Table S1. Summary of endogenous metabolites, which are substrates of OATP1B1 and have been evaluated as OATP1B1-mediated drug-drug interaction biomarkers. This table summarizes the metabolites and their evidence (i) as substrates of different influx and efflux transporters; (ii) in clinical OATP1B1-mediated drug-drug interactions (human, preclinical studies); (iii) from human genetic studies with OATP1B1-Val174Ala or knockout mice; and (iv) from disease associations.

Metabolite Class	Metabolite and Transporter Substrate and Inhibitor Profile	Fold increase (if available) by OATP1B1 inhibitor	Fold increase by other transporter inhibitor (species)	Human genetic polymorphism; knockout mice; human disease	References
Porphyrin (arising from heme synthesis)	Coproporphyrin I (CP-I) Substrate: OATP1B1, OATP1B3, MRP2, MRP3 Inhibitor: OATP2B1, OCT1, OCT2, OAT1, OAT3, NTCP	Rifampicin:AUC, 4-fold (human)Rifampicin:Cmax, 5.7-fold (human)Rifampicin:AUC, 2.7-fold (monkey)Cyclosporine:AUC, 2.6-fold(monkey)Various OATP1B1 inhibitors:Various OATP1B1 inhibitors:AUC1.4-fold (mild inhibitor), AUC, 2-3-fold(moderate inhibitor)GDC-0810 (weak inhibitor):AUC 1.5-fold	NA	<u>Mice</u> : Oatp1a/1b(-/-) increased CPs in plasma and urine (>7-fold) <u>Human</u> : (this paper) <u>Human disease</u> : Dubin Johnson	1-6
Porphyrin (arising from heme synthesis)	Coproporphyrin III (CP-III) Substrate: OATP1B1, OATP1B3, OATP2B1, MRP2, MRP3 Inhibitor: OCT1, OCT2, OAT1, OAT3, NTCP	Rifampicin: AUC, 3.3-fold (human) <u>Rifampicin:</u> C _{max} , 5.4-fold (human) <u>Rifampicin</u> : AUC, 3.6-fold (monkey) <u>Cyclosporin:</u> AUC, 5.2-fold (monkey) <u>Various OATP1B1 inhibitors</u> : AUC, 2-3-fold (moderate inhibitor) ≥5-fold (strong inhibitor) <u>GDC-0810 (weak inhibitor)</u> : AUC 1.5 fold	NA	No (this paper) <u>Human disease</u> : Dubin Johnson	1-4
Heme (degradation product of heme)	Bilirubin Substrate: OATP1B1, OATP1B3, MRP2 Inhibitor: none characterized	<u>Rifampicin</u> : AUC increased (rat, human)	NA	Mice: Oatp1a/1b(-/-) increased total bilirubin and bilirubin glucuronides in plasma and/or urine <u>Human</u> : Yes <u>Human disease</u> : Rotor syndrome, a rare, benign hereditary conjugated hyperbilirubinemia	7-12
Dicarboxylic acid	Tetradecanedioic acid (TDA) Substrate: OATP1B1, OAT1, OAT3 Not substrate of: OATP1B3, OATP2B1, NTCP. Not inhibitor of: P-gp, MRP2, BCRP, BSEP	<u>Rifampicin</u> : AUC, 3.2-fold (human) <u>Rifampicin</u> : C _{max} , 2.2-fold (human) <u>CSA</u> : 30 min after CSA (GCDCA-G) (human)	Probenecid: AUC, 2.8-fold (monkey) Probenecid: C _{max} , 2.3-fold (monkey)	<u>Human GWAS</u> : Significant with p<5x10 ⁻⁸ <u>Human disease</u> : Not known	13-19
Dicarboxylic acid	Hexadecanedioic acid (HDA)	Rifampicin: AUC, 3.2-fold (human) Rifampicin: Cmax, 2.2-fold (human)	Probenecid: AUC, 1.9 fold (monkey)	Human GWAS: Significant with p<5x10 ⁻⁸	13-21

	Substrate: OATP1B1, OAT1, OAT3 Not substrate of: OATP1B3, OATP2B1, NTCP. Not inhibitor of: P-gp, MRP2, BCRP, BSEP	CSA: 30 min after CSA (GCDCA-G) (human)	Probenecid: C _{max} , 2.0-fold (n.s) (monkey)	Human disease: Association with blood pressure	
Bile acid glucuronide	 Chenodeoxycholate-3- glucuronide (CDCA-3G) Chenodeoxycholate-24- glucuronide (CDCA-24G) Glycochenodeoxycholate glucuronide (GCDCA-G) Substrate: OATP1B1, OATP1B3, NTCP, MRP2, MRP3, OAT3 Inhibitor: none characterized 	<u>Rifampicin</u> : CDCA-3G and CDCA- 24G are not detectable at baseline and increased with rifampicin (human) <u>CSA</u> : 30 min after CSA (GCDCA-G) (human)	NA	<u>Human GWAS (</u> GCDCA-G): Significant with p<5x10 ⁻⁸ <u>Human disease</u> : Not known	8,13,16-18,22-26
Bile acid sulfates	 Cholic acid 3-O-sulfate (CA-S) Chenodeoxycholic acid 3- O-sulfate (CDCA-S) Deoxycholic acid 3-O- sulfate (DCA-S) Glycocholic acid 3-O- sulfate (GCA-S) Glycochenodeoxycholic acid 3-O-sulfate (GCDCA-S) Glycolithocholic acid 3-O- sulfate (GLCA-S) Glycoursodeoxycholic acid 3-O-sulfate (GUDCA-S) Glycoursodeoxycholic acid 3-O-sulfate (GUDCA-S) Lithocholic acid 3-O- sulfate (LCA-S) Taurocholic acid 3-O- sulfate (TCA-S) Taurochenodeoxycholic acid 3-O-sulfate (TCDCA- S) Taurodeoxycholic acid 3- O-sulfate (TDCA-S) Taurolithocholic acid 3-O- sulfate (TLCA-S) Taurolithocholic acid 3-O- sulfate (TLCA-S) Tauroursodeoxycholic 	Rifampicin: AUC, 20.3-fold (GCDCA- S) (human) <u>Rifampicin</u> : C _{max} and AUC, 10-30-fold (LCA-S, GLCA-S, TLCA-S, UDCA-S); 50-100-fold (GCDCA-S, TCDCA-S, DCA-S, GDCA-S, TDCA-S) (monkey) <u>CSA</u> : 30 min after CSA (GCDCA-S, GDCA-S, TLCA-S) (human)	Probenecid: renal clearance reduced (p<0.05), plasma levels (n.s) (GCDCA-S) (human)	Human GWAS (GDCA-S): Significant with p<5x10 ⁻⁸ Human GWAS (TLCA-S, GCDCA-S): Significant with p<1x10 ⁻⁴ Human disease: Not known	13,14,16,17,22-24

	acid 3-O-sulfate (TUDCA- S) • Ursodeoxycholic acid 3- O-sulfate (UDCA-S) Substrate: OATP1B1, OATP1B3, NTCP, OAT3 (GCDCA-S), BSEP Inhibitor:None characterized				
Unsulfated bile acids	 Cholic acid (CA) Chenodeoxycholic acid (CDCA) Deoxycholic acid (DCA) Glycocholic acid (GCA) Glycochenodeoxycholic acid (GCDCA) Glycodeoxycholic acid (GDCA) Glycoursodeoxycholic acid (GUDCA) Glycoursodeoxycholic acid (GUDCA) Lithocholic acid (LCA) Taurocholic acid (TCA) Taurochenode-oxycholic acid (TCDCA) Taurochenode-oxycholic acid (TDCA) Taurodeoxycholic acid (TDCA) Taurohyodeoxycholic acid/tauroursodeoxycholi c acid (THDCA/TUDCA) Ursodeoxycholic acid/hyodeoxycholic acid (UDCA/HDCA) Substrate: OATP1B1, OATP1B3, NTCP, OAT3, BSEP 	Rifampicin: AUC, 2-7-fold (GDCA,TDCA,GCA,GCDCA) (human) Rifampicin: AUC, 1.8-5.9-fold (TUDCA, GCA, CA, TCA, GCDCA, GDCA, TCDCA, TDCA, CDCA) (human) Rifampicin: C _{max} and AUC, 2-5-fold (UDCA, GDCA, TUDCA, CDCA, GCDCA, TCDCA, DCA, GDCA, TDCA) (monkey) Rifampicin: AUC (total bile acids) (rat)	NA	Human disease: Not known	11,14,16,17,24,27-30
Steroid sulfates	Dehydroepiandrosterone Sulfate (DHEAS) Substrate: OATP1B1, OATP1B3, OAT3, MRP3	Rifampicin: AUC (not significant) (DHEAS) (human)	NA	Yes <u>Human disease</u> : Not known	14,16,26,31

REFERENCES

- 1 Bednarczyk, D. & Boiselle, C. Organic anion transporting polypeptide (OATP)-mediated transport of coproporphyrins I and III. *Xenobiotica* **46**, 457-466, doi:10.3109/00498254.2015.1085111 (2016).
- 2 Kunze, A., Ediage, E. N., Dillen, L., Monshouwer, M. & Snoeys, J. Clinical Investigation of Coproporphyrins as Sensitive Biomarkers to Predict Mild to Strong OATP1B-Mediated Drug-Drug Interactions. *Clin Pharmacokinet*, doi:10.1007/s40262-018-0648-3 (2018).
- 3 Lai, Y. *et al.* Coproporphyrins in Plasma and Urine Can Be Appropriate Clinical Biomarkers to Recapitulate Drug-Drug Interactions Mediated by Organic Anion Transporting Polypeptide Inhibition. *J Pharmacol Exp Ther* **358**, 397-404, doi:10.1124/jpet.116.234914 (2016).
- 4 Liu, L. *et al.* Effect of OATP1B1/1B3 Inhibitor GDC-0810 on the Pharmacokinetics of Pravastatin and Coproporphyrin I/III in Healthy Female Subjects. *J Clin Pharmacol*, doi:10.1002/jcph.1261 (2018).
- 5 Shen, H. *et al.* Coproporphyrins I and III as Functional Markers of OATP1B Activity: In Vitro and In Vivo Evaluation in Preclinical Species. *J Pharmacol Exp Ther* **357**, 382-393, doi:10.1124/jpet.116.232066 (2016).
- 6 Shen, H. *et al.* Further Studies to Support the Use of Coproporphyrin I and III as Novel Clinical Biomarkers for Evaluating the Potential for Organic Anion Transporting Polypeptide 1B1 and OATP1B3 Inhibition. *Drug Metab Dispos* **46**, 1075-1082, doi:10.1124/dmd.118.081125 (2018).
- 7 Briz, O., Serrano, M. A., Maclas, R. I., Gonzalez-Gallego, J. & Marin, J. J. Role of organic anion-transporting polypeptides, OATP-A, OATP-C and OATP-8, in the human placenta-maternal liver tandem excretory pathway for foetal bilirubin. *Biochem J* 371, 897-905, doi:10.1042/BJ20030034 (2003).
- 8 Cui, Y., Konig, J., Leier, I., Buchholz, U. & Keppler, D. Hepatic uptake of bilirubin and its conjugates by the human organic anion transporter SLC21A6. *J Biol Chem* **276**, 9626-9630, doi:10.1074/jbc.M004968200 (2001).
- 9 Kotsampasakou, E., Escher, S. E. & Ecker, G. F. Curated human hyperbilirubinemia data and the respective OATP1B1 and 1B3 inhibition predictions. *Data Brief* **11**, 204-207, doi:10.1016/j.dib.2017.02.009 (2017).
- 10 van de Steeg, E., van Esch, A., Wagenaar, E., Kenworthy, K. E. & Schinkel, A. H. Influence of human OATP1B1, OATP1B3, and OATP1A2 on the pharmacokinetics of methotrexate and paclitaxel in humanized transgenic mice. *Clin Cancer Res* **19**, 821-832, doi:10.1158/1078-0432.CCR-12-2080 (2013).
- 11 Watanabe, T. *et al.* Utility of bilirubins and bile acids as endogenous biomarkers for the inhibition of hepatic transporters. *Drug Metab Dispos* **43**, 459-466, doi:10.1124/dmd.114.061051 (2015).
- 12 Zhang, W. *et al.* OATP1B1 polymorphism is a major determinant of serum bilirubin level but not associated with rifampicin-mediated bilirubin elevation. *Clin Exp Pharmacol Physiol* **34**, 1240-1244, doi:10.1111/j.1440-1681.2007.04798.x (2007).
- 13 Long, T. *et al.* Whole-genome sequencing identifies common-to-rare variants associated with human blood metabolites. *Nat Genet* **49**, 568-578, doi:10.1038/ng.3809 (2017).
- 14 Shen, H. *et al.* Comparative Evaluation of Plasma Bile Acids, Dehydroepiandrosterone Sulfate, Hexadecanedioate, and Tetradecanedioate with Coproporphyrins I and III as Markers of OATP Inhibition in Healthy Subjects. *Drug Metab Dispos* **45**, 908-919, doi:10.1124/dmd.117.075531 (2017).
- 15 Shen, H. *et al.* Discovery and Validation of Pyridoxic Acid and Homovanillic Acid as Novel Endogenous Plasma Biomarkers of Organic Anion Transporter (OAT) 1 and OAT3 in Cynomolgus Monkeys. *Drug Metab Dispos* **46**, 178-188, doi:10.1124/dmd.117.077586 (2018).
- 16 Shin, S. Y. *et al.* An atlas of genetic influences on human blood metabolites. *Nat Genet* **46**, 543-550, doi:10.1038/ng.2982 (2014).
- 17 Yee, S. W. *et al.* Metabolomic and Genome-wide Association Studies Reveal Potential Endogenous Biomarkers for OATP1B1. *Clin Pharmacol Ther* **100**, 524-536, doi:10.1002/cpt.434 (2016).
- 18 Yousri, N. A. *et al.* Whole-exome sequencing identifies common and rare variant metabolic QTLs in a Middle Eastern population. *Nat Commun* **9**, 333, doi:10.1038/s41467-017-01972-9 (2018).

- 19 Yu, B. et al. Loss-of-function variants influence the human serum metabolome. Sci Adv 2, e1600800, doi:10.1126/sciadv.1600800 (2016).
- 20 Menni, C. *et al.* Metabolomic identification of a novel pathway of blood pressure regulation involving hexadecanedioate. *Hypertension* **66**, 422-429, doi:10.1161/HYPERTENSIONAHA.115.05544 (2015).
- 21 Menni, C. *et al.* Molecular pathways associated with blood pressure and hexadecanedioate levels. *PLoS One* **12**, e0175479, doi:10.1371/journal.pone.0175479 (2017).
- 22 Suga, T. *et al.* Preference of Conjugated Bile Acids over Unconjugated Bile Acids as Substrates for OATP1B1 and OATP1B3. *PLoS One* **12**, e0169719, doi:10.1371/journal.pone.0169719 (2017).
- 23 Takehara, I. *et al.* Investigation of Glycochenodeoxycholate Sulfate and Chenodeoxycholate Glucuronide as Surrogate Endogenous Probes for Drug Interaction Studies of OATP1B1 and OATP1B3 in Healthy Japanese Volunteers. *Pharm Res* 34, 1601-1614, doi:10.1007/s11095-017-2184-5 (2017).
- 24 Thakare, R. *et al.* Leveraging of Rifampicin-Dosed Cynomolgus Monkeys to Identify Bile Acid 3-O-Sulfate Conjugates as Potential Novel Biomarkers for Organic Anion-Transporting Polypeptides. *Drug Metab Dispos* **45**, 721-733, doi:10.1124/dmd.117.075275 (2017).
- 25 Kamisako, T. *et al.* Transport of monoglucuronosyl and bisglucuronosyl bilirubin by recombinant human and rat multidrug resistance protein 2. *Hepatology* **30**, 485-490, doi:10.1002/hep.510300220 (1999).
- Lee, Y. M. *et al.* Identification and functional characterization of the natural variant MRP3-Arg1297His of human multidrug resistance protein 3 (MRP3/MRP3). *Pharmacogenetics* **14**, 213-223 (2004).
- 27 Cheng, Y. *et al.* Biliary excretion of pravastatin and taurocholate in rats with bile salt export pump (Bsep) impairment. *Biopharm Drug Dispos* **37**, 276-286, doi:10.1002/bdd.2011 (2016).
- 28 Kis, E. *et al.* Effect of membrane cholesterol on BSEP/Bsep activity: species specificity studies for substrates and inhibitors. *Drug Metab Dispos* **37**, 1878-1886, doi:10.1124/dmd.108.024778 (2009).
- 29 Xiang, X., Backman, J. T., Neuvonen, P. J. & Niemi, M. Gender, but not CYP7A1 or SLCO1B1 polymorphism, affects the fasting plasma concentrations of bile acids in human beings. *Basic Clin Pharmacol Toxicol* **110**, 245-252, doi:10.1111/j.1742-7843.2011.00792.x (2012).
- 30 Xiang, X. *et al.* Effect of SLCO1B1 polymorphism on the plasma concentrations of bile acids and bile acid synthesis marker in humans. *Pharmacogenet Genomics* **19**, 447-457, doi:10.1097/FPC.0b013e32832bcf7b (2009).
- 31 Shen, H. *et al.* Cynomolgus monkey as a potential model to assess drug interactions involving hepatic organic anion transporting polypeptides: in vitro, in vivo, and in vitro-to-in vivo extrapolation. *J Pharmacol Exp Ther* **344**, 673-685, doi:10.1124/jpet.112.200691 (2013).