Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2019.

Supporting Information

for Adv. Sci., DOI: 10.1002/advs.201900151

Stabilized Molybdenum Trioxide Nanowires as Novel Ultrahigh-Capacity Cathode for Rechargeable Zinc Ion Battery

Xinjun He, Haozhe Zhang, Xingyu Zhao, Peng Zhang, Minghua Chen,* Zhikun Zheng, Zhiji Han, Tingshun Zhu, Yexiang Tong, and Xihong Lu*

Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2019.

Supporting Information

Stabilized Molybdenum Trioxide Nanowires as Novel Ultrahigh-Capacity Cathode for Rechargeable Zinc ion Battery

Xinjun He,^{a,b} Haozhe Zhang,^b Xingyu Zhao,^a Peng Zhang,^c Minghua Chen, *^a Zhikun Zheng,^b Zhiji Han,^b Tingshun Zhu,^b Yexiang Tong,^b and Xihong Lu*^{a,b}

^aKey Laboratory of Engineering Dielectric and Applications (Ministry of Education), Harbin University of Science and Technology, Harbin 150080, China. E-mail: <u>mhchen@hrbust.edu.cn (</u>M. Chen)
^bMOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Lowcarbon Chem & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China.
E-mail: <u>luxh6@mail.sysu.edu.cn</u> (X. Lu)
^cSchool of Environment and Civil Engineering, Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, Dongguan University of Technology, Dongguan 523808, China.

Figure S1. XPS survey spectrum of MoO₃ nanowire sample.

Figure S2. XRD pattern of sample at different voltages in the first discharge segment.

Figure S3. XRD pattern of MoO₃ at original state or after different charging and discharging cycles.

Figure S4. Zinc content in extraction-state MoO₃ after different charge-discharge cycles.

Figure S5. Zn 2p XPS spectra for MoO₃ at pristine, extraction and insertion state.

Figure S6. TEM-Mapping of (a-d) extraction state and (e-h) insertion state of MoO₃ electrode.

Figure S7. SEM images of MoO₃ at (a) 0.2 V (insertion state) and (b) 1.3 V (extraction state). Nether figures are corresponding SEM mapping data.

Figure S8. Ex-situ SEM images of cathode at different voltages in one charge/discharge cycle.

Figure S9. SEM of insertion state cathode discharge at (a) 4 A g^{-1} , (b) 1.6 A g^{-1} , (c) 0.8 A g^{-1} and (d) 0.4 A g^{-1} .

Figure S10. Standard curve of UV-Visible spectra for quantitative analyse of concentration of Mo species (C_{Mo}).

Figure S11. UV-Visible spectra of aqueous electrolyte after (a) pristine and (b) extractionstate MoO_3 were immersed for different time.

Figure S12. UV-Visible spectra of (a) aqueous electrolyte and (b) quasi-solid-state electrolyte after different charge-discharge cycles.

Figure S13. SEM image of insertion-state MoO₃ in quasi-solid-state electrolyte.

Figure S14. Zinc atom content of cathode in quasi-solid-state electrolyte at different voltages in first charge/discharge cycle.

Figure S15. Nyquist plots of the aqueous and quasi-solid-state Zn//MoO₃ batteries. The inset shows the equivalent-circuit diagram.

Figure S16. Rate performance of the quasi-solid-state device.

Figure S17. Capacity of the quasi-solid-state battery under different current densities (1C = 0.4 A g^{-1}).