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We have developed an enhanced implementation of the thermal-orbital code in which
moon-moon interactions are computed with an averaged Hamiltonian model, in order to
assess the accuracy of the rougher model of moon-moon interactions treated as encounters
described in the main text. Here, we describe the implementation and validation of the
averaged Hamiltonian model (Supplementary §1). We describe results obtained with this
improved model (Supp. §2), and show that their behavior matches that obtained with the
more simplistic treatment of moon-moon interactions described in the Methods (Supp. §3).
Given limitations described below of the averaged Hamiltonian model in high-eccentricity
cases, which affect resonance capture and escape and runaway internal heating by tidal
dissipation (two essential aspects of the moons’ evolution), we choose to use the simplified
model. In spite of the limitations of either model, similarities in outcomes suggest that
general features of the moons’ orbital evolution are robustly captured.

1 Averaged Hamiltonian orbital model

In this implementation, the code calls N parallel instances (here, N = 5) of the thermal
subroutine and an additional orbital evolution subroutine. Both subroutines are run for
one time step; the orbital subroutine returns the updated orbital parameters (a and e) of
its corresponding moon to the main program, which feeds orbital parameters for all moons
into each orbital evolution subroutine instance at the next time step.

We implement the model described in Appendix A of Meyer and Wisdom (2008) (noting
typos in their equation (A.23) – mi instead of m0 – and in their equation (A.30), where
the inverse of the denominator need not be taken) using a 10-substep modified midpoint
method (Press et al., 2002). This model is only valid for j + k : j orbit-orbit resonances
with k = 1, but could be expanded to accommodate higher k with additional coefficients
(Murray and Dermott, 1999). In this model, resonant orbital evolution is computed only
between pairs of moons, using an averaged Hamiltonian approximation rather than a full
N-body approach. This prevents us from accurately computing the orbital evolution of a
moon in mean-motion resonance with more than one other moon, but enables much faster
semi-analytical computations of a and e.
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We benchmarked our implementation against previous results on the orbital evolution
of Enceladus and Dione through the 2:1 resonance (Meyer and Wisdom, 2008; Zhang and
Nimmo, 2009). Benchmark results are shown in Supplementary Fig. 6. The values we adopt
to compute the effect of Saturn’s oblateness (zonal gravity harmonics J2 = 16290.71×10−6,
J4 = −935.83×10−6; Jacobson et al. (2006)) on the precession of orbits and resonant angles
yield orbital precession rates for Enceladus (161 deg yr−1) and Dione (32 deg yr−1), calcu-
lated using equations (A.11) and (A.12) of Meyer and Wisdom (2008), that are higher than
those reported by Zhang and Nimmo (2009): 88.4 deg yr−1 and 17.5 deg yr−1, respectively.
We could not find an obvious explanation for this discrepancy. Higher precession rates only
act to further spread apart in time the components of any orbit-orbit resonance.

Our simulations of the Enceladus-Dione 2:1 resonance produce values for orbital pa-
rameters in quantitative agreement with those previously computed (Meyer and Wisdom,
2008; Zhang and Nimmo, 2009) within each of the steps through the 2:1 resonance (Sup-
plementary Fig. 6). These benchmark simulations yield identical results with time steps
of 5× 10−4 and 5× 10−5 years, but such numerical convergence is not achieved with a time
step of 5× 10−3 years. Therefore, we adopt a time step of 5× 10−4 years ≈ 0.2 days, just
a few time steps per orbit.

Because this averaged Hamiltonian model implements tidal equations (4) (without the
ring torque term) and (5) described in the Methods (Meyer and Wisdom, 2008), our code
switches between using solely these equations during secular evolution of a given moon
(even if other moons in the system are in resonance) and the averaged Hamiltonian model
during resonant evolution. This piecewise approach was adopted previously (Zhang and
Nimmo, 2009) to keep computation times reasonable. The averaged Hamiltonian routine
is called only for pairs of moons whose mean motion ratio comes within 1% of a commen-
surability, and as long as it remains within 1.5% of it. The latter threshold is higher to
avoid moons spuriously going in and out of resonance if the mean motion ratio crosses the
capture condition back and forth immediately after capture. The choice of commensura-
bility threshold is arbitrary because the width of a resonance is not well known (Malhotra,
1998). We consider orbit-orbit resonances up to j = 5, i.e. from 2:1 to 6:5.

Tidal evolution is sped up by a factor 103, such that the main code, within a 50-year
time step, calls the resonant orbital evolution routine 50/(5 × 10−4)/103 = 100 times.
Using such speed-up factors has been shown not to affect the computation of resonant
orbital evolution, as long as they remain lower than the ratio between the time scales of
secular tidal evolution and resonant angle libration (e.g. Meyer and Wisdom, 2008; Zhang
and Nimmo, 2009).

We ignore resonant interactions if the moons are still gravitationally interacting with
the rings, assuming that fast orbital expansion resulting from the ring torque prevents
capture into resonance. Finally, we arbitrarily set eccentricities below 10−7 to 10−7 so that
e2 > 1.1×10−16, the machine double precision, to avoid singularities in the implementation
of the model, which involves a division by 1−

√
1− e2 to compute the angular momentum

associated with a moon’s osculating orbit (Meyer and Wisdom, 2008, equation A.7).
The equations of this model were derived under the assumption of small eccentricities
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(Meyer and Wisdom, 2008), and become increasingly inaccurate for increasing eccentrici-
ties. Because excitation to high eccentricities can induce significant changes in semi-major
axes ∆a owing to angular momentum conservation given that ∆a/a ∼ j∆e2 (Malhotra,
1998, their equation 26), these changes are also not accurately computed.

2 Simulations with averaged Hamiltonian model

Results of simulations with the model of Supp. §1 are shown in Supp. Fig. 7–11. The cases
shown in Supp. Fig. 7, 8, and 9 are similar to those simulated with the more simplistic
model of moon-moon interactions shown in Fig. 2 (initial Saturn Q = 80000). Those shown
in Supp. Fig. 10 and 11 are similar to those shown in Fig. 3 (constant Q ≈ 2450) and
Supp. Fig. 3 (initial Q = 20000), respectively. Starting conditions for all simulations are
shown in Table 1.

Supp. Fig. 7: As in Fig. 2, Saturn’s Q is set to 80000 initially, linearly decreasing
to near 2450 at the present day. In the first Gyr, Dione’s eccentricity is excited by passage
through the 3:2 resonance with Tethys to values above 0.1 that allow sufficient solid tidal
dissipation to melt ice in its shell and emplace a short-lived ocean. The resonance is escaped
after 14 Myr once Dione’s e is high enough.

The computed exchange of angular momentum with Tethys shrinks Dione’s orbit, bring-
ing it fast toward 2:1 resonance with Enceladus. Because Dione’s eccentricity has not de-
cayed enough when it encounters this resonance, there is no capture. Instead, Enceladus’
semi-major axis experiences a brief but large increase due to transfer of angular momentum
from Dione’s eccentric orbit (Malhotra, 1998; Meyer and Wisdom, 2008, their equations
A.5-A.7). Although this increase, computed outside the small-e regime, may be inaccurate
(Supp. §1), Enceladus’ resulting semi-major axis becomes too high to be compatible with
its present-day position.

If indeed the 2:1 Enceladus-Dione resonance moves Enceladus past its current orbit
if Dione’s eccentricity is high, i.e. if Dione’s 2:1 resonance with Enceladus happens just
after its 3:2 resonance with Tethys, the observed orbital configuration requires that these
resonances are further apart in time so Dione’s e has time to decay and capture can occur.

This happens if Dione starts further out, because the secular expansion of Tethys’ orbit
is faster than Enceladus’, such that Tethys encounters the 3:2 resonance with Dione when
Enceladus is still far inward of the 2:1 resonance with Dione. This case is simulated in
Supp. Fig. 8. Another scenario compatible with a starting Saturn Q of 80000 is that
Enceladus forms a few 0.1 Gyr after Dione escapes the 3:2 resonance with Tethys. This is
the case explored in Supplementary Fig. 9.

Supp. Fig. 8: Indeed, starting Dione further out allows its eccentricity to decay
enough after 3:2 resonance with Tethys to allow capture in the 2:1 resonance with Ence-
ladus. However, within 20 Myr Dione’s e is excited to 0.09 and it escapes this resonance.

Angular momentum is imparted in Enceladus’ orbit, here too expanding it beyond
the observed semi-major axis. Its eccentricity increases only to a few 10−2. The orbit
subsequently does not circularize, as Enceladus’ frigid interior is not dissipative: radiogenic
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Parameter Mimas Enceladus Tethys Dione Rhea

Supp. Fig. 1: initial Q: 80000, final ring mass: 5× 1019 kg
Time of formation (Myr) 4290 primordial primordial primordial primordial
Initial semi-major axis (km) 160000 160000 270000 363000 523000

Supp. Fig. 2: initial Q: 50000, final ring mass: 1× 1019 kg
Time of formation (Myr) 3450 3200 primordial primordial primordial
Initial semi-major axis (km) 160000 160000 160000 356000 521000

Supp. Fig. 3: initial Q: 20000, final ring mass: 1× 1019 kg
Time of formation (Myr) 3450 3400 3200 primordial primordial
Initial semi-major axis (km) 160000 160000 160000 330000 515000

Supp. Fig. 7: initial Q: 80000, final ring mass: 1.5× 1019 kg
Time of formation (Myr) 4117 primordial primordial primordial primordial
Initial semi-major axis (km) 160000 160000 270000 358000 523000

Supp. Fig. 8: initial Q: 80000, final ring mass: 1.5× 1019 kg
Time of formation (Myr) 4117 primordial primordial primordial primordial
Initial semi-major axis (km) 160000 160000 270000 363000 523000

Supp. Fig. 9: initial Q: 80000, final ring mass: 1.5× 1019 kg
Time of formation (Myr) 4117 600 primordial primordial primordial
Initial semi-major axis (km) 160000 160000 270000 357000 523000

Supp. Fig. 10: initial Q: 2452.8, final ring mass: 1.5× 1019 kg
Time of formation (Myr) 3830 3600 3500 2200 primordial
Initial semi-major axis (km) 160000 160000 160000 160000 478000

Supp. Fig. 11: initial Q: 20000, final ring mass: 1.5× 1019 kg
Time of formation (Myr) 4235 3540 1500 primordial primordial
Initial semi-major axis (km) 160000 160000 160000 300000 502000

Table 1: Initial conditions for the simulations shown in this Supplementary Ma-
terial. For simulations shown in Supplementary Fig. 1 through 5, the repeated encounter
model of moon-moon interactions is used. For those shown in Supplementary Fig. 7 and
following, the averaged Hamiltonian model is used. All other parameters are as in Table 1
of the main article.
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heating has long since faded and heating from eccentricity tides is insufficient at e ∼ 0.01.
Thus, Enceladus’ orbital and internal characteristics do not match those observed today.
This simulation ends in orbit crossing spurred by the Tethys-Dione 4:3 resonance.

Supp. Fig. 9: Forming Enceladus after Dione escapes the 3:2 resonance with Tethys
also allows Dione’s eccentricity to decay before the 2:1 resonance with Enceladus is encoun-
tered, such that capture occurs at 1 Gyr. In this case, Enceladus’ eccentricity (rather than
semi-major axis) is excited more than Dione’s, allowing the resonance to persist intermit-
tently over billions of years. The intermittency results from contraction of Enceladus’ orbit
by transfer of angular momentum into Dione’s: whenever it contracts back into the rings’
zone of influence (a ≤ 222000 km), the code forces the resonance to break (§1).

The resonance is finally escaped at 4.4 Gyr, when Dione encounters a 4:3 resonance with
Tethys that excites its eccentricity above 0.1, melting part of its ice shell. This, amplified
by rapid migration due to Saturn’s low Q beyond 4.6 Gyr (the assumed linear decrease
leading to non-physical negative values shortly thereafter), sends Dione and Tethys on a
collision course that ends the simulation.

Enceladus’ eccentricity is never high enough to induce melting. Later in its evolution,
its eccentricity increases over time due to its interactions with Dione, without decaying as
much. Under slightly different conditions (e.g. plateauing Saturn Q), it could be that its
eccentricity ends up high enough to induce melting and re-circularization, but we did not
explore such scenarios.

Supp. Fig. 10: As with Fig. 3, Saturn’s Q is set to the constant, low present-day
value of 2452.8. Consequently, orbital expansion is fast: only Rhea is primordial. Dione
forms shortly after 2 Gyr and encounters a 2:1 resonance with Rhea just before 3 Gyr. This
strong resonance between the two relatively massive moons leads to the sudden expansion
of Dione’s orbit, crossing the 3:2 and 4:3 resonances, and excitation of Rhea’s eccentricity
to 0.3. Around 3.25 Gyr, the moons encounter the 5:4 resonance that leads to the ejection
of Rhea, terminating the simulation before the inner moons form.

Supp. Fig. 11: As with Supplementary Fig. 3, Saturn’s Q is set to 20000 initially
and decreases linearly to the present-day value. The orbits of all moons expand roughly at
the rate set by Saturn’s Q(t), although intermittent resonances tend to place Enceladus,
Tethys, and Dione near the 6:4:3 commensurabilities between 3 and 4.5 Gyr. These lead
to eccentricity excitation for each moon that generates a short-lived ocean inside Dione,
but not elsewhere. The resonances are intermittent because they are exited either due to
eccentricities being too high, or due to Enceladus’ orbit contracting back to the zone of
interaction with the rings. Eventually, as Saturn’s Q decreases to low values beyond the
present day, rapid migration leads to a resonant encounter between Tethys and Dione that
sends the former inward, which in turn sends Enceladus on to an orbit beyond Rhea’s.

Stalling artifacts: The simulation shown in Supp. Fig. 7 stalled and was restarted
in three instances at 1.07, 1.40, and 1.75 Gyr. The stalling seems due to handling of
input/output calls by the operating system such as printout commands simultaneously
called by two parallel threads. Similarly, the Supp. Fig. 8 run stalled at 3.05, 3.55, and
3.84 Gyr; the Supp. Fig. 9 run at 0.96, 1.56, 2.24, 2.63, and 3.02 Gyr; the Supp. Fig. 10
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run at 0.28, 1.07, 1.93, 2.80, and 2.92 Gyr; and the Supp. Fig. 11 run at 1.49, 2.21, 2.99,
and 3.58 Gyr.

Stalled simulations were restarted from the last time output. However, liquid in the
interior of a moon prior to stalling can lead to a slight mismatch in internal temperatures
and melting after the restart because of feedbacks between conductive and parameterized
convective heat transfer. These artifacts are indicated in bottom panels of the respective
figures (“Code restarts”), also slightly affecting tidal dissipation (e.g. Supp. Fig. 7, top
panel, third from left, pink curve) and the rate of eccentricity decay (second from left, pink
curve). The stalling issue only affected simulations performed with the averaged Hamilto-
nian subroutine and did not affect outcomes in any major way, as assessed with comparisons
(not shown) between simulations with identical inputs that stalled at a different times.

3 Assessment of the canonical simulations based on

results obtained with the averaged Hamiltonian model

The averaged Hamiltonian model and the repeated encounter model of moon-moon interac-
tions (Methods) lead to fast eccentricity excitation to comparable maximum values. What
the repeated encounter model cannot capture are any changes in semi-major axes due to
moon-moon interactions, which can be significant. Furthermore, simulations with the lat-
ter model allow eccentricity excitation between moons whose migration is divergent, even
though capture should not occur in these cases. These are noted when they occur (Fig.
2 and Supp. Fig. 1–5). Although the eccentricities of the moons involved are spuriously
excited, the simulations are not affected in any major way.

A key feature of the simulation shown in Fig. 2 with the repeated encounter model
is the 4:3 Tethys-Enceladus resonance that generates Enceladus’ ocean. Although Tethys
and Enceladus’ orbits expand secularly in a divergent way, the expansion is convergent
shortly before the onset of the resonance because Tethys’ orbit is contracting due to high
dissipation in its interior, following passage through the 3:2 resonance with Dione. This
allows capture into resonance.

Finally, the simulations with the averaged Hamiltonian model suggest that collisions are
not uncommon (Supplementary Fig. 8). This lends credence to the hypothesis of several
generations of disrupted and re-accreted moons, as previously postulated (Asphaug and
Reufer, 2013; Ćuk et al., 2016; Salmon and Canup, 2017). Possible evidence of such events
may be the unique geology of Uranus’ moon Miranda. In addition, simulated ejections
(Supplementary Fig. 10) suggest the possibility of more moons in the past, a hypothesis
that was not explored in this work.

Supplementary Figures

(shown on following pages)
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Figure 1: Orbital, structural, and thermal evolution of Saturn’s mid-sized moons for
an initial Saturn Q of 80000 and a ring mass of 5 × 1019 kg. The legend for panel b and
panels c-f is the same as for Table 3 and Fig. 2, respectively. Here, Enceladus’ ocean refreezes
before Mimas forms. 7



Figure 2: Orbital, structural, and thermal evolution of Saturn’s mid-sized moons for
an initial Saturn Q of 50000. The legend is the same as for Supp. Fig. 1. A ring mass of
1× 1019 kg is assumed. Compared to Fig. 2, Enceladus forms later and does not differentiate or
warm up substantially. 8



Figure 3: Orbital, structural, and thermal evolution of Saturn’s mid-sized moons for
an initial Saturn Q of 20000. The legend is the same as for Supp. Fig. 1. A ring mass
of 1 × 1019 kg is assumed. Compared to Fig. 2, Enceladus does not differentiate or warm up
substantially. 9



Figure 4: Orbital, structural, and thermal evolution of Saturn’s mid-sized moons for
the same case shown in Fig. 2, but with an additional moon with the size and mass
of Titan. This control simulation shows that the results shown in Fig. 2 are not affected by
neglecting Titan in the system. In panel (d), the thermal, structural, and orbital evolution of
Titan are shown. We compute a spuriously larger core than Titan’s (Baland et al., 2014; Sohl
et al., 2014) because we neglect both self-compression and high-pressure phases of ice. The legend
is otherwise the same as for Supp. Fig. 1. 10



Figure 5: Orbital, structural, and thermal evolution of Saturn’s mid-sized moons for
the same case shown in Supplementary Fig. 1, except that Mimas is absent from the
simulation. The legend is the same as for Supp. Fig. 1. This control simulation shows that the
main results are not affected by neglecting the growth of a late-forming Mimas over time.
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Figure 6: Benchmark simulation for the averaged Hamiltonian model of moon-moon
interactions. The simulated recent past evolution of Enceladus and Dione through the 2:1
mean-motion resonance is similar to that modeled by Meyer and Wisdom (2008, their Fig. 10
and 11) and with an N-body code (Zhang and Nimmo, 2009, their Fig. 2). Left panels: ratio
of the mean motion of Enceladus nE to that of Dione nD (top), eccentricity of Enceladus eE
(middle), and eccentricity of Dione eD (bottom) over time. Right panels: resonant angle for
the e-Dione (top), second-order e-Enceladus-e-Dione (middle), and e-Enceladus (bottom) sub-
resonances of the overall 2:1 resonance. These are separated in time due to orbital precession
induced by Saturn’s oblateness. The abscissae display real time, i.e. computed time multiplied
by the speed-up factor 103.
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Figure 7: Orbital, structural, and thermal evolution of Saturn’s mid-sized moons for
a case similar to that shown in Fig. 2 (Saturn Q=80000 initially), but with the
averaged Hamiltonian model. In the bottom three panels, the same quantities as in Supp.
Fig. 1 are shown. In the top panel are displayed, in addition to semi-major axes and eccentricities,
computed total dissipation and equivalent k2/Q of each moon over time.
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Figure 8: Orbital, structural, and thermal evolution of Saturn’s mid-sized moons
for a case similar to that shown in Fig. 2 (Saturn Q=80000 initially), but with
the averaged Hamiltonian model. The legend is the same as for Supp. Fig. 7.
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Figure 9: Orbital, structural, and thermal evolution of Saturn’s mid-sized moons
for a case similar to that shown in Fig. 2 (Saturn Q=80000 initially), but with
the averaged Hamiltonian model. The legend is the same as for Supp. Fig. 7.
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Figure 10: Orbital, structural, and thermal evolution of Saturn’s mid-sized moons
for a case similar to that shown in Fig. 3 (Saturn Q=2452.8 constant), but with the
averaged Hamiltonian model. The legend is the same as for Supp. Fig. 7.
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Figure 11: Orbital, structural, and thermal evolution of Saturn’s mid-sized moons for
a case similar to that shown in Supplementary Fig. 3 (Saturn Q=20000 initially),
but with the averaged Hamiltonian model. The legend is the same as for Supp. Fig. 7.
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Figure 12: Present-day orbital parameters of inner Saturn system bodies, showing an
increasing trend in eccentricity with semi-major axis for small moons up to Mimas.
We assumed moons forming from the rings would follow this trend and accordingly set their
starting orbital parameters in a-e space at the red “X”, which is also at an eccentricity such that
Mimas ends at its present-day eccentricity without excitation by interactions with other moons
or damping by internal dissipation.
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Supplementary Data Sets

Simulation files used to make Fig. 2 and 3 as well as all Supplementary Figures are provided
as .zip archives. Each archive folder comprises, for each moon, output files describing the
following quantities at 10 Myr intervals (1 Myr intervals for simulations with the averaged
Hamiltonian model), from 0 to 4.5 Gyr. For each file name, the initial character x is 0

for the moon closest in (generally Mimas) and increases outward: 1 for Enceladus, 2 for
Tethys, 3 for Dione, 4 for Rhea, and in one case 5 for Titan.

• xCrack depth.txt: The cracking depth inside the rocky core over time (two columns:
time in Gyr, depth of deepest cracked zone in km)

• xCrack stresses.txt: Internal stresses accounted for by the core cracking subrou-
tine (Neveu et al., 2015). There are 200 rows (one per layer from the center to the
surface) printed at each time interval. Columns list, respectively: layer radius (in
km), pressure in this layer (in MPa), brittle strength of this layer (in MPa), critical
stress intensity in this layer (in MPa m0.5), stress intensity from thermal expan-
sion mismatch at grain boundaries (in MPa m0.5), pore fluid pressure (in MPa), net
pressure (stress) resulting from rock hydration (in MPa), old crack size prior to hy-
dration/dehydration (in m), old crack size prior to mineral dissolution/precipitation
(in m), current crack size (in m). Outputs are zero outside of the core.

• xCrack WRratio.txt: The bulk water:rock mass ratio in the fractured zone (two
columns: time in Gyr, water:rock ratio by mass in cracked zone). Outputs are zero
if the core is not cracked or if there is no liquid.

• xCrack.txt: Lists which core layers are fractured, and by which process (Neveu et al.,
2015). There are 200 columns for each layer from the center to the surface, and 451
rows for each time interval starting at 0 Gyr and ending at 4.5 Gyr. Each value is an
integer: 0 = no cracks; 1 = cracks from thermal contraction; 2 = cracks from thermal
expansion; 3 = cracks from hydration; 4 = cracks from dehydration; 5 = cracks from
pore water dilation; 6 = mineral dissolution widening; 7 = mineral precipitation
shrinking; –1 = mineral precipitation clogging; –2: clogging from hydration swelling.
Outputs are zero outside of the core.

• xHeats.txt: Cumulative heats (in erg) produced or consumed by endogenic and
exogenic processes. The six columns describe: time (in Gyr), radiogenic heat, gravi-
tational heat, heat of rock hydration, heat consumed in rock dehydration, and heat
from tidal dissipation.

• xOrbit.txt: Orbital parameters (three columns: time in Gyr, semi-major axis in
km, eccentricity). Outputs obtained with the averaged Hamiltonian model (Sup-
plementary §1) include 9 columns: time in Gyr, semi-major axis in km, osculating
semi-major axis in km (0 if no resonance), eccentricity, product of eccentricity and
cosine of resonant angle, product of eccentricity and sine of resonant angle, resonant
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angle in degrees, total tidal dissipation in W, and equivalent k2/Q for the moon
(Segatz et al., 1988).

• xResonances.txt (only for outputs obtained without the improved model of moon-
moon interactions described in Supplementary §1): Moon-moon resonances encoun-
tered (time in Myr, moon undergoing the interaction and its mean motion in s−1,
moon causing the interaction and its mean motion in s−1, nature of the resonance
(j + k : j), rate of change in eccentricity de/dt in s−1, if any).

• xThermal.txt: There are 200 rows for each layer, repeated 451 times, i.e. for each
time interval. Columns list, respectively: layer radius (in km), layer temperature (in
K); masses (in g) of rock, water ice, ammonia dihydrate (always zero here), liquid
water, and liquid ammonia (always zero here) in the layer; Nusselt number in the
shell (if >1, the shell convects); fraction of amorphous ice in the layer (always zero
here); thermal conductivity of the layer (in W m−1 K−1); degree of hydration of the
layer (0: fully dry; 1: fully hydrated); and porosity of the layer.

• xTidal.txt: Rates of tidal heating in each layer in W (200 rows for each layer,
repeated 451 times, i.e. for each time interval).

In addition, each folder contains the following files:

• IcyDwarfInputs.txt: Simulation input file.

• Primary.txt: Over time in Gyr (first column), the Q of Saturn (second column) and
the mass of its ring in kg (third column).

Outputs obtained with the averaged Hamiltonian model include the following files. Each
output is read in Nmoon ×Nmoon matrices, where Nmoon is the number of moons. Matrices
are typically 5× 5. Matrices are symmetric since they describe interactions between pairs
of moons. Element (x, y) represents interactions between the xth and yth innermost moons.
From innermost to outermost, the moons are Mimas, Enceladus, Tethys, Dione, and Rhea
(e.g. third row – first column: Mimas-Tethys). The first matrix is output at the first time
step. Subsequent matrices are output following a time stamp that corresponds to the time
at which pairs of moons get in and out of resonance.

• Resonances.txt: Values are integers j if the mean motions of the corresponding
moons are commensurate in j + 1 : j ratios with j ≤ 5, and if the migration of the
moons is convergent (j dninner moon/dt ≤ (j + 1) dnouter moon/dt since dn/dt < 0 for
expanding orbits). Values are 0 otherwise. If a moon is in resonance with only one
other moon, the code computes moon-moon interactions (value in ResAcctFor below
= j), otherwise interactions may be ignored (value in ResAcctFor = 0).
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• ResAcctFor.txt: Stands for “Resonances Accounted For”. A nonzero value in
Resonance above is accounted for if a moon is in resonance with only one other
moon. Otherwise, the code cannot compute the orbital evolution resulting from the
interactions between more than two moons. In that case, the resonance accounted
for is that between the pair of moons for which j is smallest (resonance for which
the most moon-moon conjunctions occur per orbit). For equal values of j (e.g. for
a 4:2:1 resonance, j would be 1 between the inner and middle moon, and also 1 be-
tween the middle and outer moon), the newer resonance is ignored. For moons with
nonzero values, orbital evolution is computed by the full routine described in Supp.
§1. Otherwise, orbital evolution is computed solely due to effects from moon-primary
and moon-ring interactions, ignoring moon-moon interactions.

• PCapture.txt: This output is not taken into account in computations, but provides
an indicative probability of capture into resonance based on the equations of Borderies
and Goldreich (1984). Whether or not capture occurs in a simulation depends on
the outcome of orbital evolution computed with the averaged Hamiltonian routine
(Supplementary §1). This matrix is not made symmetric, so usually the value of a
coefficient in a position symmetric to that of a nonzero value is 0. In that case, only
the nonzero value is meaningful.
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