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SUMMARY

We remember our lives as sequences of events, but it
is unclear how these memories are controlled during
retrieval. In rats, the medial prefrontal cortex (mPFC)
is positioned to influence sequence memory through
extensive top-down inputs to regions heavily inter-
connected with the hippocampus, notably the nu-
cleus reuniens of the thalamus (RE) and perirhinal
cortex (PER). Here, we used an hM4Di synaptic-
silencing approach to test our hypothesis that
specific mPFC/RE and mPFC/PER projections
regulate sequence memory retrieval. First, we found
non-overlapping populations of mPFC cells project
to RE and PER. Second, suppressing mPFC activity
impaired sequence memory. Third, inhibiting
mPFC/RE and mPFC/PER pathways effectively
abolished sequence memory. Finally, a sequential
lag analysis showed that the mPFC/RE pathway
contributes to a working memory retrieval strategy,
whereas the mPFC/PER pathway supports a tem-
poral context memory retrieval strategy. These find-
ings demonstrate that mPFC/RE and mPFC/
PER pathways serve as top-down mechanisms
that control distinct sequence memory retrieval
strategies.
INTRODUCTION

We remember our lives as sequences of events, which is at the

core of episodic memory. The temporal organization of memory

is thought to be useful for disambiguating memories with over-

lapping content and is studied using a wide array of tasks (Clay-

ton and Dickinson, 1998; Henson, 2001; Tulving, 2002; Agster

et al., 2002; Allen and Fortin, 2013; Eichenbaum, 2017a).

Neurobiologically, memory for sequences of events relies on

the hippocampus (HC) (Fortin et al., 2002; Kesner et al., 2002;

Allen et al., 2016) and medial prefrontal cortex (mPFC)
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(Barker et al., 2007; Euston et al., 2007;Hales et al., 2009; Blumen-

feld et al., 2011; Tiganj et al., 2017). Each region serves a different

role in sequencememory (Hsieh and Ranganath, 2015). The HC is

thought to associate information with a spatiotemporal context

(Eichenbaum, 2004; Knierim et al., 2006; Knierim, 2015; Skelin

et al., 2019), whereas mPFC is thought to influence the retrieval

of information relevant to an action or decision (Ferbinteanu

et al., 2006; Euston et al., 2012; Preston and Eichenbaum, 2013).

In rats, mPFC is ideally situated to influence memory retrieval

through its projections to the thalamus and cortex (Sesack et al.,

1989; Chiba et al., 2001; Vertes, 2002; Hoover and Vertes, 2007).

mPFC may bias different sequence retrieval strategies through

its top-down projection pathways. If this is the case, selective in-

hibition of distinct mPFC projection pathways should impair

sequence memory with different effects.

The most significant mPFC projections target the nucleus re-

uniens of the thalamus (RE) and the perirhinal cortex (PER)

because these regions are interconnected with HC (Eichen-

baum, 2017b). The RE receives widely distributed projections

from limbic sites (Vertes, 2002, 2004; McKenna and Vertes,

2004), but RE projections primarily innervate HC, parahippocam-

pus, and prefrontal cortex (Vertes, 2006; Vertes et al., 2006).

Given the absence of direct projections from mPFC to HC, RE

represents the primary route as follows: HC/mPFC/RE/

HC (Vertes et al., 2007). Notably, RE is critical to a variety of

working memory tasks that have been linked to mPFC deficits

(Davoodi et al., 2009; Dolleman-van der Weel et al., 2009; Cassel

et al., 2013; Hallock et al., 2013; Xu and S€udhof, 2013; Griffin,

2015; Ito et al., 2015; Viena et al., 2018).

Like RE, PER is the nexus of bidirectional communication be-

tweenHCandmPFC (Furtaket al., 2007). PER iscritical tomemory

for complex stimuli (Murray et al., 2000; Busseyet al., 2002;Aggle-

tonetal., 2010;BarkerandWarburton,2011;Feinbergetal., 2012),

aswell as for temporal aspects ofmemory (Murray andRichmond,

2001; Bussey et al., 2005; Allen et al., 2007; Barker et al., 2007;

Bang and Brown, 2009; Chen et al., 2016; Naya et al., 2017).

Here, we identify the mPFC/RE andmPFC/PER projection

pathways, and then test their contributions to sequence memory

using a task that allows for an analysis of the underlying strategy

(Allen et al., 2014, 2016). Briefly, rats sampled two sequences of

odors and demonstrated sequence memory by identifying
creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. hM4Di Expression and Retrograde Labeling of RE and PER in mPFC

(A) hM4Di-mCherry (purple) and NeuN (neuron-specific; green) cells in mPFC.

(B) h4MDi expression rates in the prelimbic cortex (PL) and anterior cingulate cortex (AC).

(C) Axonal mPFC hM4Di expression in RE. hM4Di fiber density in RE across six subdivisions.

(D) Axonal mPFC hM4Di expression in PER across layers.

(E) RE (green) and PER (cyan; color was altered for consistency purposes) injections sites with CTB conjugatedwith Alexa Fluor 488 and 594.mPFCprojects to RE

and PER from separate cell populations.

(F) Cell density of mPFC/RE (i) and mPFC/PER (ii) across subregions and layers.

(G) Conceptual model of mPFC neurons with projections to RE and PER. mPFC provides direct excitatory inputs to RE and PER. mPFC/RE and mPFC/PER

pathways originate from two distinct cell populations and project from specific cell layers in mPFC. mPFC/RE projects more toward the lateral parts of RE and

mPFC/PER projects to layer I of PER.

All data are represented as mean ± SEM. *p < 0.05; **p < 0.01; ***p < 0.001.
‘‘in sequence’’ (InSeq) and ‘‘out of sequence’’ (OutSeq) odors.

First we, examined mPFC projections to RE and PER using

anterograde and retrograde tracers. Second, we tested the

role of mPFC in sequence memory in rats expressing inhibitory

DREADDs (designer receptor exclusively activated by designer

drugs; hM4Di). Third, we tested the role of mPFC/RE and

mPFC/PER pathways using a synaptic-silencing approach

(Mahler et al., 2014; Stachniak et al., 2014; Roth, 2016; Smith

et al., 2016; Lichtenberg et al., 2017). Finally, we used a lag anal-

ysis across specific probes (e.g., ABA, where A is a repeated

item from two positions earlier, or ABD, where D skips ahead

one position) to look at the unique contributions of mPFC/RE

and mPFC/PER pathways. Theoretically, differences in lag

performance patterns on repeated items can be used to distin-

guish the contributions of workingmemory and temporal context

memory.

We found that distinct populations of mPFC cells project to RE

and PER. We then show mPFC is critical to sequence memory.

Silencing mPFC/RE and mPFC/PER projections abolished

sequence memory and led to a unique pattern of behavioral def-

icits. Silencing mPFC/RE produced a deficit consistent with

reduced working memory, whereas silencing mPFC/PER pro-

duced a deficit consistent with reduced temporal context mem-

ory (i.e., gradedmemory retrieval based on sequential proximity).

These findings advance the concept that separatemPFC circuits

target RE and PER and differentially control sequence memory.
RESULTS

Incubation Time of AAV-hM4Di (Adeno-Associated
Virus) in mPFC Neurons
We targetedmPFC, which has been implicated in the temporal or-

ganization of memory (Uylings et al., 2003; Devito and Eichen-

baum, 2011; Tiganj et al., 2017, 2018), using an axon-preferring

hM4Di variant (AAV9.CAG.mCherry-2a-hM4Di
nrxn.WPRE.SV40),

referred to as hM4Di
nrxn (neurexin; Stachniak et al., 2014). This

variant exhibits enhancedaxonal expressionand reduced somatic

expression. Activation of the hM4Di
nrxn variant at synaptic termi-

nals inhibits synaptic transmission without somatic hyperpolar-

ization (Stachniak et al., 2014). The gestation time for these exper-

iments was determined by injecting hM4Di in a separate group of

rats (n=4, 1 per timepoint) thatwereperfusedat 1, 2, 4, or 8weeks

after surgery. At 2weeks, the viruswaswell expressed (FigureS1).

Localization of AAV-hM4Di Transduction and
Expression Patterns
We used immunohistochemistry to visualize hM4Di expression

resulting from the AAV viral constructs and found expression to

be mostly restricted to the anterior cingulate and prelimbic

cortices of mPFC. To estimate the localization of hM4Di, we pro-

cessed slices for dual immunofluorescence in a subset of ani-

mals (n = 3) using antisera for mCherry and NeuN (Figure 1A).

We counted mCherry-labeled cells and NeuN-labeled cells at
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three anterior-posterior (AP) levels: at the core of the injection

site in layers 5/6 of mPFC (AP +3.2); and anterior/posterior to

this level (±120 mm), defining the ratio of mCherry to NeuN-

labeled cells as the percentage of hM4Di-infected cells (Fig-

ure 1B). Overall, hM4Di-infected neurons in prelimbic cortex

(48.99% ± 4.32%) and anterior cingulate cortex (50.61% ±

3.93%) did not differ (t(16) = 0.779, p = 0.447).

Organization of mPFC Projections to RE and PER
We examined the organization of mPFC projections to RE and

PER using anterograde and retrograde methods. First, we map-

ped mPFC projections to RE and PER using immunolabeling of

mCherry terminals taking advantage of the anterograde proper-

ties of AAV9.CAG.mCherry-2a-hM4Di
nrxn. Fiber expression pat-

terns were characteristic of mPFC projection sites to the fore-

brain, including the orbital and insular cortices, ventral striatum,

and the entire intralaminar and midline thalamus, including pre-

dominantly RE (Figure 1C), PER (Figure 1D), and entorhinal

cortices, indicating good anterograde transport and allowing for

clozapine N-oxide (CNO) inhibition of mPFC terminal fibers in

RE (Vertes, 2002; Hoover and Vertes, 2007, 2012; Vertes et al.,

2007) and PER (Furtak et al., 2007). The density of mPFC fibers

across subdivisions of each terminal site was quantified in a sub-

set of rats (n = 3).mPFC fiber densities in RE and PERwere tested

using one-sample t tests against a relative density (RD) = 1

(the referenced area), which yielded significant differences of

p % 0.001 for all regions and laminar divisions of RE and PER.

RE contained a dense plexus of hM4Di fibers that spanned the

rostrocaudal extent of the nucleus. mPFC hM4Di fibers distrib-

uted strongest to the lateral aspects of RE including perireuniens

(periRE) (Figures 1C and 4C). ROIs for RE were taken from six

separate subdivisions across the AP plane: medial (REm), dorsal

(REd), and lateral (REl) divisions rostrally andmedial (REcm, dor-

sal [REcd], and periRE laterally in caudal RE). Across anterior RE,

there was a significant difference in the distribution of mCherry-

labeled fibers (F(2,16) = 8.81, p = 0.003). hM4Di mPFC axons tar-

geted REd (RD = 1.166 ± 0.078) and REl (RD = 1.264 ± 0.103)

with the heaviest of fiber innervation in the lateral ‘‘wings’’ (Fig-

ures 1C and 4C). By comparison, the density of mPFC axons

in REm (RD = 1.095 ± 0.480) was substantially less than REl

(p = 0.001) and REd (p = 0.054). There was a similar pattern of

innervation across RE for the posterior aspect of RE, with signif-

icant differences in density across subdivisions mediolaterally

(F(2,12) = 4.334, p = 0.038) with intense fiber labeling in periRE

(RD = 1.238 ± 0.100), followed by REd (RD = 1.161 ± 0.063),

and fewer fibers covering the medial REcp (RD = 1.132 ± 0.051).

In PER, the density of mPFC fibers differed significantly across

layers of PER (F(3,24) = 7.025, p = 0.014), signifying a distinct laminar

organization in PER. hM4Di mPFC axons terminated densely in

layer I, with significant differences (RD = 1.075 ± 0.06) compared

to a paucity of fibers in layers II/III (RD = 1.033 ± 0.025; Figures

1Dand5C). Therewerenodifferences inhM4Difiberdensityacross

layers II/III, V (RD = 1.029 ± 0.017), and VI (RD = 1.035 ± 0.019).

Separate Populations of mPFC Neurons Project to RE
and PER
Next, we tested whether the same cells in mPFC project to both

RE and PER, or whether these are separate cell populations.
642 Cell Reports 28, 640–654, July 16, 2019
Rats (n = 4) underwent surgery for a dual retrograde fluorescence

labeling of cholera toxin subunit B green (CTB-488) and red

(CTB-594) in RE and PER. We analyzed cells in the anterior

cingulate cortex, prelimbic cortex, and infralimbic cortex across

layers for retrograde labeling from either RE and PER. mPFC/

REprojecting cells were found in layers II/III, V, and VI (Figures 1E

and S2A). These projections were found throughout dorsal and

ventral prelimbic cortex, and infralimbic cortex, predominantly

in layers V (Figure 1Fi; dPL, t(3) = 7.686, p = 0.005; vPL, t(3) =

4.909, p = 0.016; IL, t(3) = 5.603, p = 0.011) and VI (dPL, t(3) =

5.508, p = 0.012; vPL, t(3) = 6.210, p = 0.008; IL, t(3) = 21.840,

p = 2.1003 10�4). Only a few cells were found in anterior cingu-

late cortex. mPFC/PER projecting cells were observed

throughout layers II/III and V, with the highest density in layer

II/III (Figure 1Fii; dPL, t(3) = 3.654, p = 0.035; IL, t(3) = 3.849, p =

0.031), consistent with previous literature (Hwang et al., 2018;

Mathiasen et al., 2019). We did not find labeled cells in layer I.

Moreover, we did not find cells in mPFC that projected to both

RE and PER (no dual-labeled cells), suggesting no overlap. To

identify mPFC projection cell types, a set of tissue was pro-

cessed using the antibody for glutamic acid decarboxylase

(GAD67). We did not find any dual-labeled cells in mPFC for

GAD67 and CTB-488/594. This confirmed both populations of

mPFC cells are excitatory. Notably, RE is populated exclusively

by excitatory glutamatergic cells and presumably mPFC cells

synapse onto these neurons (Vertes et al., 2007). In PER,

mPFC axons synapse onto pyramidal cells (Hwang et al.,

2018). Overall, these results show that separate populations of

excitatory mPFC neurons, originating from prelimbic and infra-

limbic cortex, project to RE and PER (Figure 1G).

Sequence Memory Task and Overall Performance
We trained rats in an odor sequence task (Allen et al., 2016). The

behavioral setup was automated and allows for repeated delivery

of distinct odors (pure chemical odorants) between two odor

ports. We used two sequences, each with four odors that could

be delivered at opposite ends of a straight alley (Figure 2A). The

use of two sequences eliminated the possibility rats could

remember a single sequence throughout the testing period and

increased the overall memory load. Furthermore, the use of two

sequences allowed us to tease apart different retrieval strategies

as rats had to repeatedly retrieve sequences from long-term

memory stores. To obtain awater reward, rats had todemonstrate

sequence memory by indicating whether the odors were InSeq

(holding the nose-poke response >1 s) or OutSeq (withdrawing

from the nose port <1 s) within a sequence (Figures 2B and 2C).

We calculated a sequencememory index (SMI) tomeasure overall

sequence memory while controlling for individual differences in

poke-hold behavior (Allen et al., 2014). The SMI normalizes the

proportion of InSeq and OutSeq items presented during a single

session for comparison across sessions and scores sequence

memory with a value ranging from �1 to 1. A score of 0 indicates

chance performance. A score of 1 indicates perfect performance.

Rats were trained in the sequence memory task in progressive

stages over severalweeks asdepicted in Figure 2D.After reaching

behavioral criterion (asymptotic sequence memory performance

levels over multiple sessions), the rats underwent surgery for

bilateral microinjection into mPFC of one of two viral groups



Figure 2. Sequence Memory Task

(A) A linear track was used with odor ports at

each end where two separate four-odor sequences

(A1, B1, C1, D1, or A2, B2, C2, D2) were presented.

(B and C) Rats had to correctly identify the odor as

either InSeq (70% of the time; B) or OutSeq (30% of

the time; C).

(D) After reaching steady-state performance, we

focused on two experimental blocks: (1) i.p. injection

suppressing mPFC neurons and (2) intracerebral

infusions targeting mPFC terminals in RE or PER.

The boxes represent a sample schedule. Veh days

are denoted in black, and No-Inj days are in white.

(E) We used the sequence memory index (SMI) as a

summarymeasure. The red line represents themean

SMI of both No-Inj and Veh sessions (sliding window

of 10 sessions).

(F) SMI was not significantly different between the

No-Inj and Veh sessions.

All data are represented as mean ± SEM. ns, not

significant.
(hM4Di+: AAV9.CAG.mCherry-2a-hM4Dinrxn.WPRE.SV40; or

mCherry-only: AAV9.CB7.CI.mCherry.WPRE.rBG). Chronic guide

cannulas were implanted targeting RE and PER bilaterally. After

recovery, the rats continued performing the sequence task daily

and the experimental manipulations (intraperitoneal [i.p.] injec-

tions and intracerebral infusions) were started �3 weeks later.

Overall, the rats demonstrated strong sequence memory (Fig-

ure 2E; SMIwell-trained: 0.302 ± 0.034) and performance did not

differ significantly between no-injection/no-intracerebral infu-

sion (No-Inj) and vehicle injection/vehicle infusion (Veh) days

(Figure 2F; t(90) = 0.426, p = 0.671). Expected versus observed

frequencies were analyzed with G tests to determine whether

the observed frequency of InSeq and OutSeq responses for a

given session significantly differed from chance. Single-subject

analyses revealed every rat differentiated InSeq and OutSeq

items at levels well above chance (Figure S3; all G tests had

p values < 0.05). Moreover, the rats performed well on position

2 (SMIPos2: 0.282 ± 0.008), position 3 (SMIPos3: 0.321 ± 0.009),

and position 4 (SMIPos4: 0.282 ± 0.018), indicating memory for

the entire length of each sequence. Position 1 was excluded

because an OutSeq item was never presented in that position.

Rats also performed well above chance levels on sequence 1

(SMISeq1: 0.305 ± 0.007) and sequence 2 (SMISeq2: 0.292 ±
0.008), with no significant difference

between sequences (t(704) = 1.279, p =

0.201), indicating rats successfully

switched between the two sequences.

Additionally, performance on either of the

sequences did not differ significantly on

No-Inj and Veh days (Figure S4A;

sequence 1: t(52) = �1.237, p = 0.222;

sequence 2: t(52) = 0.082, p = 0.935).

Suppressing mPFC Activity Impairs
Sequence Memory
Evidence suggests the mPFC makes

essential contributions to sequence mem-
ory (Devito and Eichenbaum, 2011). Here, we examined the

contribution of mPFC to sequence memory via systemic CNO

(i.p., 1 mg/kg) or Veh injections (Figure 3A). The spread of

hM4Di+ neurons across mPFC was precisely mapped. hM4Di+

cells were concentrated in the rostral- tomid-levels of the prelim-

bic and the anterior cingulate cortex, with dense labeling in the

deep cortical layers (Figure 3B). While mCherry-only cells were

present throughout the rostral caudal extent of the prelimbic cor-

tex, hM4Di+ expression was limited to the rostral aspects of the

anterior cingulate cortex, with only a small number of infected

cells in the posterior and ventral divisions of the anterior cingu-

late cortex. In some hM4Di+ cases, very small numbers of

labeled cells extended into the medial orbital, ventral orbital, in-

fralimbic, medial agranular cortex, and claustrum. The spread of

mCherry cells was mapped in the mCherry-only control rats

(Figure S5A).

We considered each corresponding Veh and CNO injection as

a repeated condition across behavioral sessions. Suppression of

mPFC neurons with CNO in the hM4Di+ group (SMI: 0.056 ±

0.121) significantly reduced SMI scores compared with Veh in-

jection (SMI: 0.254 ± 0.062) the first time we ran this condition

(Figures 3C and 3D; first: t(12) = 5.200, p = 2.2103 10�4, Cohen’s

d = 1.449), but in the second and third repeats of this condition,
Cell Reports 28, 640–654, July 16, 2019 643



Figure 3. mPFC Cortex Is Needed for Sequence Memory

(A) AAV9.hM4Di was injected bilaterally into mPFC.

(B) Representation of AAV9.hM4Di viral spread in mPFC for all rats (n = 13).

(C) Performance differed between hM4Di+ animals injected with Veh and CNO in the first repeated condition, but not the second and third repeated conditions.

No differences between Veh and CNO were detected in the mCherry-only group.

(D) Individual rat performance for each repeated condition in both groups.

(E) In the hM4Di+ group, there was a positive linear relationship across repeated conditions after CNO injections, but not after Veh injections.

(F) ISI was not significantly different between the Veh and CNO conditions in either group.

(G) IOI was not significantly different between the Veh and CNO conditions in either group.

(H) In the hM4Di+ group, nose-poke time was significantly different between the Veh and CNO conditions for both InSeqcorrect and OutSeqcorrect trials. No dif-

ferences between Veh and CNO were detected in the mCherry-only group.

(I) hM4Di+ group poke times show only subtle shifts in behavior.

(J) hM4Di+ group poke times show a decisional shift between the Veh and CNO conditions with more OutSeq trials incorrectly identified as InSeq.

All data are represented as mean ± SEM. *p < 0.05; **p < 0.01; ***p < 0.001; ns, not significant.
we observed no significant effect (second: t(12) = 1.039,

p = 0.319; third: t(4) = 0.031, p = 0.977). Overall, we performed

three repeated conditions for the first cohort of hM4Di+ rats

(n = 5). For the second cohort of hM4Di+ rats (n = 8) and

mCherry-only rats (n = 9), we decreased the number of repeated

conditions to two, because the third repeated condition with

CNO administration had no effect. We found a significant
644 Cell Reports 28, 640–654, July 16, 2019
interaction between the injection and repeated condition

(F(1,12) = 5.410, p = 0.038). Furthermore, a linear regression

was performed to determine the relationship between CNO

administration and repeated conditions. Figure 3E shows there

was a moderate positive linear relationship between the

repeated conditions and CNO in the hM4Di+ group (Pearson’s

r = 0.490, R2 = 0.240, p = 0.003), but no relationship between



the repeated condition and Veh in the hM4Di+ group (Pearson’s

r = 0.057, R2 = 0.003, p = 0.380). An ANOVA yielded similar re-

sults, revealing a significant relationship between repeated con-

ditions and SMI for CNO injections (F(1,29) = 9.167, p = 0.005).

Importantly, CNO administration had no significant effects in

the mCherry-only group (Figures 3C and 3D; first: t(8) = 1.208,

p = 0.262; second: t(8) =�0.623, p = 0.551), indicating the effects

observed in the hM4Di+ group were specific to hM4Di receptor

activity on mPFC neurons. While infected cells in mCherry-only

rats were visualized outside of mPFC, extending to the orbital

and motor cortices, the relative density and pattern of labeling

of terminal fibers to target sites (RE and PER) was similar to

hM4Di+ rats. Furthermore, the lack of behavioral effects on these

rats confirmed our findings were not associated with non-spe-

cific effects related to the viral construct or CNO. mCherry

expression in mPFC from a representative case of hM4Di+ and

mCherry-only is depicted in Figures S5D and S5F. While

neuronal labeling was virtually restricted to the injection sites,

sporadic cells (less than�0.1%–1%)were observed at the target

sites, most likely associated with weak retrograde transport of

adenovirus constructs (Castle et al., 2014; Tervo et al., 2016)

as reported for other hM4Di applications (DiBenedictis et al.,

2015). Finally, sequence memory performance levels were

similar between sequence 1 and sequence 2 during systemic

CNO and Veh administration, with no significant differences be-

tween them (Figure S4B; first: Veh, t(11) = �1.023, p = 0.328,

CNO, t(11) = �1.231, p = 0.244; second: Veh, t(9) = 2.086,

p = 0.067, CNO, t(10) = 0.533, p = 0.606), suggesting a general

sequence memory deficit.

Next, we examined the possibility hM4Di suppression of

mPFC activity produced non-mnemonic effects relevant to the

sequence task. To test for this possibility, we measured the

time it took the rats to run between sequences (inter-sequence

interval [ISI]), the time spent between each odor trial (inter-odor

interval [IOI]), and nose-poke times. The ISI did not differ signif-

icantly between the Veh and CNO conditions in either the

hM4Di+ or mCherry-only groups (Figure 3F; hM4Di+: t(25) =

�1.427, p = 0.166; mCherry-only: t(17) = 0.454, p = 0.655), sug-

gesting rats in both groups ran at similar rates between se-

quences. Furthermore, we found no effects on the IOI (Figure 3G;

hM4Di+: t(25) = �1.616, p = 0.119; mCherry-only: t(17) = �1.056,

p = 0.306), suggesting rats collectedwater rewards and engaged

odors at similar rates. Evaluation of a potential holding bias dur-

ing the task comparing the Veh and CNO conditions revealed

no significant difference between holding (t(12) = �0.875,

p = 0.399) and not holding (t(12) = 0.506, p = 0.622). We also eval-

uated whether CNO affected nose-poke times on InSeqcorrect
and OutSeqcorrect trials (Figure 3H). In the hM4Di+ group, CNO

suppression of mPFC activity significantly increased nose-

poke times in both InSeqcorrect and OutSeqcorrect trials (hM4Di+:

InSeqCorrect, t(25) = �2.672, p = 0.013, OutSeqCorrect, t(25) =

�3.944, p = 0.001). No significant differences were detected in

the mCherry-only group (mCherry-only: InSeqCorrect, t(17) =

0.973, p = 0.344, OutSeqCorrect, t(17) = �0.186, p = 0.853), indi-

cating i.p. CNO did not affect nose-poke behavior in the task.

The increase in hold times in the hM4Di+ group may indicate un-

certainty regarding whether a trial was InSeq or OutSeq and thus

a decisional shift rather than a deficit related to basic nose-poke
and hold behavior. To further evaluate this possibility, we exam-

ined nose-poke distributions for both InSeq and OutSeq trials

(Figures 3I and 3J). The InSeq distribution shows the proportion

of nose pokes in the hM4Di+ group remained similar between the

Veh and CNO conditions, with only modest differences. On

OutSeq trials, however, there was a clear shift in the proportion

of trials near the 1-s decision threshold, suggesting a shift toward

making InSeq decisions. Thus, the nose-poke differences indi-

cate a decisional shift in the hM4Di+ group following CNO admin-

istration. Overall, these results demonstrate suppression of

mPFC neurons by systemic CNO administration in the hM4Di+

group impaired memory for sequences of events, but the effect

diminished with subsequent administrations of CNO.

Synaptic Silencing of mPFC/RE Projections Abolished
Sequence Memory
Our primary goal was to examine whether mPFC inputs to RE

and PER, structures heavily interconnected with the HC,

contribute to sequence memory (Eichenbaum, 2017b). We

tested top-downmPFC inputs using intracerebral CNO infusions

(1 mL at 1 mg/mL per cannula) targeting RE and PER (within sub-

ject) on different days. The daily schedule for RE and PER infu-

sions was randomized and counterbalanced (Figure 1F) across

rats and repeated conditions to avoid an order effect.

We first examined mPFC/RE projections (Figure 4A). Can-

nula placement for intracerebral infusions was confirmed with

cresyl violet (Figures 4B, S5B, S5E, and S5G). Silencing mPFC

terminals in RE in the hM4Di+ group significantly impaired

sequence memory (Figures 4D and 4E). The effects of CNO infu-

sion clearly differed from Veh infusion (F(1,9) = 130.850,

p = 1.000 3 10�6), with no differences across repeated condi-

tions (Figures 4D and 4E; F(2,18) = 1.012, p = 0.366). The interac-

tion between factors was not significant (F(2,18) = 0.914,

p = 0.388). Thus, silencing mPFC/RE synapses powerfully

and repeatedly abolished sequence memory. Performance of

the mCherry-only group showed no significant difference be-

tween CNO and Veh conditions or across repeated conditions

(Figures 4D and 4E; infusion: F(1,8) = 0.492, p = 0.503; repeated

conditions: F(2,16) = 0.025, p = 0.967; infusion3 repeated condi-

tions: F(2,16) = 1.931, p = 0.184), controlling for non-specific CNO

effects in RE. A linear regression was performed to investigate

the relationship between SMI (CNO and Veh) and repeated con-

ditions for the hM4Di+ group, which was not significant (Fig-

ure 4F; CNO: Pearson’s r = 0.101, R2 = 0.010, p = 0.307; Veh:

Pearson’s r = 0.259, R2 = 0.067, p = 0.096). In the hM4Di+ group,

sequence 1 and sequence 2 were similar across all repeated

conditions (Figure S4C; first: Veh, t(9) = 0.989, p = 0.348, CNO,

t(9) = �1.665, p = 0.130; second: Veh, t(9) = 0.242, p = 0.814,

CNO, t(9) = 0.322, p = 0.754, third: Veh, t(9) = �0.506,

p = 0.625, CNO, t(9) = 1.069, p = 0.313), indicating a general

sequence memory deficit.

We looked at the non-mnemonic effects of mPFC/RE

silencing by examining ISI, IOI, and nose-poke behavior. In

both the hM4Di+ and mCherry-only groups, the ISI and IOI

were not significantly different between Veh and CNO conditions

(Figures 4G and 4H; hM4Di+: ISI, t(29) = 0.502, p = 0.619, IOI,

t(29) = 0.394, p = 0.696; mCherry: ISI, t(26) = �1.123, p = 0.272,

IOI, t(26) = 1.119, p = 0.273). The holding bias during the task
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Figure 4. Synaptic Silencing of mPFC/RE Pathway Abolished Sequence Memory

(A) Guide cannulas targeted RE.

(B) Locations of RE infusion cannulas in all rats (n = 10).

(C) Schematic representation of mPFC hM4Di fiber density in RE.

(D) In the hM4Di+ group, SMI was significantly different between Veh and CNO conditions in all three repeated conditions. There were no effects in the

mCherry-only group.

(E) Individual rat performances for each repeated condition in both groups.

(F) In the hM4Di+ group, there was no significant relationship between repeated conditions and infusions.

(G) ISI was not significantly different between RE Veh and CNO infusions in either group.

(H) IOI was not significantly different between RE Veh and CNO infusions in either group.

(I) In the hM4Di+ group, InSeqcorrect nose-poke times were significantly different between Veh and CNO. OutSeqcorrect nose-poke times, however, did not differ

significantly between the Veh and CNO conditions. No differences between Veh and CNO were detected in the mCherry-only group.

(J) hM4Di+ group poke times were relatively similar.

(K) hM4Di+ group nose-poke times show a decisional shift (indicated by a star) between the Veh and CNO conditions toward more OutSeq odors incorrectly

identified as InSeq.

All data are represented as mean ± SEM. *p < 0.05; **p < 0.01; ***p < 0.001; ns, not significant.
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did not differ significantly between the Veh and CNO conditions

(holding: t(29) = �0.639, p = 0.528; not holding: t(29) = �0.056,

p = 0.956). The nose-poke times were mostly similar between

Veh and CNO conditions in both the hM4Di+ and mCherry-only

groups following RE infusions (Figure 4I; hM4Di+: OutSeqCorrect,

t(29) = �0.709, p = 0.484; mCherry-only: InSeqCorrect, t(26) =

�0.020, p = 0.984, OutSeqCorrect, t(26) = �0.777, p = 0.444), but

there was a slight and significant increase in the amount of

time rats in the hM4Di+ group held the nose-poke response in

the CNO condition on InSeq trials (InSeqCorrect: t(29) = �2.760,

p = 0.010). We further analyzed poke distributions in the

hM4Di+ group for all InSeq and OutSeq trials (Figures 4J and

4K). The InSeq distribution showed the proportion of nose-pokes

remained similar between the Veh and CNO conditions in the

hM4Di+ group, with a slight increase in holding (Figure 4J). As

shown in Figure 4K, CNO infusion in the hM4Di+ group

decreased the proportion of OutSeq nose-pokes near the short

distribution peak (�0.35–0.6 s) and increased the proportion

near the 1-s decision threshold compared with Veh infusion.

The nose-poke differences indicate a decisional shift in the

hM4Di+ group following CNO infusions. Overall, these results

provide strong evidence that silencingmPFC/RE leads to inac-

curate decisions, not a basic deficit in poke and hold behavior,

reflecting deficits in sequence memory.

Synaptic Silencing of mPFC/PER Projections
Abolished Sequence Memory
We next examined mPFC/PER projections (Figure 5A). Can-

nula placement for intracerebral infusions was confirmed with

cresyl violet (Figures 5B, S5C, S5E, and S5G). Silencing

mPFC/PER projections significantly and consistently impaired

sequence memory across repeated conditions in the hM4Di+

group (Figures 5D and 5E; infusion: F(1,8) = 62.750, p = 4.700 3

10�5; repeated condition: F(2,16) = 1.466, p = 0.263; infusion 3

repeated condition: F(2,16) = 0.118, p = 0.846). Linear regression

analysis showed no significant relationship between repeated

conditions and SMI following PER infusions with either CNO or

Veh in the hM4Di+ group (Figure 5F; CNO: Pearson’s r = 0.053,

R2 = 0.003, p = 0.399; Veh: Pearson’s r = 0.167, R2 = 0.028,

p = 0.202). Furthermore, CNO infusion had no significant effect

on sequence memory in the mCherry-only group compared

with Veh infusion (Figures 5D and 5E; infusion: F(1,8) = 0.690,

p = 0.430; repeated condition: F(2,16) = 0.092, p = 0.886; infusion

3 repeated condition: F(2,16) = 1.056, p = 0.351). Additionally, no

significant difference was detected between the two sequences

under any condition (Figure S4D; first: Veh, t(9) = 0.013, p = 0.990,

CNO, t(8) = �0.928, p = 0.380; second: Veh, t(9) = �0.169,

p = 0.870, CNO, t(9) = �1.101, p = 0.300; third: Veh, t(9) =

1.003, p = 0.342, CNO, t(9) = 0.630, p = 0.545), thus indicating

a general sequence memory deficit.

We evaluated non-mnemonic effects of mPFC/PER

silencing by examining the ISI, IOI, and nose-poke behavior. In

both the hM4Di+ and mCherry-only groups, the ISI and IOI did

not differ significantly between PER infusions of Veh and CNO

(Figures 5G and 5H; hM4Di+: ISI, t(29) = 0.634, p = 0.531, IOI,

t(29) = 0.456, p = 0.652; mCherry: ISI, t(26) = 0.082, p = 0.935,

IOI, t(26) = �0.874, p = 0.390). Furthermore, the holding bias dur-

ing the task did not differ significantly between Veh and CNO
conditions (holding: t(29) = 0.322, p = 0.750; not holding: t(29) =

1.595, p = 0.122). Additionally, nose-poke times in the hM4Di+

and mCherry-only groups were similar between PER infusions

of Veh and CNO (Figure 5I; hM4Di: InSeqCorrect: t(29) = 0.621,

p = 0.540, hM4Di+: OutSeqCorrect: t(29) = 0.055, p = 0.956,

mCherry-only: InSeqCorrect: t(26) = �0.457, p = 0.652, mCherry-

only: OutSeqCorrect: t(26) = �0.707, p = 0.486). We followed up

this analysis by evaluating the nose-poke distributions in the

hM4Di+ group for all InSeq and OutSeq trials following PER infu-

sions (Figures 5J and 5K). The proportion of nose pokes in the In-

Seq distribution was similar between Veh and CNO infusions in

the hM4Di+ group (Figure 5J). As shown in Figure 5K, CNO infu-

sion led to a decrease in the proportion of OutSeq nose pokes

near the short poke distribution, (�.20-.4 s) and an increase

near the 1-s decision threshold, compared with Veh infusion.

Thus, the nose-poke differences indicate a decisional shift in

the hM4Di+ group following CNO administration. Similar to

mPFC/RE, these results illustrate that silencing mPFC/PER

leads to inaccurate decisions rather than a basic deficit in

nose-poke and hold behavior, reflecting deficits in sequence

memory.

Differential Role of mPFC Top-Down Inputs to RE and
PER
The results demonstrate activity in both mPFC/RE and

mPFC/PER pathways are essential to sequence memory. We

next directly compared the effects of silencing mPFC/RE and

mPFC/PER projections. Overall, the effects of mPFC/RE

and mPFC/PER pathway silencing did not differ significantly

from each other across repeated conditions in the hM4Di+ group

(region: F(1,8) = 1.487, p = 0.257; repeated condition:

F(2,16) = 0.291, p = 0.667; repeated condition 3 region: F(2, 16) =

0.343, p = 0.632). We then examined whether silencing

mPFC/RE and mPFC/PER pathways impaired different

memory retrieval strategies that support sequence memory.

Our approach was based on the conceptual model shown in Fig-

ure 6A. This model illustrates the theoretical performance curves

that would be obtained when using working memory and tempo-

ral context memory retrieval strategies plotted as a function of

sequential lag distances on OutSeq items. With a working mem-

ory strategy, repeated items would be easier to detect at shorter

lags because these items occurred more recently. Conversely,

with a temporal context memory strategy, repeated items would

be easier to detect at longer lags because these items are further

away in the original sequence, thereby reducing interference.

Therefore, we examined the performance of the OutSeq probe

trials across lags, focusing on repeated items (also called back-

ward lags) to test the contributions of temporal context memory

and working memory. For this analysis, we calculated the

percent change in performance (CNO-Veh) for each rat on

each lag, as SMI could not be calculated because we were

only analyzing OutSeq trials.

We first looked at items that were repeated in a sequence to

see whether silencing mPFC/RE andmPFC/PER projections

differentially affected impairment patterns. mPFC/RE silencing

resulted in significant differences from no change in perfor-

mance (0%) on all backward lags (3-back, t(14) = �2.388,

p = 0.016; 2-back, t(26) = �4.252, p = 1.21 3 10�4; 1-back,
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Figure 5. Synaptic Silencing of mPFC/PER Pathway Abolished Sequence Memory

(A) Guide cannulas into the PER.

(B) Locations of PER infusion cannulas in all rats (n = 10).

(C) Schematic representation of mPFC hM4Di fiber density in PER (restricted to region of interest).

(D) In the hM4Di+ group, SMI significantly differed between the Veh and CNO conditions for all three repeated conditions. No differences between Veh and CNO

were detected in the mCherry-only group.

(E) Individual rat performance in each repeated condition for both groups.

(F) In the hM4Di+ group, there was no significant relationship between repeated conditions and infusions.

(G) ISI was not significantly different between PER Veh and CNO conditions for either group.

(H) IOI was not significantly different between PER Veh and CNO infusions for either group.

(I) InSeqcorrect and OutSeqcorrect nose-poke times were not significantly different between Veh and CNO conditions in the hM4Di+ and mCherry-only groups.

(J) hM4Di+ group nose-poke times show no obvious shifts in nose-poking behavior.

(K) hM4Di+ group nose-poke times show a decisional shift (indicated by a star) where the rats incorrectly identified OutSeq odors as InSeq.

All data are represented as mean ± SEM. *p < 0.05; **p < 0.01; ***p < 0.001; ns, not significant.

648 Cell Reports 28, 640–654, July 16, 2019



Figure 6. The mPFC/RE Pathway Supports a Working Memory

Retrieval Strategy, while mPFC/PER Pathway Supports a Tempo-

ral Context Memory Retrieval Strategy
(A) If rats were using aworkingmemory strategy, then repeated itemswould be

easiest at short lags. By contrast, if rats were using a temporal context memory

strategy, then repeated items would be the easiest to detect with longer lags.

(B) mPFC/RE silencing impaired performance most on shorter distances,

consistent with a loss of working memory, while mPFC/PER silencing

impaired performance most at longer distance, consistent with a loss of

temporal context memory.

All data are represented as mean ± SEM. **p < 0.01.
t(29) = �5.274, p = 6.00 3 10�6). Additionally, mPFC/PER

silencing resulted in a significant difference on the 3-back lag,

and showed trends toward significant differences from no

change in performance on the 2-back and 1-back lags

(3-back, t(21) = �4.579, p = 8.15 3 10�5; 2-back, t(27) = �1.609,

p = 0.059; 1-back, t(28) = �1.639, p = 0.056). These results indi-

cate repeated items were affected by silencing both mPFC/RE

and mPFC/PER pathways. An important question is whether

the performance patterns differed across lags when directly

comparing the effects of mPFC/RE andmPFC/PER pathway

silencing. A repeated-measures ANOVA revealed a significant
interaction between mPFC/RE silencing and mPFC/PER

silencing (region 3 backward: F(2,24) = 5.395, p = 0.012), with a

large effect size (sp
2 = 0.310; Cohen, 1973), but no significant

main effects of region or backward lag distance (regions:

F(1,12) = 0.721, p = 0.413; backward: F(2,24) = 0.202, p = 0.732).

In the hM4Di+ group, CNO infusions in RE had the largest perfor-

mance-impairing effect on 1-back, then 2-back, and the smallest

performance-impairing effect on 3-back lags (Figure 6B). In the

hM4DI+ group, CNO infusions into the PER led to the opposite

pattern, with the largest performance drop on 3-back, then

2-back, and the smallest performance drop on 1-back lags (Fig-

ure 6B). These impairment patterns match the expected perfor-

mance decrements (drop lines in Figure 6A) from a selective loss

of working memory following mPFC/RE silencing, and a selec-

tive loss in temporal context memory following mPFC/PER

silencing.

We then evaluated performance during InSeq trials (lag = 0)

against no change in performance (0%) following mPFC/RE

and mPFC/PER silencing and found no significant differences

(InSeqRE: t(29) = �1.189, p = 0.122; InSeqPER: t(28) = �1.004,

p = 0.162). The finding suggests InSeq trials were not affected

by silencing mPFC/RE and mPFC/PER pathways. We found

no significant differences comparing mPFC/RE and mPFC/

PER on InSeq performance levels using a paired-samples t

test (t(28) = �0.982, p = 0.334).

Finally, we examined whether performance on items that skip-

ped ahead in the sequence (forward lags) were affected by

mPFC/RE and mPFC/PER pathway silencing. mPFC/RE

pathway silencing tended to have a significant effect on 1-for-

ward (t(29) = �1.644, p = 0.055) and 2-forward (t(29) = �2.725,

p = 0.006) lags. mPFC/PER silencing had a significant effect

on the 1-forward lag (t(28) = 1.732, p = 0.047), and no significant

effect on the 2-forward lag (t(27) =�0.524, p = 0.303). Overall, this

finding suggests performance levels on items that skipped

ahead in the sequence were affected by silencing mPFC/RE

and mPFC/PER pathways. Direct comparison of the effects

of silencing mPFC/RE and mPFC/PER pathways was per-

formed using repeated-measures ANOVA and revealed no sig-

nificant interactions in the forward lag direction (region 3 for-

ward: F(1,27) = �0.012, p = 0.915).

DISCUSSION

Summary of Main Findings
We evaluated the hypothesis that top-down prefrontal projec-

tions contribute to sequence memory, and separate projections

control the execution of different retrieval mechanisms. We first

established that two non-overlapping populations of mPFC neu-

rons project to RE and PER. We then demonstrated suppressing

mPFC activity impairs sequence memory, indicating mPFC is

critical to sequence memory, consistent with other reports

(e.g., Hannesson et al., 2004; Devito and Eichenbaum, 2011).

This finding alone, however, does not address the role of

mPFC as top-down control of sequence memory. Therefore,

we directly manipulated mPFC circuitry using an hM4Di synap-

tic-silencing approach. Suppressing activity in mPFC/RE or

mPFC/PER pathway effectively abolished sequence memory.

These results unambiguously demonstrate top-down mPFC
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projections are essential to sequence memory. Next, we per-

formed a behavioral lag analysis to determine the differential

roles of mPFC/RE and mPFC/PER pathways. Silencing

mPFC/RE pathway disrupted backward lags with a pattern

resembling a loss of working memory, whereas silencing

mPFC/PER pathway disrupted backward lags with a pattern

resembling a loss of temporal context memory. Theoretically,

working memory and temporal context memory (i.e., graded

retrieval strength based on temporal proximity) differentially

contribute to retrieval performance when items are repeated.

On shorter lags (e.g., ABCC, lag = �1), working memory strate-

gies lead to better performance and suppressing mPFC/RE

activity impairs performance. At longer lags (e.g., ABCA,

lag = �3), temporal context memory strategies lead to better

performance and suppressing mPFC/PER activity impairs

performance. This strong pathway-specific interaction effect

demonstrates, for the first time, top-down mPFC projections

control sequence memory, and suggests RE and PER pathways

regulate ongoing retrieval strategies.

Testing mPFC Projections with DREADDs in Sequence
Memory
To investigate the top-down role of mPFC in sequence memory,

we suppressed synaptic activity in specific mPFC projections

(Sesack et al., 1989; Chiba et al., 2001; Vertes, 2002; Hoover

and Vertes, 2007) using Gi-coupled (hM4Di) DREADDs (Mahler

et al., 2014; Roth, 2016) combined with chronic cannulas target-

ing RE and PER in rats. hM4Di activation in presynaptic terminals

reduces transmission and effectively silences the pathway

(Stachniak et al., 2014; Lichtenberg et al., 2017). Here, we

focused on terminal fields in RE (Sesack et al., 1989; Chiba

et al., 2001; Vertes, 2002; Hoover and Vertes, 2007; Vertes

et al., 2015) and PER (Furtak et al., 2007) because both regions

support bidirectional communication between theHC andmPFC

(e.g., Allen and Fortin, 2013; Vertes et al., 2015; Eichenbaum,

2017b). To confirm our manipulations localized to these path-

ways, we carefully mapped mPFC hM4Di expression areas,

visualized mPFC/RE and mPFC/PER projection terminals

via the co-expression ofmCherry (enhancedwith IHC), andmap-

ped the tip locations of the infusion cannulas within RE and PER.

It is important to control for non-specific CNO or infusion ef-

fects when using hM4Di to evaluate brain-behavior relationships

(Smith et al., 2016; Gomez et al., 2017). Thus, we used a fully

crossed 2 (hM4Di and hM4Di-free) 3 2 (CNO and Veh) experi-

mental design. Notably, we only observed effects of any of our

manipulations when we activated hM4Di with CNO and tested

sequence memory.

We also performed several analyses to test the alternative hy-

pothesis that non-memory-related behavioral effects account for

impaired performance in the sequence task. We saw no effects

(under any condition) on the time it took rats to run between se-

quences, on odor sampling, on reward retrieval activity, or on the

overall frequency of nose pokes in which the rats held the nose-

poke response for >1 s or <1 s (analyzed by ignoring the sequen-

tial status of items; see Results). In fact, detailed analysis of all

nose-poke times under hM4Di+ and CNO conditions revealed

a pattern resembling a shift toward inaccurate OutSeq deci-

sions. This was most clearly revealed in the analysis of poke
650 Cell Reports 28, 640–654, July 16, 2019
time histograms and the increase in the overall frequency of

holds on OutSeq items, without large changes in the distribution

variability or peak times. If the rats had shifted to simple reaction

time behaviors, we would have expected an increase in prema-

ture and variable responses following mPFC inactivation (Nar-

ayanan and Laubach, 2006). Finally, the sequence memory ef-

fects were consistent across two different sequences. This is

important because it eliminates the possibility rats held a single

sequence in working memory and focused on a single strategy

throughout the entirety of the session, but instead rats were

forced to repeatedly retrieve sequences from long-termmemory

stores.

An important observation we made following repeated i.p. in-

jections was a loss in the behavioral effect on sequencememory,

whereas with direct infusions (which were performed after the

i.p. injections) we did not see this loss. Varela et al. (2016) saw

a similar effect observing a weak, but significant, CNO-depen-

dent decrease in freezing levels after multiple injections. There

are several possible reasons for the decreased efficacy,

including changes in the CNO/clozapine metabolism, receptor

desensitization, and/or compensatory plasticity across the

brain. The fact that direct infusions never lost efficacy might

argue in favor of a systemic metabolic effect. However, experi-

ments that directly measure CNO and clozapine levels in blood

and cerebral spinal fluid following repeated i.p. injections would

be needed to test this hypothesis.

mPFC Pathways to RE and PER Control Retrieval
Strategies in Sequence Memory
Generally, mPFC is considered to have amajor role in controlling

memory retrieval strategies (Shimamura, 1995; Dobbins et al.,

2002; Euston et al., 2012; Preston and Eichenbaum, 2013; Jad-

hav et al., 2016; Eichenbaum, 2017b). We tested this in two spe-

cific projection pathways during memory for sequences of

events. Importantly, the sequence task we used is related to

episodic-like memory processing and depends on the use of

multiple cognitive strategies for optimal performance (Allen

et al., 2014, 2015).

If rats were using a working memory strategy, then repeated

items would be easiest to detect at short lags because those

items occurred more recently. On the other hand, if rats were us-

ing a temporal context memory strategy (i.e., graded retrieval

probabilities determined by the temporal proximity of items in

the sequence), then repeated items would be the easiest to

detect with longer lags because of reduced interference. Our

use of the term temporal context memory refers to the retrieval

gradients that are observed in human studies of list learning

(e.g., Kragel et al., 2015; Howard and Kahana, 2002). When

cued with an item from the list, people will tend to remember

the nearby items (short lags), but they are less likely to recall

distal items (longer lags). Because verbal recall cannot be per-

formed in animals, the odor sequence task models list learning

in rodents using a nonverbal response to probe memory. Tem-

poral context memory is tested with a lag analysis where we

expect nearby items to interfere with OutSeq decisions, but

not distal items. In the task, working memory is simultaneously

tested on reverse lags because delay-match-to-sample strate-

gies can contribute to performance on these trials for nearby



items, but less so on distal items (the opposite pattern expected

in temporal context memory). Thus, the sequence task places

pressure on the ability of rats to regulate retrieval strategies at

different lag distances for optimal performance by emphasizing

working memory on shorter lags and temporal context memory

on longer lags. Here, suppressing mPFC/RE activity had the

largest effect on lags = �1 and the smallest effect on lags =

�3. This pattern resembles a reduction in a working memory

retrieval strategy, is consistent with several studies demon-

strating a role for RE in working memory tasks including spatial

working memory (Cassel et al., 2013; Griffin, 2015; Layfield

et al., 2015; Vertes et al., 2015; Hallock et al., 2016; Maisson

et al., 2018; Viena et al., 2018) and visual-tactile workingmemory

(Hallock et al., 2013), and is similar to the role of RE in fear mem-

ory retrieval (Ramanathan et al., 2018).

In contrast, we found that suppressing mPFC/PER had the

largest effect on lags = �3 and the smallest effect on lags =

�1. This opposite pattern resembles a reduction in a temporal

context memory retrieval strategy. Although temporal context

memory is primarily attributed to the HC (Howard and Kahana,

2002; Hsieh et al., 2014; Roberts et al., 2014; Kragel et al.,

2015), PER may also be involved in temporal context memory.

For example, PER is essential for trace conditioning (Kholodar-

Smith et al., 2008b; Bang and Brown, 2009) and for unitizing rep-

resentations of discontinuous events (Kholodar-Smith et al.,

2008a; Suter et al., 2013). Alternatively, the present results could

reflect a role of PER in disambiguating overlapping object fea-

tures (e.g., Murray and Bussey, 1999), as sequences contain

mostly the same elements (e.g., ABCA versus ABCB), but this

idea would not account for the deficit gradients observed as a

function of lag distance. Furthermore, PFC-PER disconnection

lesions impair rule shifting in a conditional object-place associa-

tion task, consistent with a pathway-specific role in behavioral

flexibility (Hernandez et al., 2017). Generally, the current results

demonstrate, for the first time, RE and PER have specific roles

in memory for sequences of events, rats use multiple retrieval

strategies during sequence memory, and these strategies can

be differentially controlled by reducing mPFC/RE and

mPFC/PER pathway activity.

Interestingly, rats showed a similar level of performance defi-

cits on items that skipped ahead in the sequence (e.g., ABD)

following suppression of both mPFC/RE and mPFC/PER.

Theoretically, only temporal context memory or ordinal repre-

sentational strategies (which were not tested here; see Orlov

et al., 2000; Reeders et al., 2018) can support accurate perfor-

mance when predicting upcoming items. Thus, these results

indicate both mPFC/RE and mPFC/PER are critical for mak-

ing predictions of upcoming items. The exact nature of each

pathway’s contribution to memory, however, should be further

explored in experiments focused on items skipping ahead

farther in sequences, by manipulating positional strategies,

and in tasks focused on elapsed time memory across multiple

delay periods (e.g., Jacobs et al., 2013; MacDonald et al., 2013).

Conclusions
We present evidence that top-down mPFC pathways targeting

RE and PER differentially control the retrieval strategy used to

support sequence memory. Generally, the ability to shift retrieval
strategies is important for situation-specific memory access and

optimal memory-guided behavior. Importantly, RE and PER

pathways endowmPFCwith the ability to exert top-down control

over episodic memory. Future studies should investigate

whether these pathways are vulnerable in disorders that affect

the temporal organization of memory, such as schizophrenia

and Alzheimer disease.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

All experimental procedures using animals were conducted in accordance with the Florida International University Institutional

Animal Care and Use Committee (FIU-IACUC). Male Long-Evans rats (n = 34; Charles River Laboratories; weighing 250-350 g

upon arrival) were used. Rats were individually housed and maintained on a 12-h inverse light/dark cycle (lights off at 10 AM).

Rats had ad libitum access to food, but access to water was limited to 2–5 min each day, depending on how much water they

received as a reward during behavioral training (6–9 ml). All training and testing sessions were conducted during the dark phase

(active period) of the light cycle.

METHOD DETAILS

Sequence memory task
The sequence memory task (Allen et al., 2014) involves repeated presentations of odor-sequences and requires a rat to determine

whether each item (odor) was presented in-sequence (InSeq; by holding the nose-poke response for 1 s) or out-of-sequence

(OutSeq; by withdrawing its nose from the port before 1 s). Rats were trained on two sequences, each comprising four distinct odors

(e.g., Seq1: A1B1C1D1, Seq2: A2B2C2D2). Each sequencewas presented at either end of a linear trackmaze. Odor presentations were

initiated by a nose-poke, and each trial was terminated after the rat either held the nose-poke response for > 1 s (InSeq) or withdrew

its nose from the port before 1 s (OutSeq). There was a 1 s interval between trials. Water rewards (one packet of aspartame for every

500 mL of water) were delivered below the odor port after each correct response. Following an incorrect response, a buzzer sound

was emitted and the sequence was terminated. Each sequence was presented 50-100 times per session; approximately half the pre-

sentations included all items InSeq (ABCD) and half included one item OutSeq (e.g., ABAD, odor A repeated in the 3rd position). Note

OutSeq items could be presented in any sequence position except the first position (i.e., sequences always began with an InSeq

item). Sequence memory was probed with OutSeq trials (e.g., ABAD; one OutSeq trial randomly presented per sequence) and lag

distances were analyzed to reveal the temporal order memory performance.

Task apparatus
Rats were tested in a noise-attenuated experimental room. The behavioral apparatus comprised a linear track (length, 183 cm;

width, 10 cm; height, 43 cm) with walls angled outward at 15� and nose ports at each end through which repeated deliveries of mul-

tiple distinct odors could be presented. Photobeam sensors were used to detect nose port entries. Each nose port was connected

to an odor delivery system (Med Associates). Odor deliveries were initiated by a nose-poke entry and terminated either when the rat

withdrew before 1 s, or after 1 s had elapsed. Water ports were positioned under each nose port for reward delivery. Timing boards

(Plexon) and digital input/output devices (National Instruments) were used to measure all event times and control the hardware. All

aspects of the task were automated using custom MATLAB scripts (MathWorks R2016a). A 256-channel Omniplex D with video

tracking and Cineplex behavior software (Plexon) were used to interface with the hardware in real time and record behavioral

data. Odors were organic odorants contained in glass jars (A1: 1-octanol, CAS: 111-87-5; B1: (-) - limonene, CAS: 5989-54-8;

C1: I-menthone, CAS: 14073-97-3; D1: isobutyl alcohol, CAS: 78-83-1; A2: acetophenone, CAS: 98-86-2; B2: (1S) - (-) - beta-

pinene, CAS: 18172-67-3; C2: L (-) - carvone, CAS: 6485-40-1; D2: 5-methyl-2-hexanone, CAS: 110-12-3) that were volatilized

with nitrogen air (flow rate, 2 L/min) and diluted with ultrapure air (flow rate, 1 L/min). To prevent cross-contamination, separate

Teflon tubing lines were used for each odor. These lines converged into a single channel at the bottom of the odor port. In addition,

a vacuum located at the top of the odor port provided constant negative pressure to quickly evacuate odor traces with a matched

flow rate.

Sequence memory task training
Naive rats were initially trained in a series of incremental stages over 15-20weeks. Each rat was trained to poke and hold its nose in an

odor port to receive awater reward. Theminimum required nose-poke duration started at 50ms andwas gradually increased (in 15ms

steps) until a rat reliably held the nose-poke position for 1.2 s for at least 80%of the time over three sessions (200-300 nose-pokes per

session). The rats were then habituated to odor presentations in the port (odor A1 and A2, then odor sequences A1B1 and A2B2) and

each rat was required to maintain its nose-poke response for 1 s to receive a reward. The rats were then trained to identify InSeq and

OutSeq items. Rats were initially trained on a two-item sequence: they were presented with ‘‘AB’’ and ‘‘AA’’ sequences in equal pro-

portions. The correct response to the first odor was to hold the nose-poke for 1 s (Odor A was always the first item). For the second

odor, rats were required to determine whether the itemwas InSeq (AB; hold for 1 s to receive reward) or OutSeq (AA; withdraw before

1 s to receive a reward). After reaching criterion on the two-item sequence, the number of items per sequence was increased to three

and four in successive stages (criterion: 70% correct across all individual odor presentations over three sessions). After reaching
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criterion performance on the two four-odor sequences (70% correct on both InSeq and OutSeq items), rats underwent surgery for

cannula implantation.

Cannula system
A cannula implant system was created using a high-resolution (56 mm) stereolithography 3D printer (ProJet 1200; 3D Systems), suit-

able for chronic head stages. A custom-designed 3D-printed cannula assembly was created using CAD software (Autodesk Inventor

Pro Edition) and assembled with guide cannulas (27 gauge; outer diameter 0.41 mm; inner diameter 0.31 mm; Component Supply

Company, FL) targeting the PER bilaterally (A/P�6.0 mm, M/L ± 6.8 mm, D/V�6.0 mm) and a single site aimed at RE (at a 10� angle
to avoid the superior sagittal sinus; A/P �1.8 mm, M/L �1.2 mm, D/V �6.7 mm).

AAV9 microsyringe infusions and cannula placement
Rats were anesthetized with isoflurane (induction 5%; maintenance: 2%–3%) mixed with oxygen (800 ml/min) and placed in a ste-

reotaxic apparatus (David Kopf Instruments, Model 900). A protective ophthalmic ointment (Gentak, 0.3%) was applied to the eyes

and the scalp was sterilized with applications of isopropyl alcohol (70% in deionized H2O) followed by Betadine. The incision site was

locally anesthetized with Marcaine� (7.5 mg/ml, 0.5 ml, s.c.) and the skull was exposed following a fish eye incision. Adjustments

were made to ensure bregma and lambda were level (±0.05 mm in the D/V plane). Body temperature (35.9-37.5�C) was monitored

andmaintained throughout surgery using a rectal thermometer and circulating water heating pad. Ringer’s solution with 5%dextrose

was administered to maintain hydration (5 ml, s.c.), and glycopyrrolate (0.2 mg/ml, 0.5 mg/kg, s.c.) was administered to prevent res-

piratory difficulties.

Burr holes were drilled bilaterally over mPFC (infusion site; OmniDrill35, World Precision Instruments). Infusions were performed

using a 10 mL microsyringe (NanoFil; World Precision Instruments) and an infusion pump (UltraMicroPump III; World Precision Instru-

ments). hM4Di+ rats (n = 13) received 0.5 mL injections of the custom AAV-hM4Di
nrxn (AAV9.CAG.mCherry-2a-hM4Di

nrxn.

WPRE.SV40; UPenn Vector Core) bilaterally into mPFC (A/P 3.24mm, M/L ± 0.7mm, D/V from cortex �2.8mm) at a flow rate of

50 nl/min. mCherry-only rats (n = 9) received 0.5 mL injections of the AAV without hM4Di (AAV9.CB7.CI.mCherry. WPRE.rBG; UPenn

Vector Core) bilaterally into mPFC. Pilot experiments were performed to determine the viral gestation time and viral expression. One

group of rats (n = 4) was injected with AAV9.hM4Di and then perfused at 1 week, 2 weeks, 4 weeks, or 8 weeks. In another set of rats

(n = 2), salinewas injected intomPFC in the left hemisphere and AAV9.hM4Di was injected intomPFC in the right hemisphere to deter-

mine the mCherry fluorescence from the virus. The AAV9.CB7.CI.mCherry was injected into three rats at dilutions of 1:2, 1:4, or 1:8 to

measure the expression rate compared with the hM4Di+ group to determine the optimal concentration for use in the control group.

Following injection of the viral vector into mPFC, burr holes overlying the PER bilaterally (A/P �6.0 mm, M/L ± 6.8 mm, D/V

�6.0 mm) and RE (at a 10� angle to avoid the superior sagittal sinus; A/P �1.8 mm, M/L �1.2 mm, D/V �6.7 mm) were drilled

into the skull. The cannula implant was inserted and secured with skull screws (1/8-inch grade 2 (CP) titanium; Allied Titanium

Inc.). The head stage was affixed to the surgical screws with dental cement (methyl, methacrylate, Patterson Dental). Dummy can-

nulas were inserted into the guide cannulas (extending 0.5 mm beyond the tip of the guide cannula) to protect against debris entering

the cannula and prevent scar tissue from developing and blocking the inserted tip of the cannula. A protective cap was affixed atop

the cannula implant to protect against impact and debris. Excess skin was sutured (black silk suture 4-0, with reverse cutting needle

19 mm, 1/2 Circle; FEN suture). Neosporin� was applied to the skin surrounding the head stage. At the end of surgery, Flunixin

(50 mg/ml, 2.5 mg/kg, s.c.), a nonsteroidal anti-inflammatory analgesic, was administered to the rats. The rats were returned to a

clean recovery incubator and monitored until they awoke. One day following surgery, the dummy cannulas were checked, the

rats were administered a dose of Flunixin, and Neosporin� was reapplied.

Suppressing mPFC neurons and projections
According to the protocol published by Roth (2016), clozapine-n-oxide (CNO; Cayman Chemical Company) was dissolved in 0.5%

DMSO in 0.9% saline (1.0 mg/ml). The CNO dose was selected on the basis of its behavioral effectiveness and ability to inactivate ter-

minal activitywhen intracerebrally infused over hM4Di-expressing terminals (Smith et al., 2016). The vehicle (Veh) was a solution of 0.5%

DMSO in 0.9% saline. For i.p. injections, either CNO or Veh was administered. Behavioral testing was initiated at 30 min post-injection

(randomized). For intracerebral infusions, needles were made so the infusion tip extended 1 mm past the implanted cannula. CNO and

Vehwere administered over 10min (at a volumeof 1 mL) in bothRE and PER. The infusion cannula (32 gauge; outer diameter 0.0095mm;

inner diameter 0.005 mm; Component Supply Company) was left in place for an additional 5min to allow for drug diffusion. Behavioral

testing was initiated 30min post-infusion. Both Veh and CNO infusions in RE and PER were counterbalanced and randomized.

Dual retrograde tracing
Alexa Fluor 488 Cholera Toxin Subunit B (CTB-488) and Alexa Fluor 594 Cholera Toxin Subunit B (CTB-594; Molecular Probes; In-

vitrogen Inc) were dissolved in neutral phosphate buffer (0.06M PB) at 1% (500 mg dissolved in 50 mL of 0.06M PB) concentration.

The solution was aliquoted and stored in a �80�C freezer.

Glass pipettes (3.5’’ 3-000-203 G/X; Drummond Scientific) were pulled using a P2000 Laser-Based MicroPipette Puller (Sutter In-

struments) with a tip diameter between 80 – 100microns. The tip was examined under the confocal microscope (Olympus FV1200) to
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verify diameter size and check for any internal flaws. Prior to surgery, the tracer was loaded into a glass pipette which was previously

backfilled with mineral oil using a Hamilton syringe (Hamilton Company).

Rats were anesthetized and prepped for surgery as described previously (n = 4). The skull was exposed with a straight incision.

Adjustments were made to ensure the bregma and lambda were level (±0.05 mm in the D/V plane). Burr holes overlying RE (at a

10� angle to avoid the superior sagittal sinus; A/P �1.8 mm, M/L �1.2mm, D/V �6.85 mm) and PER (A/P �6.0 mm, M/L

�7.2mm, D/V�6.6mm)were drilled into the skull (OmniDrill35,World Precision Instruments). Infusions were performed using a glass

pipette and an infusion pump (Nanoject III, Drummond Scientific). 0.3ml was injected into RE and 0.5 ml was injected into PER at a flow

rate of 1 nl/s. Three of the rats received CTB-488 in RE and CTB-594 in PER and one rat received the opposite. After the tracer was

fully injected, 15mins was allotted to allow for diffusion. Negative pressure was added in order to avoid the spread of the tracer along

the injection track. The incision site was sutured (black silk suture 4-0, with reverse cutting needle 19 mm, 1/2 Circle; FEN suture) and

dressed with Neosporin�. At the end of surgery, Flunixin (50mg/ml, 2.5mg/kg, s.c.), a nonsteroidal anti-inflammatory analgesic, was

administered to the rats. The rats were returned to a clean recovery incubator and monitored until they awoke. One day following

surgery the rats were administered a dose of Flunixin and Neosporin� was reapplied. After a 2-week incubation period, the rats

were perfused.

Histology
Rats were anesthetized with isoflurane (5%) mixed with oxygen (800 ml/min), and transcardially perfused with 100 mL phosphate-

buffered saline, followed by 200 mL of 4% paraformaldehyde (PFA, pH 7.4; MilliporeSigma). Brains were post-fixed overnight in 4%

PFA and then placed in a 30% sucrose solution for cryoprotection. Frozen brains were cut on a sliding microtome (40 mm; coronal

plane) into three sets of immediately adjacent sections.

To visualize AAV9.hM4Di expression as well as cannula tracts, half the slices in the first set (set 1) were mounted and coverslipped

using Vectashield� antifade mounting medium with 40,6-diamidino-2-phenylindole. An mCherry reporter molecule was expressed

with hM4Di and visualized with a confocal microscope (Olympus FV1200) using standard filter cubes. The remaining slices in set 1

were mounted for a cell body-specific cresyl violet stain and coverslipped with Permount to visualize the cannula placement. A sepa-

rate set of slices was processed for immunohistochemistry to visualize the extent of infected mPFC terminals in each of the cannula

target sites (RE andPER). Free-floating sectionswere placed in primary antibody solution: polyclonal rabbit anti red fluorescent protein

(Rockland Inc.) in 0.1% bovine serum albumin (BVA) at a 1:1000 concentration for 24-48h. The sections were then washed with 0.1 M

phosphate buffer (PB), placed in a 1:500 dilution of the secondary antibody (biotinylated goat anti-rabbit, Vector Laboratories) for 2h.

After washing, the sections were incubated for 1h using the avidin biotin complex (ABC) Elite kit (Vector Labs) in the diluent at a 1:300

concentration. Following the final washes, brown cell bodies and fibers expressingmCherry were visualized by incubating the tissue in

0.022% 3,30-diaminobenzidine and 0.003% hydrogen peroxide for approximately 2-4min. Sections were then mounted on chrom-

alum gelled slides, dehydrated in graded methanols, and placed in xylene before being coverslipped with Permount.

To map the spread of the injection, coronal micrographs of whole slices across the frontal cortex of tissue processed for the

mCherry antisera were obtained at 100x using a NikonFI-3 mounted on a Nikon Eclipse E600 microscope for each rat (Figure S6).

Themicrographs were transposed over rendered plates drawn fromNissl sections andmodified schematic plates (Paxinos andWat-

son, 2004) in Procreate (Savage Software Group). These images were imported into Adobe Illustrator (Adobe Inc.) where labeled cell

bodies were identified and used to pixelate and create a shaded image of the injection spread, such that the shading intensity

(pixilation) corresponded to the density of cell expression. The opacity of the shading was reduced to 40% and images of all rats

were superimposed onto one another to create a final schematic at five anterior posterior levels across mPFC.

A series of tissuewas processed in a subset of animals (n = 3) for dual immunofluorescence using antibodies formCherry andNeuN

to quantify the DREADD transduction rate in hM4Di+ rats. For this, free-floating sections were incubated in the primary antibody rab-

bit anti-red fluorescent protein for 24-48h. Following PB washes, the tissue was placed in an antisera for NeuN, (Mouse Anti-NeuN

Antibody, clone A60; EMDMillipore) for 4h. Following another set of PB washes, the tissue was incubated in fluorophore-conjugated

secondary antibodies (VectaFluor Duet Immunofluorescence Double Labeling Kit, DyLight 594 Anti-Rabbit/DyLight 488 Anti-Mouse)

for an additional 2h before being mounted onto chrom-alum gelled slides, rinsed in deionized H2O, and coverslipped using

VECTASHIELD HardSet Antifade Mounting Medium.

For the rats (n = 4) with the dual retrograde tracer, the first set were mounted and coverslipped using Vectashield� antifade

mounting medium with 40,6-diamidino-2-phenylindole. The injection sites and mPFC were visualized with a confocal microscope

(Olympus FV1200) using standard filter cubes. To identify mPFC projection cell type, the second set of tissue was processed for

immunofluorescence using the antibody for glutamic acid decarboxylase (GAD). Sections were blocked in 0.5% BSA for one hour

then placed in the primary antibody, mouse anti-GAD67 (EMD Millipore Inc) at a concentration of 1:2000 for 36h. Following PB

washes, the tissue was incubated in the secondary antibody, Dylight 405 goat anti-mouse (Invitrogen Inc) for 3h. Following final

washing of tissue, sections were mounted and coverslipped with VECTASHIELD � Antifade Mounting (Vector Labs).

QUANTIFICATION AND STATISTICAL ANALYSIS

All datawere analyzed inMATLAB 2016a (Mathworks), SPSS 20.0.0, Excel 2016, and FIJI ImageJ using custom scripts and functions.
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Quantification of mPFC cells and fiber density in RE and PER
For the dual immunofluorescence using antibodies for mCherry and NeuN identical epifluorescent images of the frontal cortex

were captured at 100x with a NikonFI-3 camera using NIS Elements software (Nikon) with filters for red fluorescent protein

(hM4Di/ mCherry-labeled neurons) and green fluorescent protein (NeuN-labeled neurons) at three separate anterior posterior levels:

at the core of the injection (�3.2 from Bregma), one level anterior, and one level posterior (± 120 mm in distance). Images were then

imported into FIJI ImageJ (Version 2.0.0; NIH), and a uniform region of interest at each level of the prelimbic cortex and anterior cingu-

late cortex, restricted to layers 5/6, which expressed the greatest density of hM4Di neurons, was selected to estimate the maximum

percentage of cells infected. Manual cell counts were conducted using the Cell Counter plug-in in FIJI and the ratio of mCherry

labeled neurons to neurons expressing NeuN was calculated and averaged across rats.

The pattern of hM4Di expression in terminals was analyzed usingDAB immunohistochemistry in a subset of rats (n = 3) by capturing

serial sections across the anterior posterior (AP) plane of RE and PER using at 100xmagnification. Photomicrographs were then con-

verted to 8-bit images in FIJI. The mean density was calculated by determining the absolute value of the difference of the mean gray

value from the maximum gray area (255) through a ROI for each terminal site (RE or PER). The mean density was then normalized by

dividing it over the mean gray density of a reference area consistent across each structure (3V; rhinal fissure) to obtain the relative

density (RD) of each ROI. Normalizing the data removed any variability in the intensity of staining across sections and cases. For

RE, 100um2 ROIs were measured at 6 AP levels for the medial (REm), dorsal (Red) and lateral (REl) division of anterior RE, the medial

(REcm), dorsal (REcd) divisions of caudal RE, and perireuniens (periRE). For PER, 50um2 ROIs were measured at 3 AP levels for each

layer of cortex. The RDwas then used to conduct a quantitative analysis of the distribution and density of hM4Di+ fibers frommPFC to

RE and PER.

The number of dual labeled cells (CTB-594, CTB-488) were counted using the methods mentioned above. Images were taken at

20X magnification using a confocal microscope (FV1200) to look for double-labeling across mPFC layers. Cells were counted in FIJI

ImageJ (Version 2.0; NIH) for CTB-488 andCTB-594 labeled cells at eight locations (anterior cingulate cortex, dorsal prelimbic cortex,

ventral prelimbic cortex, and infralimbic cortex; at�3.72 from Bregma and�3.00 from Bregma). Individual sections were then sepa-

rated by layers (I, II/III, V, VI) and a uniform ROI (300 mm2) was taken at each layer of mPFC to look for double-labeling. Two separate

manual cells counts were conducted using the Cell Counter plug-in in FIJI and the ratio of CTB-488 or CTB-594 labeled cells to the

total number of DAPI (blue) labeled cells were counted and averaged across animals. For consistency, we processed the colors of the

images so mPFC/RE was always green and mPFC/PER was always cyan.

For the GAD stained sets, we looked for double-labeling of GAD67 (blue) and CTB-488/594 labeled cells in mPFC. Images were

taken at 60X magnification and analyzed in FIJI for any dual-labeled cells.

Statistics
Performance on the task was analyzed using a number of measures. The first position of each sequence was excluded from all an-

alyses as these items are always InSeq. Expected versus observed frequencies were analyzed with G-tests to determine whether the

observed frequency of InSeq and OutSeq responses for a given session significantly differed from the frequency expected by

chance. G-tests provide ameasure of performance that controls for response bias and is a robust alternative to the c2 test, especially

for datasets that include cells with smaller frequencies (Sokal and Rohlf, 1995). To compare performance across sessions or animals,

a sequence memory index was calculated (SMI; Allen et al., 2014) according to the following equation:

SMI=
ð0:9 � INcorÞð0:1 �OUTcorÞ � ð0:9 � INincÞð0:1 �OUTincÞð0:9 � INcor + 0:9 � INincÞð0:1 �OUTcor + 0:1 �OUTincÞ3 ð0:9 � INcor + 0:1 �OUTincÞð0:9 � INinc + 0:1 �OUTcorÞ

p

The parameters of the equation are as follows: INcor = InSeq correct, INinc = InSeq incorrect, OUTcor = OutSeq correct, and OUT-

inc = OutSeq incorrect. The SMI normalizes the proportion of InSeq and OutSeq items presented during a session and reduces

sequence memory performance to a single value ranging from �1 to 1. A score of 1 represents perfect sequence memory; i.e., a

rat correctly held its nose-poke response to all InSeq items and correctly withdrew its nose on all OutSeq items. A score of 0 indicates

chance performance. Negative SMI scores represent performance levels below that expected by chance. A behavioral curve was

analyzed for each rat to determine whether it performed above chance levels by measuring the SMI during each session, excluding

CNO infusion days. SMI was calculated to determine if the effects of CNO and Veh differed when administered i.p. and by infusion

(RE and PER). Using SPSS, an ANOVA was used to analyze the overall effects of Veh versus CNO between repeated conditions of

hM4Di+ andmCherry-only groups. In addition, a simple linear regression was used to analyze the relationship between repeated con-

ditions and infusions. Nose-poke duration was analyzed using paired t tests to determine whether rats held their responses signif-

icantly longer in InSeqcorrect than in OutSeqcorrect trials. Paired t tests were performed to determine any differences between the ef-

fects of Veh and CNO on inter-odor-interval and inter-sequence-interval. General poke distributions were created through MATLAB

using the session data.

Two distinct types of OutSeq probe trials were used to determine sequence memory: backward lags and forward lags. Backward

lags occur when an odor is repeated in the sequence (e.g., ABBD). In this task there were three backward lags (�3-Back, �2-Back,
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and�1-Back) indicating the number of stimuli between the original position and the repeated position. Forward lags occur when the

sequence skips ahead (e.g., ADCD). In this particular task, there are two forward lags (+1-Fwd, and +2-Fwd), indicating the number of

stimuli between the repeated position and the original position. Lag analyses were used to measure performance on specific forward

and backward lag trials for OutSeq items. The accuracy was calculated for each rat. Each individual rat’s performance in the Veh

condition was subtracted from its performance in the CNO condition for each lag and then divided by the difference in the lag

and Veh accuracy. This produced a value that indicated the percent drop in lag performance based on each individual rat’s perfor-

mance in the Veh condition. A paired t test was performed between RE InSeq and PER InSeq performance levels. A one-tailed, one-

sample t test was performed tomeasure differences against no change for all lag distances. A repeated-measures 2x3 ANOVAwith a

Greenhouse-Geisser correction was performed on the backward lag trials to analyze any interaction effects between RE and PER

infusions. A 2x2 ANOVA with a Greenhouse-Geisser correction was performed for the forward lags between RE and PER infusion.

The Greenhouse-Geisser was used because the assumption of sphericity is violated for within-subject analysis inmost cases and the

Greenhouse-Geisser correction is robust to this violation. Finally, t tests and repeated-measures ANOVA in SPSSwere conducted for

cell counts and fiber densities.
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Figure S1. Incubation time and AAV9.hM4Di expression for these experiments., Related to Figure 1.  
AAV9.hM4Di was fully expressed within 2 weeks within the axons and soma of neurons  
(A) The images show that by the 2-week mark, the virus was well expressed, and thus behavioral experiments began after this 

incubation time.  
(B) AAV9.hM4Di expressed along the axons of mPFC neurons, as expected. The magnified fluorescent image shows an example of 

hM4Di expression in an axon (arrows) and soma (asterisk).   

 
 



  
Figure S2. Dual retrograde labeling and immunoflourescence using GAD67, Related to Figure 1.  
(A) Each rats confocal photomicrograph of the RE (green) and PER (cyan; color was altered for consistency purposes) injection sites 
with CTB-488 or CTB-594 and dapi (blue). mPFC layers are displayed on the right that show retrograde labeled cells from RE and 

PER. Note these layer sections are from ventral prelimbic cortex (vPL). 

(B) Representative confocal image of dual labeled GAD67 (blue), CTB-488 (i; mPFCàRE, green), and CTB-594 (ii; mPFCàPER, 

cyan). 



 
Figure S3. Individual behavioral performance, Related to Figure 2. 
Each rat’s behavioral data was collapsed into a single normalized measure (SMI) for each session. The identification of each rat is 

indicated at the top of each graph (NCLXXXX). The red line represents the mean SMI as the rat learned the task. All rats reached 
steady state and were able to maintain their SMI except for when infusions/injections occurred. With each infusion/injection, there was a 

clear decrease (to chance levels) in SMI.  

 

 
 

 



Figure S4. Sequence 1 vs. sequence 2, Related to Figure 
1, 3, 4, and 5.  
Comparison of sequence 1 vs. sequence 2 revealed that the 

rats performed at comparable levels on both sequences. 

(A) Comparing No-Inj vs Veh days in sequence 1 and 
sequence 2 indicated nonsignificant differences. Moreover, 

there was no significant difference between sequences for the 

No-Inj days and Veh days.  
(B) There was no significant difference between sequences 

across repeated conditions for i.p. CNO administration. 

(C) SMI was not significantly different between sequences 

across repeated conditions for mPFCàRE infusions. 
(D) Similarly, SMI was not significantly different between the 

sequences across repeated conditions for mPFCàPER 

infusions. 

  



 

 

Figure S5. Viral expression and cannula placements in experimental groups, Related to Figure 3, 4, and 5.  
(A) Schematic representation AAV9.mCherry maximal viral spread in the mPFC for all rats. While infected cells in mCherry-only rats 

were visualized outside of the medial wall of the PFC, extending to the orbital and motor cortices, the null behavioral effects of these 
rats confirmed that our findings were not associated with nonspecific effects related to the viral construct or CNO. Numbers to the right 

of each section indicate distance (mm) anterior to bregma. 

(B)  Microinfusion injector tip location in the RE for all AAV9.mCherry rats. Numbers to the right of each section indicate distance (mm) 
anterior to bregma. 

(C)  Microinfusion injector tip location for all AAV9.mCherry rats in the PER. Numbers to the right of each section indicate distance (mm) 

anterior to bregma.  
(D)  Representative image of AAV9.hM4Dinrxn expression in the mPFC.  

(E)  Representative Nissl image of RE and PER (bilateral) for hM4di+. The asterisk indicates the infusion cannula tip location.  

(F)  AAV9.mCherry expression in the mPFC from a representative rat. 
(G) Representative Nissl image of the RE and PER (bilateral) for mCherry-only. Asterisk indicates infusion cannula tip location.  



Figure S6. Schematic of viral spread in h4MDi+ rats, Related to Figure 3 
and STAR Methods.  
Illustration of how the spread of the viral injection was analyzed. A 

representative sample of a schematic rendering of the viral spread at one level 

for one rat is shown.  
(A) Coronal micrographs were obtained at 100x of whole slices across the 

frontal cortex from immunostained tissue (antisera for mCherry) for each 

h4MDi+ rat.  
(B) The micrographs were transposed over rendered plates drawn from Nissl 

sections and modified schematic plates (Swanson, 2004) in Procreate (Savage 

Software Group).  
(C) These images were imported into Adobe Illustrator (Adobe Inc.) and using 
the ‘Image Trace’ function, only labeled cell bodies were identified and used to 

pixelate the image 
(D) This produced a shaded image of the injection spread, such that the 
shading intensity (pixilation) corresponded to cell expression density.   
(E) The opacity of each shaded area was reduced to 40% and all rats were 

superimposed onto one another to create a final schematic for five anterior 
posterior levels.  
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