Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2019.

Supporting Information

for Adv. Sci., DOI: 10.1002/advs.201900410

Roles of Localized Electronic Structures Caused by π Degeneracy Due to Highly Symmetric Heavy Atom-Free Conjugated Molecular Crystals Leading to Efficient Persistent Room-Temperature Phosphorescence

Shuzo Hirata*

Supporting Information

Roles of Localized Electric Structures caused by π Degeneracy due to Highly Symmetric Heavy Atom-free Conjugated Molecular Crystals leading to Efficient Persistent Room-temperature Phosphorescence

Shuzo Hirata^{*}

Prof. S. Hirata Department of Engineering Science, University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan

E-mail: shuzohirata@uec.ac.jp

Contents

- 1. Materials
- 2. Investigation of the rate constant of intersystem crossing from S_1 to T_1 using quantum chemical calculations
- 3. Analysis of the transfer integrals between two dimers contained in crystalline structure
- 4. Table S1-S10
- 5. Figure S1–S11
- 6. Supporting reference

1. Materials

 $C(C_6H_5)_4$, $Si(C_6H_5)_4$, and $Ge(C_6H_5)_4$ powders were purchased from Tokyo Chemical Industry Co., Ltd. Single crystals of $Si(C_6H_5)_4$ and $Ge(C_6H_5)_4$ were prepared by recrystallization from toluene solutions. The commercially available $C(C_6H_5)_4$ contained many impurities and did not form crystals well in recrystallization procedures. Therefore, single crystals of $C(C_6H_5)_4$ were obtained after purification by column chromatography using toluene/hexane and subsequent recrystallization from a toluene/hexane solution.

2. Investigation of the rate constant of intersystem crossing from S_1 to T_1 using quantum chemical calculations

The large $\Phi_{isc}(RT)$ of C(C₆H₅)₄, Si(C₆H₅)₄, and Ge(C₆H₅)₄ crystals, which were estimated from $\Phi_{isc}(RT)=1-\Phi_f(RT)$, were probably not caused by the crystalline-induced enhancement of $\Phi_{isc}(RT)$. $k_{isc}(T)$ is generally expressed as,^[S1]

$$k_{isc}(T) = \frac{2\pi}{\hbar} \sum_{n} |\langle \Psi_1^1 | \overline{H_{SO}} | \Psi_n^3 \rangle|^2 \exp\left[\frac{-(\lambda + \Delta E_{Tn-S1})^2}{4\lambda kT}\right] / \sqrt{4\lambda kT},$$
(S1)

where $\overline{H_{SO}}$ is the Hamiltonian operator related to SOC between S₁ and T_n, Ψ_1^1 is the wavefunction of S₁, Ψ_n^3 is the wavefunction of a high-order triplet excited state (T_n), λ is the reorganization energy for the intersystem crossing (ISC) from S₁ to T_n, ΔE_{S1-Tn} is the energy difference between T_n and S₁, and k is the Boltzmann constant. $|\langle \Psi_1^1 | \overline{H_{SO}} | \Psi_n^3 \rangle|^2$ of the monomers and dimer 1–5 for C(C₆H₅)₄, Si(C₆H₅)₄, and Ge(C₆H₅)₄ were separately calculated based on first-order perturbative SOC. Figure S3a–c shows the relationships between $|\langle \Psi_1^1 | \overline{H_{SO}} | \Psi_n^3 \rangle|^2$ and ΔE_{Tn-S1} for the monomers and dimer 1–5 of the three types of crystals. In equation S1, λ is generally between 0 and 0.5 eV.^[S1] Therefore, the term exp($-(\lambda + \Delta E_{Tn-S1})^2/4\lambda kT$) in Equation S1 becomes large when ΔE_{Tn-S1} is from –0.5 to 0 eV and $|\langle \Psi_1^1 | \overline{H_{SO}} | \Psi_n^3 \rangle|^2$ at $\Delta E_{Tn-S1}=-0.5-0$ eV mainly contributes to $k_{isc}(RT)$. Therefore, investigation

of $|\langle \Psi_1^1 | \overline{H_{SO}} | \Psi_n^3 \rangle|^2$ at $\Delta E_{\text{Tn-S1}} = -0.5 - 0$ eV is important to discuss $k_{\text{isc}}(\text{RT})$ before and after crystallization. For the C(C₆H₅)₄ monomer, S₁-T₅ to S₁-T₁₄ transitions involve ISC at $\Delta E_{\text{Tn-S1}} = -0.5 - 0$ eV, as shown in the yellow background of (i) in Figure S3a. The integration of $|\langle \Psi_1^1 | \overline{H_{SO}} | \Psi_n^3 \rangle|^2$ at $\Delta E_{\text{Tn-S1}} = -0.5 - 0$ eV was 2.85 cm⁻² for the C(C₆H₅)₄ monomer. For dimer 1, 2, 3, 4, and 5 of the C(C₆H₅)₄ single crystal, the integrated values of $|\langle \Psi_1^1 | \overline{H_{SO}} | \Psi_n^3 \rangle|^2$ at $\Delta E_{\text{Tn-S1}} = -0.5 - 0$ eV were 2.87, 2.87, 2.75, 2.75, and 2.68 cm⁻², respectively (yellow background in Figure S3a). Therefore, $|\langle \Psi_1^1 | \overline{H_{SO}} | \Psi_n^3 \rangle|^2$ at $\Delta E_{\text{Tn-S1}} = -0.5 - 0$ eV does not change much among the monomer and dimer 1–5. Small differences of $|\langle \Psi_1^1 | \overline{H_{SO}} | \Psi_n^3 \rangle|^2$ at $\Delta E_{\text{Tn-S1}} = -0.5 - 0$ eV among the monomer and dimer 1–5 were also observed for Si(C₆H₅)₄ and Ge(C₆H₅)₄ (yellow background in Figure S3b and c, respectively). These findings indicate that $k_{\text{isc}}(\text{RT})$ of C(C₆H₅)₄, Si(C₆H₅)₄, and Ge(C₆H₅)₄ are not affected by crystallization.

3. Analysis of the transfer integrals between two dimers contained in crystalline structure

It has been reported that a rubrene single crystal shows efficient anisotropic triplet exciton migration at RT of over 3 μ m along the *b*-axis of the crystalline structure.^[59,67] Figure S7a(i) and (ii) depict the HOMO and LUMO in a rubrene monomer, respectively. The T₁–S₀ transition of rubrene involves a HOMO–LUMO transition. In a rubrene monomer, both the HOMO and LUMO are delocalized over a tetracene moiety. Because the HOMO and LUMO over the tetracene moiety overlap considerably in the dimer along the *b*-axis of a rubrene crystal, the HOMO and LUMO are delocalized over two tetracene moieties in a dimer (Figure S7a, (i) and (ii)). This causes substantial overlap of HOMOs and LUMOs of the two dimers in a tetramer along the *b*-axis of a rubrene crystal as well (Figure S7a, (iii)). Therefore, the large transfer integrals of holes and electrons in the two dimers explain the large triplet exciton

migration distance along the *b*-axis of a rubrene crystal. The calculated absolute value of the transfer integrals using the two dimers in a tetramer of rubrene were 3.6×10^{-2} eV for holes and 2.2×10^{-2} eV for electrons. On the other hand, the absolute value of the hole transfer integral calculated using dimer 5 of $Ge(C_6H_5)_4$ in a tetramer along the *c*-axis of a $Ge(C_6H_5)_4$ crystal was 1.7×10^{-3} eV. The small hole transfer integral in Ge(C₆H₅)₄ can be explained using a model in which triplet excitons are not delocalized all over dimer 5. Because each HOMO of a $Ge(C_6H_5)_4$ monomer is localized over two phenylene rings rather than four because of its highly symmetric structure, the HOMO of dimer 5 of $Ge(C_6H_5)_4$ is also not delocalized over all four phenylene rings (Figure S7b, (i)). Therefore, the localization of the HOMO of each monomer induces the localization of the HOMOs in dimer 5 for the $Ge(C_6H_5)_4$ structure. Consequently, the HOMOs of the two dimer 5 in a tetramer of $Ge(C_6H_5)_4$ do not overlap (Figure S7b, (iii)). This explains the small hole transfer integral of $Ge(C_6H_5)_4$ crystals. Conversely, the symmetric delocalization of the LUMO of each monomer over all phenylene rings causes delocalization of the LUMOs over all phenylene rings of dimer 5 (Figure S7b, (ii)). This leads to a large overlap between the LUMOs of the two dimer 5 in a tetramer along the c-axis of a $Ge(C_6H_5)_4$ crystal (Figure S7b, (iii)). Therefore, the large electron transfer integral of dimer 5 can be explained by a model in which triplet excitons are delocalized over two dimers. Indeed, the absolute value of the electron transfer integral calculated using dimer 5 of Ge(C₆H₅)₄ in a tetramer along the *c*-axis of a Ge(C₆H₅)₄ crystal was 2.4×10^{-2} eV, which is comparable to that of rubrene. Similar overall characteristics were also observed in pairs of other dimers of $Ge(C_6H_5)_4$ crystals and for the other two types of crystals. Therefore, the localization of HOMOs caused by the highly symmetric structures in $C(C_6H_5)_4$, $Si(C_6H_5)_4$, and $Ge(C_6H_5)_4$ triggers inefficient hole transfer, which contributes to the suppressed triplet exciton diffusion and leads to the minimization of $k_q(RT)$.

4. Table S1-S10

Table S1. Calculated photophysical parameters of isolated $C(C_6H_5)_4$, $Si(C_6H_5)_4$, and $Ge(C_6H_5)_4$. Conformations were optimized using DFT (Gausian09/B3LYP/sdd) calculations. S₁ and T₁ energies and the oscillator strength for the S₀–S₁ transition (*f*) were determined by TD-DFT (Gausian09/B3LYP/sdd) calculations.

Compound	S	1	Т	1	f
	[eV]	[nm]	[eV]	[nm]	
$C(C_6H_5)_4$	4.9793	249.03	3.5129	353.98	0.1490
$Si(C_6H_5)_4$	5.1952	238.68	3.6481	339.90	0.0029
$Ge(C_6H_5)_4$	5.2400	236.64	3.6632	338.50	0.0041

Table S2. Calculated photophysical parameters of $C(C_6H_5)_4$, $Si(C_6H_5)_4$, and $Ge(C_6H_5)_4$ in the crystalline state. Monomer configurations determined by single-crystal X-ray analyses were used to determine the S₁ and T₁ energies and oscillator strength (*f*) for the S₀–S₁ transition by TD-DFT (Gausian09/B3LYP/sdd) calculations.

Crystal	S	1	Т	1	f
	[eV]	[nm]	[eV]	[nm]	
$C(C_{6}H_{5})_{4}$	5.1386	241.31	3.8731	320.16	0.0136
$Si(C_6H_5)_4$	5.3742	230.73	3.9594	313.18	0.0006
$Ge(C_6H_5)_4$	5.4089	229.25	3.9639	312.82	0.0005

		C(C6H5)4			Si(C ₆ H ₅) ₄			Ge(C ₆ H ₅) ₄	
i	kpn	ΔE_{T1} -Ti	Dimer type	k _{pi}	ΔE_{T1} -T _i	Dimer type	k _{pi}	ΔE_{T1} -T _i	Dimer type
	(s ⁻¹)	(eV)		(s ⁻¹)	(eV)		(s ⁻¹)	(eV)	
1	0.0359	0.0000	Dimer 1	0.0333	0.0000	Dimer 5	0.3280	0.0000	Dimer 5
2	0.0361	0.0000	Dimer 2	0.0713	0.0016	Dimer 1	0.6270	0.0035	Dimer 1
3	0.0613	0.0025	Dimer 1	0.0728	0.0016	Dimer 2	0.6543	0.0035	Dimer 2
4	0.0614	0.0025	Dimer 2	0.0254	0.0033	Dimer 5	0.5160	0.0046	Dimer 1
5	0.0740	0.0040	Dimer 5	0.0233	0.0033	Dimer 5	0.5162	0.0046	Dimer 2
6	0.0216	0.0040	Dimer 5	0.0487	0.0039	Dimer 1	0.0061	0.0058	Dimer 3
7	0.1280	0.0043	Dimer 3	0.0475	0.0039	Dimer 2	0.0330	0.0058	Dimer 4
8	0.1282	0.0043	Dimer 4	0.0186	0.0059	Dimer 3	0.8660	0.0061	Dimer 3
9	0.0014	0.0043	Dimer 3	0.0165	0.0059	Dimer 4	0.8344	0.0061	Dimer 4
10	0.0013	0.0043	Dimer 4	0.1180	0.0067	Dimer 3	0.4410	0.0061	Dimer 5
11	0.0807	0.0045	Dimer 3	0.1266	0.0067	Dimer 4	0.1820	0.0139	Dimer 1
12	0.0811	0.0045	Dimer 4	0.0295	0.0070	Dimer 1	0.1858	0.0139	Dimer 2
13	0.0614	0.0047	Dimer 1	0.0296	0.0070	Dimer 2	0.0449	0.0141	Dimer 5
14	0.0616	0.0047	Dimer 2	0.0452	0.0074	Dimer 1	0.0467	0.0141	Dimer 5
15	0.0341	0.0050	Dimer 1	0.0463	0.0074	Dimer 2	0.2030	0.0172	Dimer 1
16	0.0342	0.0050	Dimer 2	0.0272	0.0074	Dimer 3	0.1925	0.0172	Dimer 2
17	0.0543	0.0052	Dimer 5	0.0240	0.0074	Dimer 4	0.1670	0.0178	Dimer 3
18	0.0091	0.0052	Dimer 5	0.0192	0.0075	Dimer 3	0.1634	0.0178	Dimer 4
19	0.0004	0.0052	Dimer 3	0.0243	0.0075	Dimer 4	0.1170	0.0183	Dimer 1
20	0.0004	0.0052	Dimer 4	0.0234	0.0076	Dimer 3	0.1140	0.0183	Dimer 2
21	0.0367	0.0468	Dimer 1	0.0288	0.0076	Dimer 4	0.0048	0.0183	Dimer 3
22	0.0368	0.0468	Dimer 2	0.0447	0.0076	Dimer 1	0.0094	0.0183	Dimer 4
23	0.0272	0.0473	Dimer 1	0.0444	0.0076	Dimer 2	0.0231	0.0185	Dimer 3
24	0.0273	0.0473	Dimer 2	0.0126	0.0076	Dimer 3	0.0159	0.0185	Dimer 4
25	0.0041	0.0475	Dimer 5	0.0120	0.0076	Dimer 4	0.0112	0.0185	Dimer 3
26	0.0001	0.0483	Dimer 3	0.0200	0.0077	Dimer 1	0.0179	0.0185	Dimer 4
27	0.0000	0.0483	Dimer 4	0.0195	0.0077	Dimer 2	0.0628	0.0186	Dimer 1
28	0.0355	0.0484	Dimer 5	0.0532	0.0082	Dimer 5	0.0627	0.0186	Dimer 2
29	0.0691	0.0486	Dimer 3	0.0117	0.0082	Dimer 5	0.0518	0.0190	Dimer 5
30	0.0692	0.0486	Dimer 4	0.0109	0.0082	Dimer 5	0.0518	0.0190	Dimer 5
31	0.0556	0.0653	Dimer 1	0.1900	0.0180	Dimer 5	1.4300	0.0210	Dimer 5
32	0.0558	0.0653	Dimer 2	0.2370	0.0193	Dimer 1	1.3100	0.0231	Dimer 1
33	0.0833	0.0653	Dimer 1	0.2440	0.0193	Dimer 2	1.3198	0.0231	Dimer 2
34	0.0835	0.0653	Dimer 2	0.0068	0.0207	Dimer 3	0.0161	0.0241	Dimer 3
35	0.0941	0.0662	Dimer 5	0.0031	0.0207	Dimer 4	0.0868	0.0241	Dimer 4
36	0.0111	0.0672	Dimer 5	0.1350	0.0209	Dimer 1	2.3300	0.0241	Dimer 3
37	0.0001	0.0673	Dimer 3	0.1271	0.0209	Dimer 2	2.2552	0.0241	Dimer 4
38	0.0001	0.0673	Dimer 4	0.4170	0.0210	Dimer 3	1.5100	0.0242	Dimer 1
39	0.0001	0.0676	Dimer 3	0.4471	0.0210	Dimer 4	1.4914	0.0242	Dimer 2
40	0.1509	0.0676	Dimer 4	0.1760	0.0214	Dimer 5	1.2300	0.0242	Dimer 5

Table S3. k_{pn} and ΔE_{T1} -T_n values of C(C₆H₅)₄, Si(C₆H₅)₄, and Ge(C₆H₅)₄ crystals.

Table S4. Summary of $|H_h|$ and $|H_e|$ of dimer 1–5 of C(C₆H₅)₄, Si(C₆H₅)₄, and Ge(C₆H₅)₄ crystals.

			Dimer 1	Dimer 2	Dimer 3	Dimer4	Dimer 5
	<i>H</i> h	(eV)	4.56×10 ⁻³	6.51×10 ⁻³	2.22×10 ⁻³	1.09×10 ⁻³	1.87×10 ⁻³
$C(C_6H_5)_4$	He	(eV)	1.58×10 ⁻²	1.58×10 ⁻²	1.25×10 ⁻²	1.25×10 ⁻²	3.19×10 ⁻²
C(C ₆ H ₅) ₄	Hh ²	(eV ²)	2.08×10 ⁻⁵	4.24×10 ⁻⁵	4.93×10 ⁻⁶	1.19×10 ⁻⁶	3.50×10⁻⁵
	He ²	(eV ²)	2.49×10 ⁻⁴	2.49×10 ⁻⁴	1.56×10 ⁻⁴	1.56×10 ⁻⁴	1.02×10 ⁻³
	$H_{\rm h}^2 H_{\rm e}^2$	(eV ⁴)	5.18×10 ⁻⁹	1.06×10 ⁻⁸	7.68×10 ⁻¹⁰	1.85×10 ⁻¹⁰	3.56×10 ⁻⁹

			Dimer1	Dimer 2	Dimer 3	Dimer4	Dimer 5
	<i>H</i> h	(eV)	3.73×10 ⁻³	7.02×10⁻³	9.40×10 ⁻⁴	4.40×10 ⁻⁴	8.17×10 ⁻³
$Si(C_6H_5)_4$	<i>H</i> e	(eV)	8.45×10⁻³	8.45×10⁻³	3.01×10 ⁻³	3.01×10 ⁻³	5.03×10 ⁻²
31(C ₆ 11 ₅) ₄	Hh ²	(eV ²)	1.39×10 ⁻⁵	4.93×10 ⁻⁵	8.84×10 ⁻⁷	1.94×10 ⁻⁷	6.67×10 ⁻⁵
	He ²	(eV ²)	7.14×10 ⁻⁵	7.14×10 ⁻⁵	9.06×10 ⁻⁶	9.06×10 ⁻⁶	2.53×10 ⁻³
	Hh ² He ²	(eV4)	9.93×10 ⁻¹⁰	3.52×10 ⁻⁹	8.01×10 ⁻¹²	1.75×10 ⁻¹²	1.69×10 ⁻⁷

Ge	(C ₆ ł	⊣ ₅)₄

			Dimer 1	Dimer 2	Dimer 3	Dimer4	Dimer 5
	<i>H</i> h	(eV)	3.01×10 ⁻³	1.45×10 ⁻²	4.60×10 ⁻⁴	1.91×10 ⁻³	7.32×10 ⁻³
١.	<i>H</i> e	(eV)	7.26×10⁻³	7.26×10⁻³	1.97×10 ⁻³	1.97×10 ⁻³	3.75×10 ⁻²
5/4	Hh ²	(eV ²)	9.06×10 ⁻⁶	2.10×10 ⁻⁴	2.12×10 ⁻⁷	3.65×10 ⁻⁶	5.36×10 ⁻⁵
	He ²	(eV ²)	5.27×10 ⁻⁵	5.27×10 ⁻⁵	3.88×10 ⁻⁶	3.88×10 ⁻⁶	1.41×10 ⁻³
	$H_{\rm h}^2 H_{\rm e}^2$	(eV ⁴)	4.78×10 ⁻¹⁰	1.11×10 ⁻⁸	8.21×10 ⁻¹³	1.42×10 ⁻¹¹	7.53×10 ⁻⁸

Table S5. Spin–orbit matrix elements $(|\langle \Psi_m^1 | \overline{H_{SO}} | \Psi_n^3 \rangle|^2 (\text{cm}^{-2}))$ for dimer 2 in (a) $C(C_6H_5)_4$, (b) $Si(C_6H_5)_4$, and (c) $Ge(C_6H_5)_4$. Red values in (b) are $|\langle \Psi_m^1 | \overline{H_{SO}} | \Psi_n^3 \rangle|^2 > 1.7 \text{ cm}^{-2}$. Red values in (c) are $|\langle \Psi_m^1 | \overline{H_{SO}} | \Psi_n^3 \rangle|^2 > 5.1 \text{ cm}^{-2}$.

(a)

n m	1	2	3	4	5	6	7	8	9	10
1	0.031	0.027	0.018	0.275	0.051	0.381	0.000	0.028	0.020	0.012
2	0.001	0.066	0.011	0.301	0.014	0.090	0.006	0.067	0.091	0.005
3	0.477	0.136	0.001	0.052	0.079	0.128	0.074	0.123	0.071	0.005
4	0.151	0.452	0.000	0.057	0.012	0.453	0.001	0.003	0.061	0.057
5	0.447	0.193	0.023	0.116	0.009	0.003	0.000	0.078	0.021	0.007
6	0.082	0.385	0.003	0.322	0.010	0.001	0.000	0.023	0.083	0.018
7	0.087	0.844	0.020	0.444	0.003	0.017	0.003	0.037	0.132	0.022
8	0.906	0.102	0.094	0.611	0.011	0.085	0.000	0.058	0.020	0.045

(b)

(~)										
n m	1	2	3	4	5	6	7	8	9	10
1	0.074	0.158	0.001	0.055	0.064	0.194	0.001	0.037	0.317	0.433
2	0.030	0.056	0.001	0.001	0.098	0.062	0.001	0.018	0.238	0.298
3	0.073	0.032	0.000	0.140	0.008	0.117	0.000	0.038	0.252	0.102
4	0.028	0.089	0.001	0.019	0.155	0.152	0.000	0.006	0.023	0.236
5	0.048	0.040	0.003	0.020	0.227	0.021	0.001	0.004	0.132	0.400
6	0.100	0.008	0.000	0.041	0.155	0.183	0.001	0.072	0.337	0.031
7	0.081	0.329	0.007	0.229	0.022	0.079	0.000	0.011	0.212	1.800
8	0.318	0.123	0.004	0.241	0.063	0.011	0.000	0.020	2.160	0.351

(c)

n m	1	2	3	4	5	6	7	8	9	10
1	0.464	0.038	0.000	0.205	0.013	0.030	0.030	0.076	5.370	1.860
2	0.014	0.271	0.016	0.091	0.000	0.009	0.012	0.769	2.460	2.650
3	0.363	0.052	0.039	0.117	0.037	0.224	0.006	0.074	0.867	0.879
4	0.133	0.398	0.001	0.041	0.088	0.172	0.001	0.042	0.160	1.330
5	0.184	0.204	0.001	0.006	0.192	0.008	0.000	0.032	0.443	0.627
6	0.014	0.032	0.004	0.425	0.123	0.060	0.001	0.098	0.504	0.124
7	0.670	0.311	0.044	0.509	0.090	0.508	0.000	0.015	5.880	6.630
8	0.180	0.943	0.039	0.620	0.392	0.083	0.000	0.005	6.530	7.510

Table S6. Spin–orbit matrix elements $(|\langle \Psi_m^1 | \overline{H_{S0}} | \Psi_i^3 \rangle|^2 \text{ (cm}^{-2}))$ for dimer 1–5 of C(C₆H₅)₄. The relationship between triplet energy and *i* is shown in Table S3.

i m	1	2	3	4	5	6	7	8	9	10	Number of dimer
1	0.106	0.463	0.044	0.263	0.498	0.639	0.045	0.304	1.180	0.194	Dimer 1
2	0.031	0.027	0.018	0.275	0.051	0.381	0.000	0.028	0.020	0.012	Dimer 2
3	0.001	0.066	0.011	0.301	0.014	0.090	0.007	0.065	0.091	0.004	Dimer 1
4	0.001	0.066	0.011	0.301	0.014	0.090	0.006	0.067	0.091	0.005	Dimer 2
5	0.002	0.196	0.000	0.542	0.042	0.002	0.046	0.372	0.034	0.015	Dimer 5
6	0.196	0.002	0.006	0.000	0.002	0.042	0.045	0.375	0.014	0.033	Dimer 5
7	0.066	0.001	0.012	0.006	0.005	0.603	0.006	0.002	0.139	0.004	Dimer 3
8	0.066	0.000	0.013	0.000	0.000	0.602	0.006	0.002	0.141	0.004	Dimer 4
9	0.001	0.020	0.000	0.645	0.612	0.005	0.000	0.081	0.001	0.149	Dimer 3
10	0.000	0.021	0.000	0.650	0.618	0.000	0.000	0.079	0.000	0.153	Dimer 4
11	0.625	0.000	0.003	0.000	0.000	0.617	0.021	0.001	0.083	0.007	Dimer 3
12	0.624	0.000	0.003	0.000	0.000	0.614	0.022	0.000	0.086	0.006	Dimer 4
13	0.477	0.136	0.001	0.052	0.079	0.127	0.074	0.121	0.070	0.006	Dimer 1
14	0.477	0.136	0.001	0.052	0.079	0.128	0.074	0.123	0.071	0.005	Dimer 2
15	0.151	0.452	0.000	0.057	0.013	0.452	0.001	0.003	0.062	0.056	Dimer 1
16	0.151	0.452	0.000	0.057	0.012	0.453	0.001	0.003	0.061	0.057	Dimer 2
17	0.000	0.467	0.000	0.202	0.000	0.000	0.035	0.254	0.042	0.095	Dimer 5
18	0.466	0.000	0.000	0.000	0.000	0.000	0.036	0.254	0.094	0.041	Dimer 5
19	0.000	0.672	0.000	0.023	0.623	0.000	0.000	0.140	0.005	0.080	Dimer 3
20	0.000	0.672	0.000	0.023	0.624	0.000	0.000	0.144	0.004	0.077	Dimer 4
21	0.447	0.193	0.023	0.117	0.009	0.003	0.000	0.079	0.019	0.008	Dimer 1
22	0.447	0.193	0.023	0.116	0.009	0.003	0.000	0.078	0.021	0.007	Dimer 2
23	0.082	0.385	0.003	0.322	0.010	0.001	0.000	0.023	0.081	0.018	Dimer 1
24	0.082	0.385	0.003	0.322	0.010	0.001	0.000	0.023	0.083	0.018	Dimer 2
25	0.476	0.491	0.000	0.007	0.004	0.004	0.000	0.000	0.063	0.068	Dimer 5
26	0.000	0.498	0.000	0.494	0.000	0.000	0.000	0.116	0.000	0.125	Dimer 3
27	0.000	0.498	0.000	0.495	0.000	0.000	0.000	0.116	0.000	0.125	Dimer 4
28	0.041	0.029	0.053	0.448	0.003	0.003	0.000	0.001	0.038	0.035	Dimer 5
29	0.514	0.000	0.090	0.000	0.000	0.000	0.000	0.001	0.118	0.000	Dimer 3
30	0.514	0.000	0.089	0.000	0.000	0.000	0.000	0.000	0.118	0.000	Dimer 4
31	0.086	0.844	0.020	0.444	0.003	0.017	0.003	0.037	0.128	0.023	Dimer 1
32	0.087	0.844	0.020	0.444	0.003	0.017	0.003	0.037	0.132	0.022	Dimer 2
33	0.906	0.102	0.094	0.611	0.011	0.086	0.000	0.056	0.019	0.044	Dimer 1
34	0.906	0.102	0.094	0.611	0.011	0.085	0.000	0.058	0.020	0.045	Dimer 2
35	0.023	0.021	0.001	1.000	0.000	0.000	0.012	0.000	0.075	0.072	Dimer 5
36	0.023	0.021	0.001	1.000	0.000	0.000	0.012	0.000	0.075	0.072	Dimer 5
37	0.000	1.050	0.000	1.010	0.098	0.000	0.000	0.130	0.000	0.155	Dimer 3
38	0.000	1.050	0.000	1.010	0.098	0.000	0.000	0.132	0.000	0.151	Dimer 4
39	1.040	0.000	0.005	0.000	0.000	0.094	0.001	0.001	0.147	0.000	Dimer 3
40	1.040	0.000	0.005	0.000	0.000	0.094	0.000	0.001	0.152	0.000	Dimer 4

Table S7. Spin–orbit matrix elements $(|\langle \Psi_m^1 | \overline{H_{SO}} | \Psi_i^3 \rangle|^2 (\text{cm}^{-2}))$ for dimer 1–5 of Si(C₆H₅)₄. The relationship between triplet energy and *i* is shown in Table S3. Red values are $|\langle \Psi_m^1 | \overline{H_{SO}} | \Psi_n^3 \rangle|^2 > 1.7 \text{ cm}^{-2}$.

	1	2	3	4	5	6	7	8	9	10	Number of dimer
1	0.074	0.158	0.001	0.055	0.064	0.194	0.001	0.038	0.347	0.413	Dimer 5
2	0.181	0.180	0.000	0.047	0.047	0.006	0.010	0.523	0.059	0.057	Dimer 1
3	0.074	0.158	0.001	0.055	0.064	0.194	0.001	0.037	0.317	0.433	Dimer 2
4	0.031	0.056	0.001	0.001	0.098	0.062	0.001	0.018	0.226	0.314	Dimer 5
5	0.073	0.032	0.000	0.139	0.008	0.117	0.000	0.038	0.257	0.092	Dimer 5
6	0.023	0.022	0.009	0.004	0.068	0.122	0.000	0.000	0.365	0.012	Dimer 1
7	0.030	0.056	0.001	0.001	0.098	0.062	0.001	0.018	0.238	0.298	Dimer 2
8	0.095	0.033	0.000	0.122	0.000	0.131	0.000	0.002	0.376	0.079	Dimer 3
9	0.095	0.033	0.000	0.122	0.000	0.131	0.000	0.003	0.380	0.063	Dimer 4
10	0.008	0.162	0.007	0.000	0.036	0.000	0.000	0.014	0.038	0.696	Dimer 3
11	0.008	0.162	0.007	0.000	0.036	0.000	0.000	0.015	0.032	0.700	Dimer 4
12	0.022	0.023	0.009	0.068	0.004	0.121	0.000	0.046	0.012	0.366	Dimer 1
13	0.073	0.032	0.000	0.140	0.008	0.117	0.000	0.038	0.252	0.102	Dimer 2
14	0.058	0.058	0.000	0.120	0.120	0.000	0.040	0.364	0.304	0.302	Dimer 1
15	0.028	0.089	0.001	0.019	0.155	0.152	0.000	0.006	0.023	0.236	Dimer 2
16	0.082	0.070	0.000	0.058	0.000	0.253	0.001	0.001	0.356	0.166	Dimer 3
17	0.082	0.071	0.000	0.058	0.000	0.253	0.001	0.000	0.352	0.134	Dimer 4
18	0.030	0.001	0.000	0.064	0.389	0.008	0.000	0.089	0.029	0.029	Dimer 3
19	0.032	0.002	0.000	0.063	0.391	0.005	0.000	0.089	0.034	0.025	Dimer 4
20	0.001	0.007	0.006	0.002	0.008	0.390	0.000	0.001	0.009	0.181	Dimer 3
21	0.001	0.007	0.006	0.001	0.005	0.393	0.000	0.001	0.007	0.235	Dimer 4
22	0.061	0.001	0.000	0.058	0.000	0.169	0.000	0.222	0.003	0.046	Dimer 1
23	0.048	0.040	0.003	0.020	0.227	0.021	0.001	0.004	0.132	0.400	Dimer 2
24	0.072	0.023	0.001	0.028	0.354	0.000	0.000	0.068	0.369	0.074	Dimer 3
25	0.070	0.023	0.001	0.030	0.355	0.000	0.000	0.064	0.367	0.076	Dimer 4
26	0.001	0.061	0.000	0.000	0.058	0.170	0.001	0.022	0.046	0.003	Dimer 1
27	0.100	0.008	0.000	0.041	0.155	0.183	0.001	0.072	0.337	0.031	Dimer 2
28	0.028	0.089	0.001	0.019	0.156	0.151	0.001	0.005	0.029	0.235	Dimer 5
29	0.048	0.040	0.004	0.020	0.227	0.020	0.000	0.003	0.120	0.412	Dimer 5
30	0.099	0.008	0.000	0.041	0.153	0.184	0.001	0.071	0.335	0.026	Dimer 5
31	0.081	0.329	0.007	0.229	0.022	0.079	0.000	0.010	0.170	1.810	Dimer 5
32	0.094	0.094	0.000	0.362	0.363	0.021	0.007	0.512	1.400	1.400	Dimer 1
33	0.081	0.329	0.007	0.229	0.022	0.079	0.000	0.011	0.212	1.800	Dimer 2
34	0.525	0.000	0.000	0.419	0.029	0.004	0.001	0.000	2.540	0.022	Dimer 3
35	0.525	0.000	0.000	0.418	0.029	0.004	0.001	0.001	2.550	0.012	Dimer 4
36	0.340	0.339	0.000	0.221	0.222	0.000	0.030	0.741	1.190	1.180	Dimer 1
37	0.318	0.123	0.004	0.241	0.063	0.011	0.000	0.020	2.160	0.351	Dimer 2
38	0.000	0.510	0.003	0.000	0.001	0.025	0.000	0.007	0.029	2.550	Dimer 3
39	0.000	0.510	0.003	0.000	0.001	0.025	0.000	0.011	0.009	2.570	Dimer 4
40	0.081	0.329	0.007	0.229	0.022	0.079	0.000	0.010	0.170	1.810	Dimer 5

Table S8. Spin–orbit matrix elements $(|\langle \Psi_m^1 | \overline{H_{SO}} | \Psi_i^3 \rangle|^2 (\text{cm}^{-2}))$ for dimer 1–5 of Ge(C₆H₅)₄. The relationship between triplet energy and *i* is shown in Table S3. Red values are $|\langle \Psi_m^1 | \overline{H_{SO}} | \Psi_n^3 \rangle|^2 > 5.1 \text{ cm}^{-2}$.

m	1	2	3	4	5	6	7	8	9	10	Number
1											of dimer
1	0.261	0.261	0.000	0.226	0.226	0.079	0.168	4.710	0.645	0.646	Dimer 5
2	0.464	0.037	0.000	0.205	0.013	0.030	0.030	0.077	5.390	1.800	Dimer 1
3	0.464	0.038	0.000	0.205	0.013	0.030	0.030	0.076	5.370	1.860	Dimer 2
4	0.014	0.271	0.016	0.091	0.000	0.009	0.012	0.768	2.450	2.650	Dimer 1
5	0.014	0.271	0.016	0.091	0.000	0.009	0.012	0.769	2.460	2.650	Dimer 2
6	0.288	0.001	0.000	0.254	0.001	0.001	0.009	0.002	5.850	0.017	Dimer 3
7	0.353	0.001	0.000	0.223	0.001	0.000	0.009	0.003	8.420	0.122	Dimer 4
8	0.000	0.291	0.006	0.001	0.000	0.000	0.000	0.946	0.025	5.970	Dimer 3
9	0.104	0.233	0.004	0.049	0.000	0.000	0.000	0.946	2.890	5.850	Dimer 4
10	0.167	0.167	0.027	0.155	0.156	0.000	0.097	2.500	2.340	2.350	Dimer 5
11	0.363	0.052	0.039	0.117	0.037	0.224	0.005	0.074	0.903	0.829	Dimer 1
12	0.363	0.052	0.039	0.117	0.037	0.224	0.006	0.074	0.867	0.879	Dimer 2
13	0.474	0.000	0.087	0.008	0.090	0.078	0.006	0.015	0.502	0.028	Dimer 5
14	0.000	0.475	0.086	0.090	0.008	0.080	0.000	0.271	0.029	0.502	Dimer 5
15	0.133	0.398	0.001	0.041	0.088	0.172	0.001	0.042	0.170	1.370	Dimer 1
16	0.133	0.398	0.001	0.041	0.088	0.172	0.001	0.042	0.160	1.330	Dimer 2
17	0.017	0.057	0.003	0.001	0.002	0.226	0.000	0.081	0.115	1.050	Dimer 3
18	0.114	0.057	0.003	0.049	0.002	0.138	0.000	0.043	2.860	1.050	Dimer 4
19	0.184	0.204	0.001	0.006	0.192	0.008	0.000	0.032	0.429	0.656	Dimer 1
20	0.184	0.204	0.001	0.006	0.192	0.008	0.000	0.032	0.443	0.627	Dimer 2
21	0.034	0.003	0.000	0.529	0.228	0.000	0.001	0.002	0.959	0.028	Dimer 3
22	0.139	0.002	0.000	0.577	0.146	0.000	0.001	0.003	3.730	0.046	Dimer 4
23	0.025	0.487	0.003	0.003	0.011	0.244	0.000	0.104	0.132	0.007	Dimer 3
24	0.234	0.389	0.001	0.060	0.045	0.175	0.000	0.071	2.890	0.022	Dimer 4
25	0.523	0.023	0.000	0.053	0.233	0.012	0.001	0.006	0.050	0.113	Dimer 3
26	0.523	0.121	0.000	0.091	0.161	0.048	0.001	0.023	2.850	0.115	Dimer 4
27	0.014	0.032	0.004	0.425	0.123	0.060	0.001	0.098	0.507	0.130	Dimer 1
28	0.014	0.032	0.004	0.425	0.123	0.060	0.001	0.098	0.504	0.124	Dimer 2
29	0.000	0.104	0.000	0.459	0.016	0.115	0.000	0.527	0.009	1.560	Dimer 5
30	0.104	0.000	0.000	0.016	0.460	0.116	0.004	0.000	0.044	0.132	Dimer 5
31	0.353	0.353	0.000	0.611	0.611	0.439	0.040	3.930	8.940	8.950	Dimer 5
32	0.670	0.311	0.044	0.509	0.090	0.508	0.000	0.015	6.040	6.440	Dimer 1
33	0.670	0.311	0.044	0.509	0.090	0.508	0.000	0.015	5.880	6.630	Dimer 2
34	1.250	0.001	0.000	0.962	0.461	0.018	0.000	0.008	15.200	0.043	Dimer 3
35	0.800	0.002	0.000	0.941	0.461	0.017	0.000	0.016	10.300	0.157	Dimer 4
36	0.001	1.210	0.109	0.000	0.007	0.494	0.000	0.001	0.062	15.400	Dimer 3
37	0.105	0.716	0.091	0.048	0.008	0.494	0.001	0.001	2.930	7.780	Dimer 4
38	0.180	0.943	0.039	0.620	0.392	0.083	0.000	0.005	6.380	7.740	Dimer 1
39	0.180	0.943	0.039	0.620	0.392	0.083	0.000	0.005	6.530	7.510	Dimer 2
40	0.353	0.353	0.000	0.611	0.611	0.439	0.040	3.930	8.940	8.950	Dimer 5

Table S9. Relationships between $\mu_{S_m \to S_0}^2$ (D²) and *m* of dimer 1–5 in C(C₆H₅)₄, Si(C₆H₅)₄, and Ge(C₆H₅)₄.

C(C ₆ H ₅) ₄	Type m	1	2	3	4	5	6	7	8	9	10
	Dimer 1	0.423	0.423	1.370	0.443	0.145	0.000	0.032	0.032	0.045	4.060
	Dimer 2	0.831	0.257	0.222	0.518	0.439	0.389	2.070	0.389	0.585	0.044
	Dimer 3	0.927	0.000	0.973	0.000	0.005	2.450	1.020	0.002	0.820	0.002
	Dimer4	0.927	0.000	0.973	0.000	0.007	2.460	1.000	0.001	0.848	0.002
	Dimer5	0.492	0.488	0.304	0.000	1.660	1.660	0.001	0.035	0.741	0.746
	Type m	1	2	3	4	5	6	7	8	9	10
	Dimer1	0.179	1.070	0.412	0.651	0.065	0.540	0.005	0.003	0.853	2.770
$Si(C_6H_5)_4$	Dimer 2	0.179	1.070	0.412	0.651	0.065	0.549	0.005	0.005	0.741	2.870
	Dimer 3	0.000	0.962	1.080	0.003	0.005	0.522	0.000	0.009	0.035	3.710
	Dimer4	0.000	0.962	1.080	0.003	0.005	0.522	0.001	0.011	0.012	3.980
	Dimer5	0.216	0.219	0.000	0.509	0.509	0.288	0.505	0.505	1.350	1.350
	туре т	1	2	3	4	5	6	7	8	9	10
	Dimer1	0.092	0.480	0.230	0.435	0.003	0.423	0.002	0.003	2.070	3.510
$Ge(C_6H_5)_4$	Dimer 2	0.092	0.480	0.230	0.435	0.003	0.423	0.002	0.003	2.160	3.420
	Dimer 3	0.000	0.505	0.531	0.001	0.001	0.371	0.009	0.001	0.017	4.110
	Dimer4	0.000	0.505	0.531	0.001	0.000	0.371	0.012	0.000	0.082	4.040
	Dimer 5	0.123	0.123	0.000	0.245	0.245	0.285	0.700	0.705	1.880	1.880

	m	1	2	3	4	5	6	7	8	9	10	
	S _m -S ₀ energy (eV)	5.031	5.034	5.050	5.050	5.230	5.270	5.270	5.300	5.320	5.330	
C(C ₆ H ₅) ₄	T1-S0 energy (eV)	3.960										
	Δ <i>E</i> T1-Sm (eV)	1.071	1.075	1.086	1.089	1.269	1.307	1.314	1.342	1.360	1.372	
	m	1	2	3	4	5	6	7	8	9	10	
	S _m -S ₀ energy (eV)	5.266	5.278	5.280	5.290	5.300	5.310	5.370	5.380	5.420	5.430	
Si(C ₆ H ₅) ₄	T1-S0 energy (eV)	4.035										
	Δ <i>E</i> _{T1-Sm} (eV)	1.230	1.243	1.247	1.251	1.268	1.271	1.336	1.343	1.389	1.393	
	m	1	2	3	4	5	6	7	8	9	10	
	Sm-So energy (eV)	5.327	5.338	5.340	5.340	5.370	5.370	5.400	5.410	5.510	5.520	
$Ge(C_6H_5)_4$	T ₁ -S ₀											

1.297

4.047

1.322

1.325

1.363

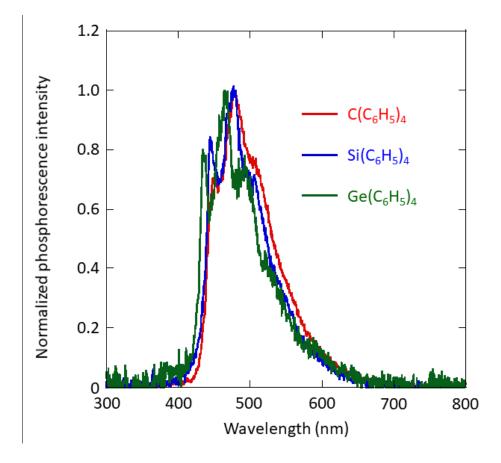
1.357

1.465

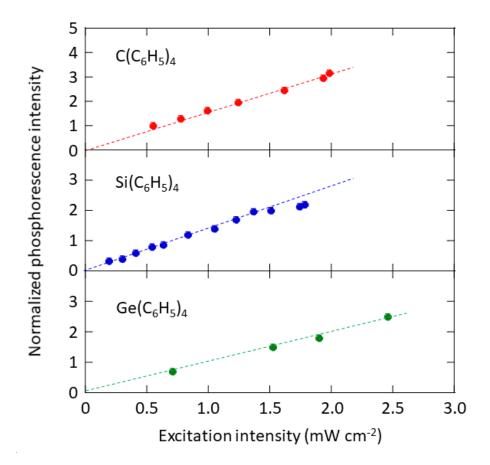
1.477

Table S10. Summary of S_m -S₀ energies and ΔE_{T1-Sm} of dimer 2 of $C(C_6H_5)_4$, $Si(C_6H_5)_4$, and $Ge(C_6H_5)_4.$

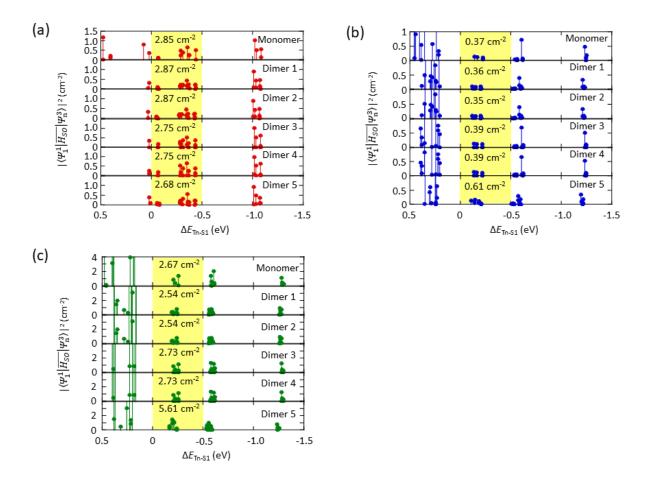
energy (eV)

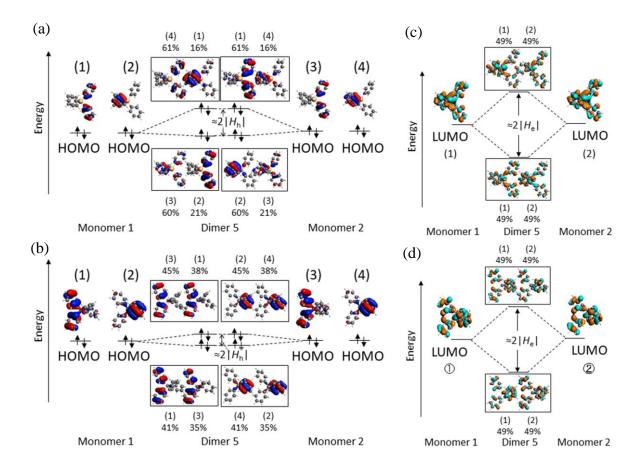

Δ*E*_{T1-Sm} (eV)

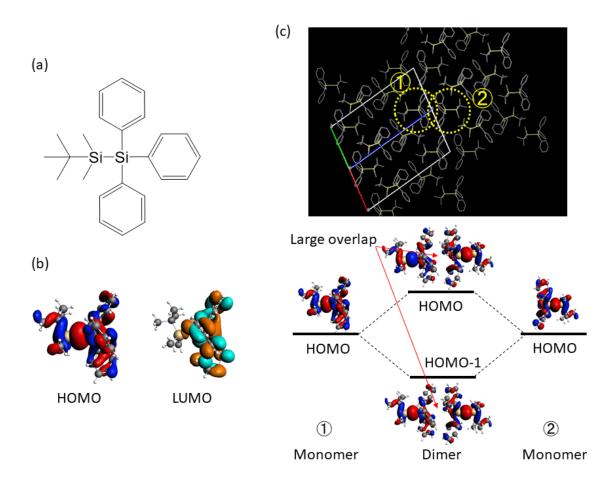
1.281

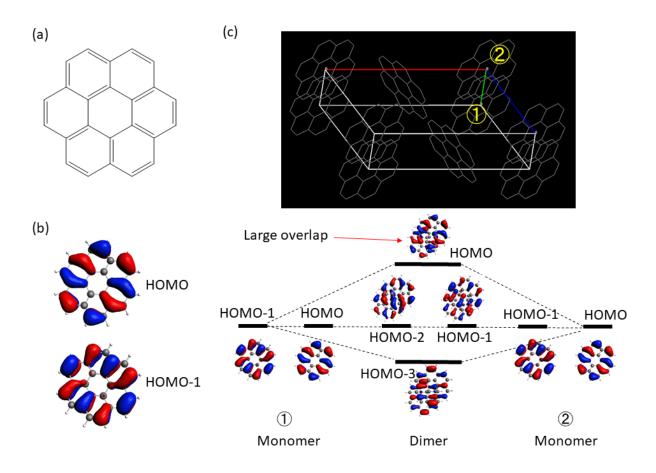

1.292

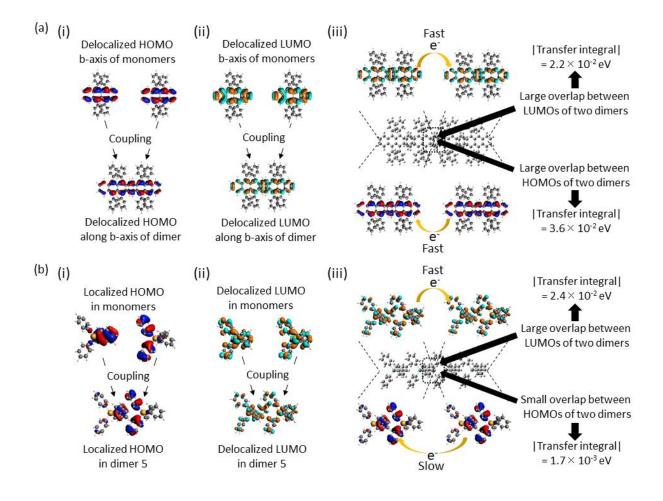
1.292

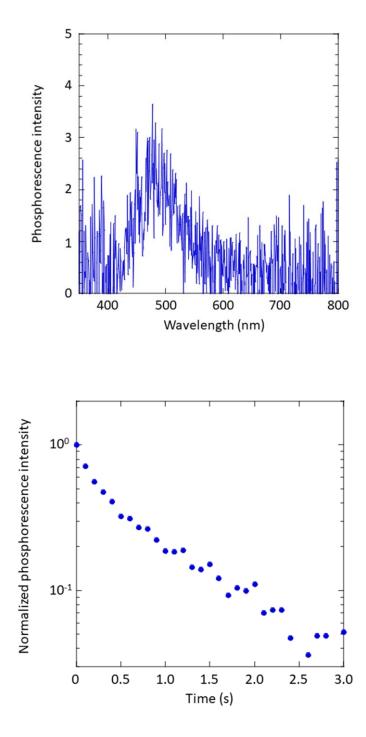

5. Figure S1–S11

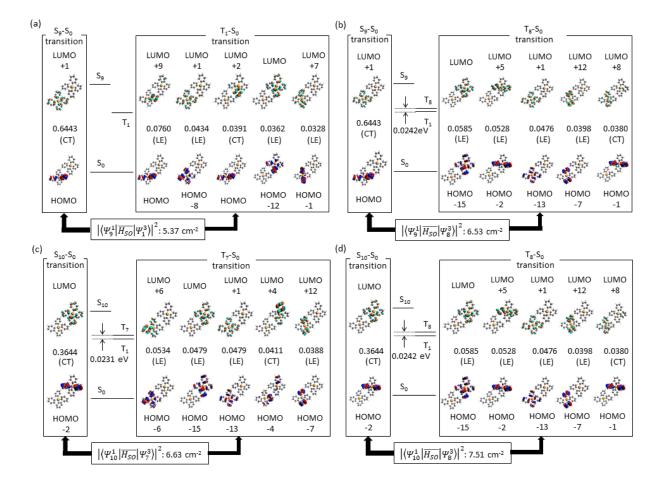

Figure S1. Phosphorescence spectra of $C(C_6H_5)_4$, $Si(C_6H_5)_4$, and $Ge(C_6H_5)_4$ in 2-methyl-tetrahydrofuran at 77 K. Spectra were measured soon after ceasing excitation at 280 nm.

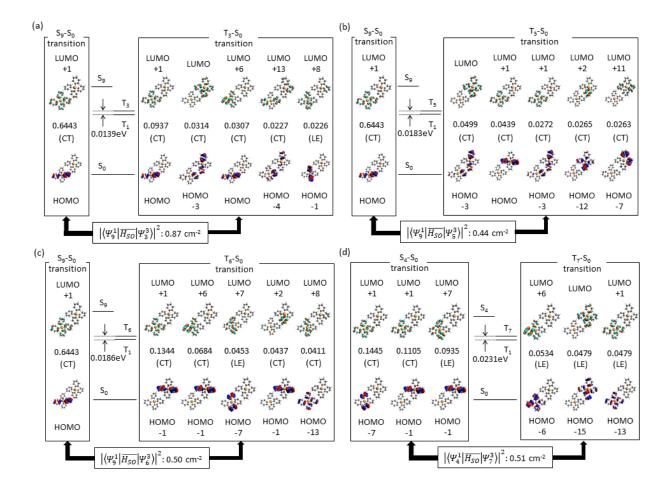

Figure S2. Dependence of RTP intensity change of $C(C_6H_5)_4$, $Si(C_6H_5)_4$, and $Ge(C_6H_5)_4$ crystals on excitation intensity at 280 nm.


Figure S3. Relationships between $|\langle \Psi_1^1 | \overline{H_{S0}} | \Psi_n^3 \rangle|^2$ and $\Delta E_{\text{Tn-S1}}$ of monomers and dimer 1–5 of (a) C(C₆H₅)₄, (b) Si(C₆H₅)₄, and (c) Ge(C₆H₅)₄.


Figure S4. Structures of MOs causing small $|H_h|$ and large $|H_e|$ of Si(C₆H₅)₄ and C(C₆H₅)₄ crystals. (a) Electronic structures causing small $|H_h|$ of dimer 5 of Si(C₆H₅)₄. (b) Electronic structures causing small $|H_h|$ of dimer 5 of C(C₆H₅)₄. (c) Electronic structures causing large $|H_e|$ of dimer 5 of Si(C₆H₅)₄. (d) Electronic structures causing large $|H_e|$ of dimer 5 of C(C₆H₅)₄.


Figure S5. Molecular, electronic, and crystalline structures of (*tert*-butyldimethylsilyl)triphenylsilane. (a) Chemical structure. (b) HOMO and LUMO of a monomer. (c) Crystalline structure and molecular orbitals related to the hole transfer integral of a dimer in the crystal.


Figure S6. Molecular, electronic, and crystalline structures of coronene. (a) Chemical structure. (b) HOMO and LUMO of a monomer. (c) Crystalline structure and molecular orbitals related to hole transfer integral of a dimer in the crystal.


Figure S7. Dependence of the HOMOs and LUMOs of rubrene and $Ge(C_6H_5)_4$ on molecular stacking. (a) (i) Change of HOMO caused by dimerization of two rubrene monomers along the *b*-axis of a rubrene crystal. (ii) Change of LUMO caused by dimerization of two rubrene monomers along the *b*-axis of a rubrene crystal. (iii) Overlap of the HOMOs and LUMOs of each rubrene dimer in a tetramer along the *b*-axis of a rubrene crystal and hole and electron transfer integrals between the two dimers in the tetramer. (b) (i) Change of HOMO caused by dimerization of two Ge(C₆H₅)₄ monomers along the *c*-axis of a Ge(C₆H₅)₄ crystal. (ii) Change of LUMO caused by dimerization of two Ge(C₆H₅)₄ monomers along the *c*-axis of a Ge(C₆H₅)₄ dimer in a tetramer along the Ge(C₆H₅)₄ crystal. (iii) Overlap of HOMOs and LUMOs of each Ge(C₆H₅)₄ dimer in a tetramer along the *c*-axis of a Ge(C₆H₅)₄ dimer in a tetramer along the Ge(C₆H₅)₄ crystal. (iii) Overlap of HOMOs and LUMOs of each Ge(C₆H₅)₄ dimer in a tetramer along the *c*-axis of a Ge(C₆H₅)₄ dimer in a tetramer along the tetramer.

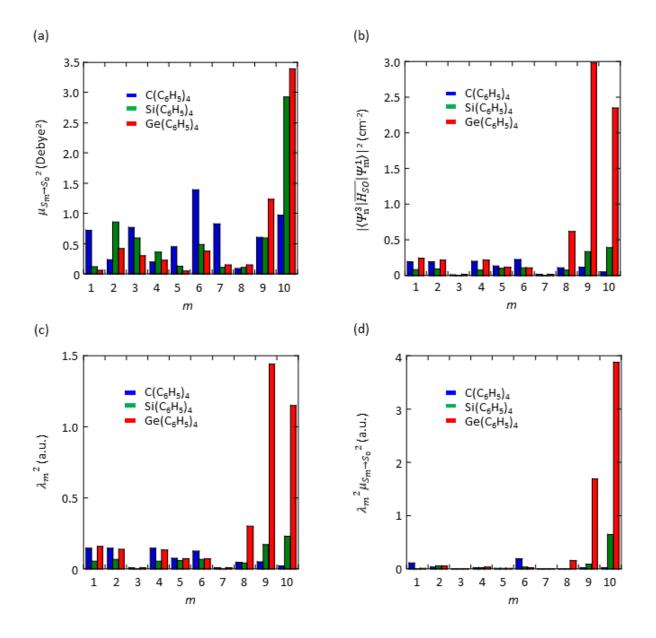

Figure S8. (a) RTP spectrum and (b) decay characteristics of a 1 wt% $Si(C_6H_5)_4$ -doped Zeonex film under vacuum conditions. Excitation wavelength is 280 nm.

Figure S9. MOs related to the S_m-S_0 and T_n-S_0 transitions contributing to the large $|\langle \Psi_m^1 | \overline{H_{S0}} | \Psi_n^3 \rangle|^2$ of dimer 2 of Ge(C₆H₅)₄. (a) MOs related to the S₉–S₀ and T₁–S₀ transitions and value of $|\langle \Psi_9^1 | \overline{H_{S0}} | \Psi_1^3 \rangle|^2$. (b) MOs related to the S₉–S₀ and T₈–S₀ transitions and value of $|\langle \Psi_9^1 | \overline{H_{S0}} | \Psi_8^3 \rangle|^2$. (c) MOs related to the S₁₀–S₀ and T₇–S₀ transitions and value of $|\langle \Psi_{10}^1 | \overline{H_{S0}} | \Psi_7^3 \rangle|^2$. (d) MOs related to the S₁₀–S₀ and T₈–S₀ transitions and value of $|\langle \Psi_{10}^1 | \overline{H_{S0}} | \Psi_7^3 \rangle|^2$.

Figure S10. MOs related to the S_m-S_0 and T_n-S_0 transitions contributing to small $|\langle \Psi_m^1 | \overline{H_{S0}} | \Psi_n^3 \rangle|^2$. (a) MOs related to the S_9-S_0 and T_3-S_0 transitions and value of $|\langle \Psi_9^1 | \overline{H_{S0}} | \Psi_3^3 \rangle|^2$ for dimer 2 of Ge(C₆H₅)₄. (b) MOs related to the S₉–S₀ and T₅–S₀ transitions and value of $|\langle \Psi_9^1 | \overline{H_{S0}} | \Psi_5^3 \rangle|^2$ for dimer 2 of Ge(C₆H₅)₄. (c) MOs related to the S₉–S₀ and T₆–S₀ transitions and value of $|\langle \Psi_9^1 | \overline{H_{S0}} | \Psi_6^3 \rangle|^2$ for dimer 2 of Ge(C₆H₅)₄. (c) MOs related to the S₉–S₀ and T₆–S₀ transitions and value of $|\langle \Psi_9^1 | \overline{H_{S0}} | \Psi_6^3 \rangle|^2$ for dimer 2 of Ge(C₆H₅)₄. (d) MOs related to the S₉–S₀ and T₆–S₀ and T₇–S₀ transitions and value of $|\langle \Psi_9^1 | \overline{H_{S0}} | \Psi_6^3 \rangle|^2$ for dimer 2 of Ge(C₆H₅)₄. (d) MOs related to the S₄–S₀ and T₇–S₀ transitions and value of $|\langle \Psi_9^1 | \overline{H_{S0}} | \Psi_6^3 \rangle|^2$ for dimer 2 of Ge(C₆H₅)₄.

Figure S11. Relationships between photophysical parameters related to k_p and m for C(C₆H₅)₄, Si(C₆H₅)₄, and Ge(C₆H₅)₄ crystals. (a) Relationship between m and $\mu_{S_m \to S_0}{}^2$ averaged for i=1-40 of dimer 1–5. (b) Relationship between m and $|\langle \Psi_n^1 | \overline{H_{SO}} | \Psi_i^3 \rangle|^2$ averaged for i=1-40 of dimer 1–5. (c) Relationship between m and λ_m^2 averaged for i=1-40 of dimer 1–5. (d) Relationship between m and $\mu_{S_m \to S_0}{}^2 \lambda_m{}^2$ averaged for i=1-40 of dimer 1–5.

6. Supporting reference

(S1) K. Schmidt, S. Brovelli, V. Coropceanu, D. Baljonne, J. Cornil, C. Bazzini, T. Caronna, R. Tubino, F. Meinardi, Z. Shuai, J-L. Bredas, *J. Phys. Chem. A* **2007**, *111*, 10490.