Title: Identification of the Catechin Uptake Transporter Responsible for Intestinal Absorption of Epigallocatechin Gallate in Mice.

Authors: Shunsuke Ishii, Hidefumi Kitazawa, Takuya Mori, Noriko Osaki, Aya Kirino, Shun Nakamura, Akira Shimotoyodome, and Ikumi Tamai

Journal: Scientific Reports.

**Supplemental Table 1.** Restriction sites used for cloning ORFs of EGCg transporter candidate genes into the pSP64 poly(A) vector or modified vectors and linearization.

| Protein name | Gene symbol | Cloning site |        | Linearization site        |  |
|--------------|-------------|--------------|--------|---------------------------|--|
|              |             | 5'-end       | 3'-end |                           |  |
| ZIP14        | Slc39a14    | Hind III     | Xba I  | <sup>a</sup> Mlu I        |  |
| ASBT         | Slc10a2     | Pst I        | Sac I  | EcoR I                    |  |
| CTL4         | Slc44a4     | Hind III     | Xba I  | Pvu II                    |  |
| DRA          | Slc26a3     | BamH II      | Sac I  | EcoR I                    |  |
| DTDST        | Slc26a2     | Pst I        | Xba I  | <sup>b</sup> Bgl II       |  |
| LAT2         | Slc7a8      | Hind III     | Xba I  | <sup>b</sup> Bgl II       |  |
| NBC1         | Slc4a4      | Sal I        | Xba I  | EcoR I                    |  |
| MNK          | Atp7a       | Pst I        | Xba I  | <sup>b</sup> Bgl II       |  |
| KCC3         | Slc12a6     | Sal I        | Xba I  | <sup><i>a</i></sup> Mlu I |  |
| MCT1         | Slc16a1     | Pst I        | Xba I  | EcoR I                    |  |

<sup>15</sup> <sup>a</sup>Mlu I and <sup>b</sup>Bgl II sites were inserted into the EcoR I (86) site of the pSP64 poly (A) vector.

- Title: Identification of the Catechin Uptake Transporter Responsible for Intestinal Absorption of Epigallocatechin Gallate in Mice.
- Authors: Shunsuke Ishii, Hidefumi Kitazawa, Takuya Mori, Noriko Osaki, Aya Kirino, Shun Nakamura, Akira Shimotoyodome, and Ikumi Tamai

Journal: Scientific Reports.

|           | Protein name       | Gene symbol   | UniProtKB ID | <sup>a</sup> Fold Change |       |
|-----------|--------------------|---------------|--------------|--------------------------|-------|
| 20        |                    |               |              | Jeiunum                  | Ileum |
| 20        | 1 (D.D.5           | 11 10         | MADE MOURT   | Jejunum                  | 15.0  |
|           | MRP7               | Abcc10        | MRP7_MOUSE   | 0.6                      | 15.2  |
|           | ZIP14              | Slc39a14      | S39AE_MOUSE  | 1.1                      | 13.4  |
|           | ASBT               | Slc10a2       | NTCP2 MOUSE  | 0.8                      | 7.1   |
|           | CTL4               | Slc44a4       | CTL4 MOUSE   | 0.5                      | 49    |
| 25        | MDR1A              | Abchla        | MDR1A MOUSE  | 1.8                      | 3.7   |
| 23        |                    | AUCUTA        | MDRIA_MOUSE  | 1.0                      | 3.7   |
|           | y+LAT1             | Slc/a/        | YLAII_MOUSE  | 1.9                      | 3.6   |
|           | NaDC1              | Slc13a2       | S13A2_MOUSE  | 3.3                      | 3.1   |
|           | DRA                | Slc26a3       | S26A3 MOUSE  | 1.4                      | 3.0   |
|           | DTDST              | Slc26a2       | S26A2 MOUSE  | 1.3                      | 3.0   |
| 30        | Ι ΔΤ2              | Slc7a8        | LAT2 MOUSE   | 12                       | 2.8   |
| 50        | NPC1               | Slo4o4        | SAAA MOUSE   | 1.2                      | 2.0   |
|           | NDCI               | 310444        | S4A4_MOUSE   | 1.5                      | 2.0   |
|           | OSIb               | SIC51b        | OSTB_MOUSE   | 1.7                      | 2.8   |
|           | SVCT2              | Slc23a2       | S23A2_MOUSE  | 2.9                      | 2.6   |
|           | ARF6               | Arf6          | ARF6 MOUSE   | 1.5                      | 2.6   |
| 35        | NHERF4             | Pdzd3         | NHRF4 MOUSE  | 2.4                      | 2.4   |
|           | MPP2               | Abce?         | MPP2 MOUSE   | 1.8                      | 2.2   |
|           | DCDD1              | Abcc2         | ADCC2 MOUSE  | 1.0                      | 2.2   |
|           | BCRPI              | Abcg2         | ABCG2_MOUSE  | 1.1                      | 2.2   |
|           | Zn11               | SIc30a1       | ZNTI_MOUSE   | 2.4                      | 2.2   |
|           | NHERF3             | Pdzk1         | NHRF3_MOUSE  | 2.2                      | 2.2   |
| 40        | MNK                | Atp7a         | ATP7A MOUSE  | 1.5                      | 2.1   |
|           | LAT4               | Slc43a2       | LAT4 MOUSE   | 19                       | 2.1   |
|           | KCC4               | Slo12o7       | S12A7 MOUSE  | 1.6                      | 2.1   |
|           | 4521               |               | ALS NOTE     | 1.0                      | 2.1   |
|           | 4F2hc              | Slc3a2        | 4F2_MOUSE    | 2.1                      | 2.1   |
|           | KCC3               | Slc12a6       | S12A6_MOUSE  | 1.4                      | 2.0   |
| 45        | MCT1               | Slc16a1       | MOT1 MOUSE   | 1.1                      | 2.0   |
|           | PEPT1              | Slc15a1       | S15A1 MOUSE  | 1.5                      | 2.0   |
|           | MUSEC1             | Stybp?        | STXB2 MOUSE  | 2.2                      | 2.0   |
|           | KCT1               | Strop2        | STAB2_MOUSE  | 2.2                      | 2.0   |
|           |                    | Sicoari       | SC3AB_MOUSE  | 2.1                      | 2.0   |
|           | Sterolin-2         | Abcg8         | ABCG8_MOUSE  | 2.2                      | 1.9   |
| 50        | TAUT               | Slc6a6        | SC6A6_MOUSE  | 0.3                      | 1.9   |
|           | ATP8B1             | Atp8b1        | AT8B1 MOUSE  | 1.6                      | 1.9   |
|           | NBC3               | Slc4a7        | S4A7 MOUSE   | 2.1                      | 19    |
|           | Syntoxin 4         | Sty/          | STV4 MOUSE   | 1.4                      | 1.0   |
|           | TMOGE1             | 51X4<br>T0-fl | TMOSI MOUSE  | 1.4                      | 1.9   |
|           | 1M9SF1             | 1m9st1        | IM981_MOUSE  | 1.5                      | 1.8   |
| 55        | ATP1B1             | Atp1b1        | AT1B1_MOUSE  | 1.4                      | 1.8   |
|           | Syntaxin-7         | Stx7          | STX7 MOUSE   | 1.7                      | 1.8   |
|           | ATPB3              | Atp1b3        | AT1B3 MOUSE  | 1.1                      | 1.7   |
|           | ZnT5               | Slc30a5       | ZNT5 MOUSE   | 2.1                      | 17    |
|           | NKCC1              | Sle30a5       | SI2A2 MOUSE  | 2.1                      | 1.7   |
| 60        | NKCCI              | SICIZAZ       | SIZAZ_MOUSE  | 1.1                      | 1./   |
| 60        | OSTa               | Slc51a        | OSTA_MOUSE   | 1.3                      | 1.6   |
|           | PMCA2              | Atp2b2        | AT2B2_MOUSE  | 1.8                      | 1.6   |
|           | Cadherin-17        | Cdh17         | CAD17 MOUSE  | 1.8                      | 1.6   |
|           | TM9SF2             | Tm9sf2        | TM9S2 MOUSE  | 15                       | 15    |
|           | Pantophysin        | Svoll         | SVPL1 MOUSE  | 1.8                      | 1.5   |
| <i>(E</i> | CLUT1              | Syp11         | CTD1 MOUSE   | 1.0                      | 1.5   |
| 05        | GLUII              | Siczai        | GIRI_MOUSE   | 1.5                      | 1.5   |
|           | VAT1               | Vatl          | VAT1_MOUSE   | 2.0                      | 1.5   |
|           | VTI1RP1            | Vtilb         | VTI1B MOUSE  | 4.2                      | 1.5   |
|           | Basigin            | Bsg           | BASI MOUSE   | 1.5                      | 1.4   |
|           | TfRI               | Tfre          | TFR1_MOUSE   | 13                       | 14    |
| 70        | ASCT2              | Slala5        | A A AT MOUSE | 0.4                      | 1.1   |
| 10        | ABC12              | JielaJ        | LEDU MOUCE   | 1.4                      | 1.5   |
|           | Hephaestin         | Heph          | HEPH_MOUSE   | 1.0                      | 1.3   |
|           | Syndet             | Snap23        | SNP23_MOUSE  | 1.4                      | 1.3   |
|           | ALDP               | Abcd1         | ABCD1 MOUSE  | 1.5                      | 1.2   |
|           | LDLR               | Ldlr          | LDLR MOUSE   | 1.3                      | 1.2   |
| 75        | ZIP7               | Slc39a7       | S39A7 MOUSE  | 1.5                      | 12    |
| 15        | MDD2               | Ahaa?         | MDD2 MOUSE   | 1.0                      | 1.2   |
|           | MRP5               | Abccs         | MKP5_MOUSE   | 1.2                      | 1.2   |
|           | Syntaxin-3         | Stx3          | STX3_MOUSE   | 1.2                      | 1.1   |
|           | MUNC18c            | Stxbp3        | STXB3_MOUSE  | 1.5                      | 1.1   |
|           | NaPi2b             | Slc34a2       | NPT2B MOUSE  | 0.3                      | 1.1   |
| 80        | GLUT2              | Slc2a2        | GTR2 MOUSE   | 1.5                      | 1.1   |
|           | SMCT               | Slc5a8        | SC5A8 MOUSE  | 16.7                     | 1.1   |
|           | OTL 1              | C1-44-1       | CTL1 MOUSE   | 1.2                      | 1.1   |
|           | CILI               | SIC44a1       | CILI_MOUSE   | 1.5                      | 1.0   |
|           | V-ATPase subunit A | Atp6v1a       | VATA_MOUSE   | 1.6                      | 1.0   |
|           | ATP1A1             | Atplal        | AT1A1 MOUSE  | 1.4                      | 1.0   |
| 85        | SEC61G             | Sec61g        | SC61G MOUSE  | 1.6                      | 0.9   |
|           | AP3h1              | An3h1         | AP3B1_MOUSE  | 13                       | 0.9   |
|           | OPCTL2             | S1-22-19      | S22AL MOUSE  | 1.5                      | 0.9   |
|           | OKC1L2             | 51022818      | SZZAI_MOUSE  | 1.2                      | 0.8   |
|           | SGET4              | SIc5a9        | SC5A9_MOUSE  | 2.2                      | 0.8   |
|           | Sterolin-1         | Abcg5         | ABCG5_MOUSE  | 1.8                      | 0.8   |
| 90        | B0AT1              | Slc6a19       | S6A19 MOUSE  | 1.1                      | 0.8   |

**Supplemental Table 2.** Fold change of intestinal expression levels of all plasma membrane transporter proteins identified in shotgun proteomics analysis.

Title: Identification of the Catechin Uptake Transporter Responsible for Intestinal Absorption of Epigallocatechin Gallate in Mice.

Authors: Shunsuke Ishii, Hidefumi Kitazawa, Takuya Mori, Noriko Osaki, Aya Kirino, Shun Nakamura, Akira Shimotoyodome, and Ikumi Tamai

Journal: Scientific Reports.

|     | CNT2        | Slc28a2 | S28A2 MOUSE | 1.1 | 0.7 |
|-----|-------------|---------|-------------|-----|-----|
|     | EDB         | Vamp8   | VAMP8 MOUSE | 1.4 | 0.7 |
|     | ANK         | Ankh    | ANKH_MOUSE  | 2.4 | 0.6 |
|     | CAT1        | Slc7a1  | CTR1 MOUSE  | 1.2 | 0.6 |
| 95  | PIgR        | Pigr    | PIGR_MOUSE  | 0.8 | 0.5 |
|     | PCFT/HCP1   | Slc46a1 | PCFT_MOUSE  | 1.8 | 0.5 |
|     | GLUT5       | Slc2a5  | GTR5_MOUSE  | 0.7 | 0.4 |
|     | CIP1        | Slc12a9 | S12A9_MOUSE | 2.1 | 0.4 |
|     | SGLT1       | Slc5a1  | SC5A1_MOUSE | 1.8 | 0.3 |
| 100 | Syntaxin-17 | Stx17   | STX17_MOUSE | 6.3 | 0.2 |
|     |             |         |             |     |     |

a Fold Change of the average expression levels in the catechin group to the control group (n = 3/group).

Title: Identification of the Catechin Uptake Transporter Responsible for Intestinal Absorption of Epigallocatechin Gallate in Mice.

Authors: Shunsuke Ishii, Hidefumi Kitazawa, Takuya Mori, Noriko Osaki, Aya Kirino, Shun Nakamura, Akira Shimotoyodome, and Ikumi Tamai

Journal: Scientific Reports.



105

110

Supplemental Figure 1. (a) Epigallocatechin gallate (EGCg) uptake by *Xenopus laevis* oocytes microinjected with cRNA of monocarboxylate transporter 1 (MCT1), apical sodium-dependent bile acid transporter (ASBT), L-amino acid transporter 2 (LAT2), choline transporter-like protein 4 (CTL4), sodium bicarbonate cotransporter 1 (NBC1), or water (n = 4-5/group) incubated with 100 mM EGCg for 2 hours. Data are presented as mean  $\pm$  SD. Significant differences as determined by means of Student's t-test are indicated by \* (P < 0.05) and \*\* (P < 0.01). (b) EGCg uptake by *Xenopus laevis* oocytes microinjected with cRNA of down-regulated in adenoma (DRA), diastrophic dysplasia sulfate transporter (DTDST), zinc transporter 14 (ZIP14), or water (n = 6-8/group) incubated with 100 mM EGCg for 2 hours. Data are presented as mean  $\pm$  SD. Significant differences as determined by means of Student's t-test are indicated by \* (P < 0.05) and \*\* (P < 0.01). (c) EGCg uptake by *Xenopus laevis* oocytes microinjected with cRNA of potassium chloride cotransporter 3 (KCC3), Menkes P-type ATPase (MNK), or water (n = 6-8/group) incubated with 500 mM EGCg for 2 hours. Data are presented as mean  $\pm$  SD. Significant differences are presented as mean  $\pm$  SD. Significant differences are presented as mean  $\pm$  SD. Significant of P < 0.05 and \*\* (P < 0.05) and \*\* (P < 0.01).

120

115

- Title: Identification of the Catechin Uptake Transporter Responsible for Intestinal Absorption of Epigallocatechin Gallate in Mice.
- Authors: Shunsuke Ishii, Hidefumi Kitazawa, Takuya Mori, Noriko Osaki, Aya Kirino, Shun Nakamura, Akira Shimotoyodome, and Ikumi Tamai

Journal: Scientific Reports.



<sup>135</sup> Supplemental Figure 2. Kinetics of gallic acid uptake mediated by DTDST after subtracting the values obtained with mock cells (n = 4). CHO-K1 cells stably expressing DTDST or mock cells were incubated with gallic acid at concentrations ranging from 1 to 1000  $\mu$ M for 30 min. Data are presented as mean  $\pm$  SD.