leprosy cases in the general population. Moran (E) and Kernel (F) maps of occurrence of incapacity degree 1 and 2. Sergipe state, Northeast Brazil (2002 – 2015).

48x64mm (300 x 300 DPI)

1	
2	
3	
4	
5	
0	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
12	
10	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
20	
J∠ 22	
ככ זיכ	
54	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
40	
4/	

STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of cross-sectional studies

Section/Topic	ltem #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	01
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	02
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	04-05
Objectives	3	State specific objectives, including any prespecified hypotheses	05
Methods			
Study design	4	Present key elements of study design early in the paper	06
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	06
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants	06
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	06
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	06-07
Bias	9	Describe any efforts to address potential sources of bias	-
Study size	10	Explain how the study size was arrived at	06
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	06-08
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	08-09
		(b) Describe any methods used to examine subgroups and interactions	08-09
		(c) Explain how missing data were addressed	08-09
		(d) If applicable, describe analytical methods taking account of sampling strategy	08-09
		(e) Describe any sensitivity analyses	08-09
Results			08-09

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility,	09
		confirmed eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	09-10
		(b) Indicate number of participants with missing data for each variable of interest	
Outcome data	15*	Report numbers of outcome events or summary measures	09-10
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence	10-12
		interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	10-12
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	12-13
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	09-11
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	12-14
Generalisability	21	Discuss the generalisability (external validity) of the study results	15
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on	
		which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml