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Supplementary Appendix 1

Predictors Used in the Prognostic Algorithm

Several non-dynamic (baseline or static) and dynamic (longi-

tudinal) predictors were considered during model building and are

described below.

Non-dynamic predictors

Baseline predictors we considered were the International Mis-

sion for Prognosis and Analysis of Clinical Trials in TBI (IM-

PACT) core model prognostic score of unfavorable outcome

(a score that contains information on patient’s admission motor

Glasgow Coma Scale (GCS), pupillary reactivity, and age);

Marshall Computed Tomography (CT) scan classification (I, II,

III, IV, diffuse injury; V, evacuated mass lesion; VI, non-

evacuated mass lesion), presence of subarachnoid hemorrhage

(SAH), presence of epidural hematoma (EDH), presence of hy-

potension, the Injury Severity Score (ISS), and the first intracra-

nial pressure (ICP) value recorded. Other variables collected on

admission such as presence of hypoxia, glucose, and hemoglobin,

were excluded from the analyses because they were not available

for many patients.

Dynamic predictors

We considered the following physiological variables recorded

during the first 24 h after intensive care unit (ICU) admission: ICP,

Supplementary Table S1. Univariate ICP/MAP/CPP Dynamic Predictors of Unfavorable 6-month GOS

Total number
of predictors

Physiological/injury severity/
treatment variable Predictor Time interval

9 ICP, MAP, CPPa Mean/median/standard deviation 1–24 h
258 ICP, MAP, CPP Median 22–24 h

Standard deviation every 5 min, 23–24 h
every 10 min, 22–24 h
every 30 min, 18–24 h
every hour, 12–24 h
every 2 h, 12–24 h

3 ICP, MAP, CPP Coefficient of variation 1–24 h
2 ICP Number of hours that ICP >20/25 mm Hg 1–24 h
2 CPP Number of hours that CPP <50/60 mm Hg 1–24 h
1 ICP Number of times ICP >20 mm Hg for at least

15 consecutive min
1–24 h

1 ICP Number of times ICP >30 mm Hg for at least
10 consecutive min

1–24 h

270 ICP, MAP, CPP Membership to 1 of 10 clusters, using Euclidean
distance/correlation distance/cosine distanceb

1–24 h
18–24 h
12–24 h

2 ICP Area enclosed by a threshold of 20/25 mm Hg and ICP signal
that is above the thresholdc

1–24 h

2 CPP Area enclosed by a threshold of 50/60 mm Hg and CPP signal
that is below the threshold

1–24 h

9 ICP, MAP, CPP FPCA scoresd 1–24 h
90 ICP, MAP, CPP Membership to 1 of 10 clusters, using Euclidean

distance/correlation distance/cosine distance, with FPCA
scores as subject curves

1–24 h

30 ICP, MAP, CPP Ten largest coefficients of the Fourier transform of the signal 1–24 h
30 ICP, MAP, CPP First 10 coefficients of the cepstrum of the signal 1–24 h
1 Motor Glasgow

Coma Scale (GCS)
Best motor GCS 1–24 h

1 surgery Indicator of whether surgery for increased ICP was
performed

1–24 h

1 drug Indicator of whether mannitol or barbiturates were given to
decrease ICP

1–24 h

aICP = intracranial pressure; MAP = mean arterial pressure; CPP = cerebral perfusion pressure.
bClusters are generated via k-means, using three types of distance-measures: Euclidean distance, correlation distance, and cosine distance. Membership

is a binary variable that indicates membership or non-membership to a specific cluster.
cThe area is calculated using the trapezoid rule.
dFunctional Principal Component Analysis (FPCA) scores after applying FPCA to each physiological variable.
GOS, Glasgow Outcome Score.



MAP, cerebral perfusion pressure (CPP), SaO2, temperature, end-tidal

CO2 (ETCO2), partial pressure of oxygen in arterial blood (PaO2), and

partial pressure oxygen of carbon dioxide in the arterial blood

(PaCO2). For ICP, MAP, and CPP, we calculated several summary

measures per subject in different time intervals, including means,

standard deviations, correlations, areas under the curve, duration of

increased ICP episodes, and membership to clusters of signals.1–4 For

SaO2, temperature, and ETCO2, we calculated the number of hours

that the variable was outside a specific threshold, and included these

summarized physiological data as covariates in adjusted ICP transi-

tion rates from a two-state continuous-time Markov chain (CTMC)

model. In addition, we considered the best motor GCS achieved in the

first 24 h post-ICU admission, an indicator of whether a patient had

surgery done for increased ICP, and an indicator of whether a patient

received either barbiturates or mannitol to decrease ICP.

Supplementary Table S1 displays predictors of 6-month GOS for

a single physiological, injury severity, or treatment variable, com-

puted on the full first 24 h-period after ICU admission or on certain

periods of time during those first 24 h. Supplementary Table S2

shows predictors that involve 2 or more physiological or treatment

variables. In general, predictors displayed in Supplementary

Tables S1 and S2 have been previously proposed.2–7 For the ICP

transition rates of Supplementary Table S2, we fitted regular two-

state adjusted CTMC models, that is, we only used the Markov chain

portion of the joint model proposed by Rubin and colleagues.7
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Supplementary Table S2. Multivariate Dynamic Predictors of Unfavorable 6-month GOS

Total number
of predictors

Physiological/treatment
variables Predictor Time interval

2 ICP, CPPa Area enclosed by a threshold of 2/3 mm Hg and the ratio between
mean CPP and ICP in 5-min intervals that is below the
threshold

1–24 h

8 MAP, ICP Mean, standard deviation, minimum, and maximum of
simultaneous Spearman correlationsb

1–24 h

8 MAP, ICP Mean, standard deviation, minimum, and maximum of lagged
Spearman correlationsc

1–24 h

190 ICP, CPP Renyi entropy using 15-min sliding windows (a = 0.1 to 2 in 0.01
increments)d

1–24 h

2 ICP, SaO2, ETCO2, MAP,
temperature, surgery, druge

ICP adjusted transition rate (£ 20 mm Hg to >20 mm Hg)
ICP adjusted transition rate (> 20 mm Hg to £20 mm Hg)f

1–24 h

2 ICP, SaO2, ETCO2, MAP,
temperature, surgery, drug

ICP adjusted transition rate (£ 25 mm Hg to >25 mm Hg)
ICP adjusted transition rate (> 25 mm Hg to £25 mm Hg)

1–24 h

5 ICP, CPP Multivariate FPCA (MFPCA) scores 1–24 h

30 ICP, CPP Membership to 1 of 10 clusters, Euclidean distance/correlation
distance/cosine distance, with MFPCA scores as subject curves.

1–24 h

aICP = intracranial pressure; MAP = mean arterial pressure; CPP = cerebral perfusion pressure.
bCorrelations between ICP and MAP in the same time interval are computed every 10/25 min, where the range of MAP is at least 10 mm Hg.
cCorrelations between ICP and MAP for an ICP time interval that starts 36 sec later than a MAP time interval are computed every 10/25 min, where the

range of MAP is at least 10 mm Hg.
dRenyi entropy defined as: Ra

L ¼ 1
1� a log +pk2 SL

P pkð Þa
� �

, where P pkð Þ is the probability of the ICP/CPP sequence pk , L indicates the length of the
sliding window and a is the selector of probabilities. A ICP/CPP sequence is determined by concatenating ordered 5-min averaged ICP and CPP values in
a sliding window.

eSaO2 = oxygen saturation of arterial blood; ETCO2 = end-tidal CO2.
fICP transition rates of a two-state continuous-time Markov chain, of moving from a low or normal to a high ICP state and vice versa, adjusted by

number of hours that SaO2, ETCO2, MAP, and temperature were abnormal; for ICP transition rate from high to low ICP, also adjusted by whether patient
had surgery for increased ICP and whether they received mannitol or barbiturates to decrease ICP.

MAP, mean arterial pressure; FPCA, ; MFPCA, .



Supplementary Appendix 2

Pre-Processing and Imputation
of Physiological Variables

We removed artifacts and imputed missing data before com-

puting subject features of the 36-sec automated physiological data.

To reduce signal-to-noise ratio and avoid distorted results, we

applied repeated median (RM) regression, a fast method that is

robust to outliers, capable of tracing trends, trend changes and level

shifts, and it is stable with respect to moderate variations in the

data.1 For the RM algorithm, we used a window of width 1 h (100

measurements every 36 sec) and we required a minimum of five

non-missing observations in that time window to get a smoothed

signal. Before applying the smoothing technique, we set to missing

artifacts that fell outside of usual ranges of physiological variables,

where a sequence of unusual values was not observed.

For the missing data problem, we first imputed intracranial

pressure (ICP), mean arterial pressure (MAP), or cerebral perfusion

pressure (CPP) based on the relationship between these variables

(CPP = MAP-ICP). Secondly, we applied an imputation procedure

on the ICP and MAP smoothed data that is similar to the procedure

applied by Yamal and colleagues.2 Briefly, for each patient we used

interpolation to impute intermittent missing data, and for two or

more consecutive missing values, we pooled 2 h of self-data before

or after missingness and imputed from a normal distribution with

mean and standard deviation equal to the mean and standard de-

viation of the pooled data, respectively. When hourly physiological

data were available in periods of missing twice per minute data, the

mean of the normal distribution was computed from the hourly

data. This last approach was adopted only in subsets of the data

where the non-missing 36-sec smoothed data correlated well with

the non-missing hourly data. Once ICP and MAP were complete,

remaining missing CPP values were calculated from these two.

For temperature, ETCO2, and SaO2, we first categorized the twice

per minute smoothed data in normal and abnormal categories, based

on pre-specified thresholds. Then, if data were missing between two

normal categories, we imputed a normal category; if data were

missing between abnormal categories, we imputed an abnormal cat-

egory; and, when missingness occurred between a normal and an

abnormal category (in that order), a normal category was imputed.

After applying this procedure, if there were still missing values, we

imputed values from the hourly physiological data, only for subsets of

the data where the non-missing 36-sec smoothed data correlated well

with the non-missing hourly data. We also used hourly PaCO2 and

PaO2 as surrogate measures to impute ETCO2 and SaO2, respectively.
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Supplementary Appendix 3

Supervised Learning Algorithms used in the Study

Supplementary Table S3 shows a brief description of the su-

pervised learning algorithms applied to the training set of our study

to make predictions on the test set.

In particular, the LASSO algorithm is a linear regularization

method commonly used to perform model selection for models

with many explanatory variables. For a logistic regression model

with a binary response y, a vector of covariates x¼ 1, x1, x2, . . . xp

� �
with associated parameter vector b¼ b0, b1, . . . bp

� �
, and N

subjects, the LASSO regularization method solves the following

problem:

max
b0, bð Þ2Rpþ 1

+N

i¼ 1
yi b0þ xT

i b
� �

� log 1þ eb0 þ xT
i b

� �
� k+p

j¼ 1
bj

�� ��h i

where +p

j¼ 1
bj

�� �� is an L1 penalty term and k is a tuning parameter

that controls the importance of the regularization term. For a suf-

ficient large value of k, the use of the L1 penalty term causes that

some of the regression coefficients shrink to zero.

More details about the algorithms presented on Supplementary

Table S3 can be found in Friedman and colleagues.1
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Supplementary Table S3. Supervised Learning Algorithms Applied to the TBI Data

Algorithm Description

Decision trees (DT) Recursively partitions the data space by doing binary splits on variables
Random forests (RF) Combines a number of decision trees on bootstrapped training samples based on a

random sample of predictors.
Support vector machines (SVM) Finds an optimal hyperplane between two classes using nonlinear boundaries. The

feature space is mapped to a higher dimension using a kernel function, the
hyperplane is fit in that higher dimension, then mapped back to the original feature
space.

Linear discriminant analysis (LDA)/ Quadratic
discriminant analysis (QDA)

Uses a linear/quadratic decision functions to classify an observation into a class. It is
based on the multivariate normal distribution and Bayes theorem.

Least absolute shrink and selector operator
(LASSO)

Linear regularization method that penalizes the absolute magnitude of the coefficients
in a model, effectively doing variable selection.

Logistic regression (LR) Based on the logistic function, a set of predictors are combined linearly using weights
or coefficient values to predict a binary response.



Supplementary Appendix 4

Comparison of Baseline Characteristics

Supplementary Table S4. Baseline Characteristics of Patients in the Training and Test Sets

Patient characteristics
Test

n = 158
Training
n = 472 p valuea

Motor GCS, n (%)
none/extension 48 (31.58) 163 (34.98) 0.369
abnormal flexion 13 (8.55) 34 (7.3)
normal flexion/withdrawal 17 (11.18) 72 (15.45)
localizes/obeys 74 (48.68) 197 (42.27)

Injury severity score, median (IQR)
n = 630 29 (10) 25 (9) < 0.001

Pupil reactivity, n (%)
neither reactive 49 (31.01) 136 (28.94) 0.843
one reactive 18 (11.39) 51 (10.85)
both reactive 91 (57.59) 283 (60.21)

Hypotension, n (%)
Yes 23 (14.56) 56 (11.86) 0.456
No 135 (85.44) 416 (88.14)

Age, median (IQR)
n = 629 29.5 (23) 30 (21) 0.825

Initial ICP, median (IQR)
n = 630 14 (13.75) 13 (13.07) 0.261

Subarachnoid hemorrhage, No. (%)
Yes 109 (68.99) 290 (61.44) 0.179b

No 49 (31.01) 173 (36.65)
unknown 0 (0) 9 (1.91)

Epidural hematoma, No. (%)
Yes 22 (13.92) 63 (13.35) >0.99b

No 136 (86.08) 400 (84.75)
unknown 0 (0) 9 (1.91)

Marshall CT classification, No. (%)
I 0 (0) 8 (1.69) < 0.001
II 69 (43.67) 124 (26.27)
III/IV 32 (20.25) 104 (22.03)
V/VI 57 (36.08) 236 (50)

aTwo-sided chi-square or Fisher’s exact test p value for categorical variables, and Wilcoxon rank sum test p value for continuous variables.
bThe p values were computed excluding the ‘unknown’ category.
GCS, Glasgow Coma Scale; IQR, interquartile range; ICP, intracranial pressure; CT, computed tomography.



Supplementary Table S5. Baseline Characteristics of Patients with Missing GOS and Physiological Data Recorded

versus Patients with Recorded GOS and Physiological Data

Patient characteristics

Recorded GOS and
physiological data

n = 630

Missing GOS and recorded
physiological dataa

n = 193 p valueb

Motor GCS, n (%)
none/extension 211 (34.14) 53 (27.75) 0.151
abnormal flexion 47 (7.61) 10 (5.24)
normal flexion/withdrawal 89 (14.4) 28 (14.66)
localizes/obeys 271 (43.85) 100 (52.36)

Injury severity score, median (IQR)
n = 823 25 (9) 25 (9) 0.249

Pupil reactivity, n (%)
neither reactive 185 (29.37) 41 (21.24) 0.181c

one reactive 69 (10.95) 19 (9.84)
both reactive 374 (59.37) 120 (62.18)
unknown 2 (0.32) 13 (6.74)

Hypotension, n (%)
Yes 79 (12.54) 24 (12.5) >0.99
No 551 (87.46) 168 (87.5)

Age, median (IQR)
n = 822 30 (21) 31 (18) 0.992

Initial ICP, median (IQR)
n = 797 14 (13) 11 (10) 0.001

Subarachnoid hemorrhage, n (%)
Yes 399 (63.33) 124 (64.25) 0.799c

No 222 (35.24) 65 (33.68)
unknown 9 (1.43) 4 (2.07)

Epidural hematoma, n (%)
Yes 85 (13.49) 37 (19.17) 0.062c

No 536 (85.08) 152 (78.76)
unknown 9 (1.43) 4 (2.07)

Marshall CT classification, n (%)
I 8 (1.27) 4 (2.07) 0.094
II 193 (30.63) 76 (39.38)
III/IV 136 (21.59) 36 (18.65)
V/VI 293 (46.51) 77 (39.9)

Best motor GCS in 24 h post-injury, n (%)
none/extension 100 (15.95) 10 (5.21) <0.001
abnormal flexion 19 (3.03) 2 (1.04)
normal flexion/withdrawal 96 (15.31) 25 (13.02)
localizes/obeys 412 (65.71) 155 (80.73)

aTwice per minute or hourly physiological data recorded.
bTwo-sided chi-squared or Fisher’s exact test p value for categorical variables, and Wilcoxon rank sum test p-value for continuous variables.
cThe p values were computed excluding the ‘‘unknown’’ category.
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