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1 Introduction

This report contains supplementary material for the paper entitled “Mul-
tiple imputation for bounded variables” (hereafter, the Manuscript). This
material consists of sections with details on computation and software.

2 Nonlinear estimation

For fitting model (4) based on transformation (5) as defined in the Manuscript,
Geraci and Jones (2015) discuss two-stage (TS) estimation (Chamberlain,
1994; Buchinsky, 1995; Fitzenberger et al., 2010), residual cusum process
(RC) estimation (Mu and He, 2007), interior point algorithms for nonlinear
quantile regression (Koenker and Park, 1996), and derivative-free optimiza-
tion for non-smooth functions (Nelder and Mead, 1965). In simulation stud-
ies, they found that all estimators were consistent in terms of bias but had
different computational performance. The least attractive of all was the RC
estimator, with a 30:1 computing time ratio relative to the TS estimator.
However, even the relatively fast TS estimator would entail prohibitive com-
puting times when sampling as little as 5 imputations for a modest number
of incomplete observations. Moreover, since the TS estimator searches the
optimal value of A over a grid of pre-specified values (i.e., by means of pro-
filing), it would be particularly challenging to find a grid that is coarse and
narrow enough to speed up computation, but sufficiently wide to ensure the
optimal value is included.

Nonlinear estimation is a fast, viable alternative, though occasionally it
may lack numerical stability. The goal is to jointly estimate B, and A, by
fitting the nonlinear model in Equation (6) of the Manuscript, that is
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where the variable g(Z) is related to Z according to Table 1 of the Manuscript.
(Note that the model above is defined for A\, # 0 and that Qg z)x(p) ~
exp (XTBP) when |\y| — 0.) In preliminary numerical investigations, we
first considered an interior point algorithm (Koenker and Park, 1996). Un-
fortunately, the imputation procedure would often halt before completion
due to the algorithm’s failure to converge. In contrast, estimation based
on an adaptation of a gradient search algorithm (Geraci and Bottai, 2014;
Bottai et al., 2015) proved to be feasible and appropriate for our purpose.
These methods are implemented in the R (R Core Team, 2016) package
Qtools (Geraci, 2016, 2017), for which a sample code is offered in the next
section. In the following, we briefly describe the algorithm.

Let z;, i = 1,...,n, be a sample of observations of a singly or doubly
bounded continuous variable Z and let x; be a (¢—1) x 1 vector of predictors
for Z. On the scale of h, we assume the linear model (4) in the Manuscript.
We define the objective function

f(o) = Zri (p - IT’i<0) )
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where 6 = ()\p,ap,,B;)T is the (¢ + 1) x 1 parameter to be estimated,
ri =z —h! (ap + x;-r,@p; )\p), and I4 = 1 if A is true or I4 = 0 otherwise.
We also define the (directional) gradient
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Note that f(@) is Lipschitz near 6. See Geraci and Bottai (2014) for a
discussion on nonsmooth optimisation of Lipschitz functions using Clarke’s
derivatives (Clarke, 1990).

From a current parameter value the algorithm searches the positive semi-
line in the direction of the gradient for a new parameter value at which the
objective is smaller. The algorithm stops when the change in the objective is
less than a specified tolerance. Convergence is guaranteed by the continuity
and concavity of the Li-norm loss function (Bottai et al., 2015). Let ()
denote the value of the parameter at iteration ¢. The minimization steps
are:

(1) Set @8 =01 5 =1 ¢ =0.



(2) Define 6* = 01 — 5O f (01)). If f(6*) > f (6W)

(a) then set 6(+1) = a6®);
(b) elseif [f(6%)/f (V) — 1] <w
(i) then return 6*; stop;
(ii) else set @+ = @*; 51 = ps®),

(3) Set t =t + 1; go to step 2.

The algorithm requires setting the starting value of the parameter 6°, the
initial step 6(%) > 0, the contraction step factor a € (0,1), the expansion
step factor b > 1, and the tolerance w > 0 for the change in f.

3 R code

In this section, we provide sample R code to show how to apply our proposed
multiple imputation method using the A-level Chemistry Scores dataset.
The dataset contains observations on A-level scores in Chemistry for 31,022
English and Welsh students and is available from the Qtools package.

# Load packages
library(mice)
library(quantreg)
library(Qtools)

# Load dataset Chemistry from package Qtools
data(Chemistry)

# A-level scores in Chemistry (range 0-10) for 31022 students
summary (Chemistry$score)

# See more details on dataset in R documentation
?Chemistry

The A-level score is a variable bounded between 0 and 10. The data
set is completely observed. For illustration purposes, we randomly generate
about 20% missing values in the score variable as well as in the age variable.



# Randomly generate missing values (about 20%)
set.seed(123)

n <- nrow(Chemistry)

M <- rbinom(n, 1, .2)

Chemistry$score[M == 1] <- NA

M <- rbinom(n, 1, .2)

Chemistry$age[M == 1] <- NA

Next, we create a matrix of variables that feed into mice. The matrix
X contains the variables score and age, which are to be imputed, and the
variables sex, which is completely observed and is included as auxiliary
variable to predict the missing data. Note that age is expressed in months.

# Define matrix for mice
X <- Chemistry[,c("score","age","sex")]

The function mice provides a number of arguments specific to its algo-
rithm, such as the number of imputations (m), the number of Gibbs sam-
pler’s iterations (maxit) and the imputation model for each of the vari-
ables with missing values (method). The argument method is a vector of
the same length as the number of variables in the dataset that defines the
imputation model for each variable in the dataset (but it can be also a
single string vector or be empty — see 7mice for further details). Differ-
ent methods are available from mice, including predictive mean matching
(pmm), (Bayesian) linear regression (norm), and logistic regression (logreg).
Quantile-regression imputation (rq) is available from Qtools. In this ex-
ample, we choose quantile-regression imputation for the bounded variable
(score) and, say, linear regression for age. Since the third variable need
not be imputed, we can simply use the empty method. The syntax is thus
c("rq", "norm", "").

There are a number of arguments relating to quantile-regression impu-
tation and these are documented in the Qtools package
(see 7mice.impute.rq). For example, the argument tsf specifies the trans-
formation to be used; dbounded indicates whether the variable is doubly
bounded or not, and, if doubly bounded, the bounds are given in x.r (if
not given, the bounds are defined as the observed minimum and maximum);
conditional is a logical flag to indicate if the transformation parameter



is assumed to be known, in which case it must be provided via the argu-
ment lambda (otherwise it is estimated from the data using the algorithm
described in Section 2 above).

# Impute score using transformation-based quantile regression
imp <- mice(X, method = c("rq", "norm", ""), m = 5, maxit = 5, x.r
= ¢(0,10), tsf = "mcjI", dbounded = TRUE, conditional = TRUE, lambda

The chained equations resulting from the instruction above will be

Qscore|age,sex(p) = h_l {Qh(Z;O)\age,sex(p); O} )
E(age|score, sex) = o+ x ' 3.

Once the algorithm terminates, the imputations can be used to calculate
the statistics of interest. In the example below, we consider the model
logit(m) = 0y + O1sex + Ozage, where m = Pr (Igcore>s). This will produce as
many estimates of the regression coefficients as the number of imputations
(i.e., five). The estimates are then ‘pooled’ together with the function pool
to produce one single summary.

# Estimate logistic regression
fit <- with(data = imp, exp = glm(I(score > 8) ~ sex + age,
family = binomial()))

# Pool results
pool(fit)
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