Supplementary Information for A Biocatalytic Hydroxylation-Enabled Unified Approach to C19hydroxylated Steroids

Wang et al.

Table of Contents

Supplementary Figure 1-81	3-48
Supplementary Table 1-10	49-56
Supplementary methods	57
Supplementary notes 1-19	58-69
Supplementary References	70

Supplementary Figures

Supplementary Figure 1. Reported synthetic route of 2¹

Supplementary Figure 2. Influence of different fermentation conditions on the conversation of cortexolone by *T. cucumeris*. (Condition I: fermentation with solid media culture; Condition II: fermentation with broth culture, n=2 biologically independent experiments). Error bar indicates the range of the values achieved by two independent experiments. Source data are provided as a Source Data file.

Supplementary Figure 3. Influence of different metal ions on the conversation of cortexolone by *T. cucumeris*. N=2 biologically independent experiments. Error bar indicates the range of the values achieved by two independent experiments. Source data are provided as a Source Data file.

Supplementary Figure 4. Influence of different concentrations of Fe^{2+} on the conversation of cortexolone by *T. cucumeris*. N=2 biologically independent experiments. Error bar indicates the range of the values achieved by two independent experiments. Source data are provided as a Source Data file.

Supplementary Figure 5. Production of **7** in *T. cucumeris* from the first to third day. (I) the first day; (II) the second day; (III) the third day; (IV) standard 17-Ac cortexolone (**6**); (V) standard cortexolone (**1**). (*Mixture of **3** and **7** with a ratio of 5:1).

Supplementary Figure 6. Reported synthetic route A of 12 and its application to 19-nor-DOC synthesis²

Supplementary Figure 7. 14 as key intermediate for synthesis of ten 19-nor steroid drugs³

Supplementary Figure 8. Process for manufacturing 19-OH-androstenedione (**14**) and related 19-nor steroidal medicines in industry.

Supplementary Figure 9. Reported synthetic route B of 12⁴

Supplementary Figure 10. Reported synthetic route A of 14³

Supplementary Figure 11. Reported synthetic route B of 14⁵

Supplementary Figure 12. Flow cytometry-based apoptosis assay of compound **28** on the HT-29 cells. (a) Gating strategy to sort apoptotic cells from the whole events. Each panel respectively stands for the distribution of normal cells (FITC⁻PI⁻), the early apoptotic cells (FITC⁺PI⁻), the late apoptotic cells (FITC⁺PI⁺), and the necrotic cells (FITC⁻PI⁺). (b) Using above Gating strategy, flow cytometry-based apoptosis assay of compound **28** for HT-29 cells. Triplicate experiments were conducted for each group, figure shown as representative results. (c) The statistical quantification of cell apoptosis(FITC⁺PI⁻) and FITC⁺PI⁺), triplicate experiments were conducted for each group, n=3 biologically independent experiments). Source data are provided as a Source Data file.

Supplementary Figure 13. Analysis of the transmembrane segments in tcP450-1. (a) Analysis results by using TMbase (https://embnet.vital-it.ch/software/TMPRED_form.html);⁶ (b) Cartoon for illustration of the transmembrane segments in tcP450-1.

Supplementary Figure 14. Our strategy for 19-OH-androstenedione (14) synthesis

Supplementary Figure 15. Verification of transformants genotype. Lane 1: maker; Lane 2: mWHU2488; Lane 3: mWHU2488; Lane 4: pWHU2490 (1755bp); Lane 5: mWHU2487. Source data are provided as a Source Data file.

Supplementary Figure 16. ¹H NMR of 1

Supplementary Figure 17. ¹H NMR of 7

Supplementary Figure 18. ¹³C NMR of 7

Supplementary Figure 20. ¹H NMR of 2

Supplementary Figure 21. ¹³C NMR of 2

Supplementary Figure 22. HRMS of 2

Supplementary Figure 23. ¹H NMR of 4

Supplementary Figure 24. ¹³C NMR of 4

Supplementary Figure 25. HRMS of 4

Supplementary Figure 26. ¹H NMR of 8

Supplementary Figure 27. ¹³C NMR of 8

+MS, 0.4-0.7min #25-39

Supplementary Figure 28. HRMS of 8

Supplementary Figure 29. ¹H NMR of S-34

Supplementary Figure 30. ¹³C NMR of S-34

Supplementary Figure 31. HRMS of S-34

Supplementary Figure 32. ¹H NMR of 10


```
+MS, 0.5-0.5min #28-31
```


Supplementary Figure 35. ¹H NMR of 11

Supplementary Figure 36. ¹³C NMR of 11

Supplementary Figure 37. HRMS of 11

Supplementary Figure 38. ¹H NMR of 12

+MS, 0.3-0.4min #15-26

Supplementary Figure 41. ¹H NMR of 14

Supplementary Figure 42. ¹³C NMR of 14

Supplementary Figure 43. ¹H NMR of 15

Supplementary Figure 44. ¹³C NMR of 15

+MS, 0.3-0.4min #15-23

Supplementary Figure 45. HRMS of 15

Supplementary Figure 46. ¹H NMR of S-35

Supplementary Figure 48. HRMS of S-35

Supplementary Figure 49. ¹H NMR of 16

Supplementary Figure 50. ¹³C NMR of 16

Supplementary Figure 51. HRMS of 16

Supplementary Figure 52. ¹H NMR of 17

Supplementary Figure 54. HRMS of 17

Supplementary Figure 55. ¹H NMR of 18

Supplementary Figure 56. ¹³C NMR of 18

Supplementary Figure 58. ¹H NMR of 19

Supplementary Figure 59. ¹³C NMR of 19

Supplementary Figure 60. HRMS of 19

Supplementary Figure 61. ¹H NMR of 20

Supplementary Figure 62. ¹³C NMR of 20

Supplementary Figure 63. HRMS of 20

Supplementary Figure 64. ¹H NMR of 21

Supplementary Figure 65. ¹³C NMR of 21

Supplementary Figure 67. ¹H NMR of 22

Supplementary Figure 68. ¹³C NMR of 22

Supplementary Figure 69. HRMS of 22

Supplementary Figure 70. ¹H NMR of 25

Supplementary Figure 71. ¹³C NMR of 25

Supplementary Figure 72. HRMS of 26

Supplementary Figure 73. ¹H NMR of 26

Supplementary Figure 74. ¹³C NMR of 26

Supplementary Figure 75. ¹H NMR of 27

Supplementary Figure 76. ¹³C NMR of 27

Supplementary Figure 77. ¹H NMR of 28

Supplementary Figure 78. ¹³C NMR of 28

Supplementary Figure 79. Each synthetic step of 1, 2, 4 and 8-12.

Supplementary Figure 80. Each synthetic step of 14-22.

Supplementary Figure 81. Each synthetic step of 25-28.

Supplementary Tables

Supplementary Table 1. Top 10 putative P450 genes in the *T. cucumeris* transcriptome ranked by FPKM values

	Gene	Acession No.	FPKM
1	tcP450R	MK309346	115.83
2	tcP450-1	MK309347	39.23
3	tcP450-2	MK309348	30.61
4	tcP450-3	MK309349	28.19
5	tcP450-4	MK309350	22.89
6	tcP450-5	MK309351	22.67
7	tcP450-6	MK309352	19.60
8	tcP450-7	MK309353	18.48
9	tcP450-8	MK309354	18.05
10	tcP450-9	MK309355	16.96

Supplementary Table 2. Primers used for construction of expression plasmids

primer	5' to 3' Sequence
<i>tcP450-1</i> -F	TAAACCCCACAGCAAGCTCCGAATTCGCCACCATGTCCAACTCAACTCT
	CGTTTCT
<i>tcP450-1</i> -R	GATCCCCGGGTACCGAGCTCGAATTCTTATTCCTCCACGAGTGTGACTT
	TC
Pamy-gt-F	TGGAGGATAGCAACCGACAAC
Tamy-gt-R	AAACTCACTGTCCAATGCCAGATT

Supplementary Table 3. Strains and plasmids

Strain/Plasmid	Characteristic(s)	Source/Reference
E. coli		
DH 5α	Host for general cloning	Invitrogen
Fungal		
T. cucumeris NBRC	C19-OH cortexolone producing	NITE Biological
6298		Resource Center.
A. oryzae NSAR1	Heterologous expression strain	Prof. Ikuro. Abe
		(University of Tokyo)
mWHU2487	Aspergillus oryzae NSAR1 that has been transferred	This study
	pWHU2490	
mWHU2488	Aspergillus oryzae NSAR1 that has been transferred	This study
	pTAex3	
Plasmids		
pTAex3	Contains argB gene and both regions of the	Ikuro. Abe (university of
	promoter and terminator of the <i>amyB</i> gene used for	Tokyo)
	gene expression in A. oryzae NSAR1	
pWHU2490	pTAex3 derivative, for expression of tcP450-1 in A.	This study
	oryzae NSAR1	

Supplementary Table 4. NMR data of Stereonsteriod A comparison between the synthetic sample and natural one^{7,8}

Natural Stereonsteriod A (300 M, CDCl₃) Synthetic Stereonsteriod A (400 M, CDCl₃) Δ (Exp-Ref)/ppm Position 1 2.28 dt (13.5, 3.3) 2.27 dt (14.0, 3.9) -0.01 3 3.65 m 3.66 tt (10.8, 4.9) -0.01 17 1.97 m 1.95 m -0.02 18 -0.01 0.63 s 0.64 s 19 3.81 d (11.4) 3.80 d (11.7) -0.01 3.95 d (11.4) -0.02 3.93 d (11.6) 5.78 ddd 5.76 ddd 20 -0.02 (16.2, 10.5, 7.8) (17.6, 10.9, 7.7)4.97 d (16.2) -0.01 21 4.96 d (17.4)

4.97 d (9.8)

-0.01

4.98 d (10.5)

Position	Natural Stereonsteriod A (75 M, CDCl ₃)	Synthetic Stereonsteriod A (101 M, CDCl ₃)	Δ (Exp-Ref)/ppm
1	31.3	31.3	0
2	32.2	32.2	0
3	71.1	71.1	0
4	38.1	38.2	0.1
5	45.1	45.2	0.1
6	28.3	28.3	0
7	32.1	32.1	0
8	36.2	36.2	0
9	55.0	55.1	0.1
10	39.4	39.4	0
11	22.7	22.8	0.1
12	38.6	38.7	0.1
13	43.8	43.8	0
14	56.0	56.1	0.1
15	24.8	24.9	0.1
16	27.2	27.3	0.1
17	55.5	55.5	0
18	13.3	13.4	0.1
19	61.0	61.0	0
20	139.9	140.0	0.1
21	114.5	114.6	0.1

Supplementary Table 5. NMR data of Sclerosteriod A comparison between the synthetic sample and natural one⁹

Scierosteriod A			
Position	Natural Sclerosteriod A (300 M, CDCl ₃)	Synthetic Sclerosteriod A (600 M, CDCl ₃)	∆ (Exp-Ref) (ppm)
1	2.21 dt (13.6, 3.6)	2.21 m	0
3	3.64 m	3.64 tt (10.6, 4.9)	0
18	0.57 s	0.57 s	0
19	4.21 d (12.0)	4.20 d (12.1)	-0.01
	4.35 d (12.0)	4.34 d (12.1)	-0.01
20	5.74 ddd (16.8, 10.8, 7.6)	5.74 ddd (16.4, 10.9, 7.7)	0
21	4.95 d (16.8)	4.95 m	0
	4.96 d (10.8)	4.96 m	0
 OAc	2.06 s	2.06 s	0

	Natural Sclerosteriod A	Synthetic Sclerosteriod A	∆ (Exp-Ref)
Position	(75 M, CDCl ₃)	(101 M, CDCl ₃)	(ppm)
1	31.9	31.8	-0.1
2	31.6	31.6	0
3	70.8	70.9	0.1
4	38.4	38.4	0
5	45.1	45.0	-0.1
6	28.2	28.2	0
7	32.0	32.0	0
8	35.9	35.9	0
9	54.6	54.6	0
10	38.0	38.0	0
11	21.8	21.9	0.1
12	37.9	37.8	-0.1
13	43.6	43.6	0
14	55.9	55.9	0
15	24.7	24.7	0
16	27.2	27.2	0
17	55.3	55.3	0
18	13.0	13.0	0
19	62.9	62.9	0
20	139.8	139.8	0
21	114.5	114.5	0
OAc	171.2	171.3	0.1
	21.2	21.2	0

Supplementary Table 6. NMR data of Ceratosteriod C comparison between the synthetic sample and natural one¹⁰

Position	Natural Ceratosteriod C (300 M, CDCl ₃)	Synthetic Ceratosteriod C (600 M, CDCl ₃)	∆ (Exp-Ref) (ppm)	
1	2.32 dt (13.2, 3.3)	2.29 m	-0.03	
3	4.73 m	4.74 tt (11.0, 5.0)	0.01	
18	0.63 s	0.62 s	-0.01	
19	3.82 d (11.4)	3.81 d (11.5)	-0.01	
	3.96 d (11.4)	3.95 d (11.7)	-0.01	
20	5.76 ddd (16.5, 11.1, 7.5)	5.75 ddd (16.3, 11.1, 7.7)	-0.01	
21	4.96 d (16.5)	4.95 d (18.1)	-0.01	
	4.97 d (11.1)	4.97 d (9.1)	0	
OAc	2.00 s	2.02 s	0.02	

_

Position	Natural Ceratosteriod C (75 M, CDCl ₃)	Synthetic Ceratosteriod C (101 M, CDCl ₃)	∆ (Exp-Ref) (ppm)
1	32.1	32.1	0
2	28.0	28.1	0.1
3	73.4	73.5	0.1
4	34.5	34.5	0
5	44.9	45.0	0.1
6	28.2	28.2	0
7	31.2	31.2	0
8	36.2	36.2	0
9	56.0	56.0	0
10	39.3	39.4	0.1
11	22.6	22.7	0.1
12	38.1	38.1	0
13	43.9	43.8	-0.1
14	54.9	54.9	0
15	24.8	24.9	0.1
16	27.2	27.3	0.1
17	55.4	55.5	0.1
18	13.2	13.3	0.1
19	60.9	61.0	0.1
20	139.9	140.0	0.1
21	114.6	114.7	0.1
OAc	171.1	170.9	-0.2
	21.5	21.6	0.1

Supplementary Table 7. NMR data of Ceratosteriod D comparison between the synthetic sample and natural one¹⁰

Ceratostenou D			
Position	Natural Ceratosteriod D (300 M, CDCl ₃)	Synthetic Ceratosteriod D (400 M, CDCl ₃)	∆ (Exp-Ref) (ppm)
1	2.23 dt (13.6, 3.4)	2.23 d (12.1)	0
3	4.73 m	4.72 tt (11.0, 4.9)	-0.01
18	0.57 s	0.57 s	0
19	4.24 d (12.0)	4.33 d (12.1)	-0.01
	4.34 d (12.0)	4.33 d (12.1)	-0.01
20	5.74 ddd (16.2, 10.8, 7.8)	5.74 ddd (16.3, 11.0, 7.8)	0
21	4.95 d (16.2)	4.98-4.93 m	0
	4.96 d (10.8)	4.98-4.93 m	0
OAc	2.02 s	2.02 s	0
	2.06 s	2.06 s	0

Position	Natural Ceratosteriod D (75 M, CDCl ₃)	Synthetic Ceratosteriod D (101 M, CDCl ₃)	∆ (Exp-Ref) (ppm)
1	32.0	32.1	0.1
2	27.6	27.7	0.1
3	73.1	73.2	0.1
4	34.3	34.3	0
5	44.9	45.0	0.1
6	28.2	28.2	0
7	31.7	31.7	0
8	36.0	36.0	0
9	54.6	54.6	0
10	38.1	38.1	0
11	21.9	21.9	0
12	37.9	37.9	0
13	43.7	43.8	0.1
14	55.9	56.0	0.1
15	24.8	24.9	0.1
16	27.2	27.3	0.1
17	55.4	55.5	0.1
18	13.1	13.2	0.1
19	62.8	62.9	0.1
20	139.8	139.9	0.1
21	114.6	114.7	0.1
OAc	170.7	170.9	0.2
	171.2	171.4	0.2
	21.2	21.4	0.2
	21.5	21.6	0.1

Supplementary Table 8. NMR data of Stereonsteriod B comparison between the synthetic sample and natural one⁷

Stereonsteriod B			
Position	Natural Stereonsteriod B (300 M, CDCl ₃)	Synthetic Stereonsteriod B (600 M, CDCl ₃)	∆ (Exp-Ref) (ppm)
1	2.43 dt (13.2, 3.3)	2.42 d (13.5)	-0.01
3	4.72 m	4.70 tt (10.5, 4.7)	-0.02
18	0.53 s	0.51 s	-0.02
19	10.03 s	10.02 s	-0.01
20	5.73 ddd (17.1, 10.5, 7.8)	5.72 ddd (17.5, 10.5, 7.9)	-0.01
21	4.96 d (17.1)	4.95 d (18.0)	-0.01
	4.97 d (10.5)	4.97 d (8.6)	0
OAc	2.00 s	2.00 s	0

Position	Natural Stereonsteriod B (75 M, CDCl ₃)	Synthetic Stereonsteriod B (101 M, CDCl ₃)	∆ (Exp-Ref) (ppm)
1	30.8	30.7	-0.1
2	28.5	28.4	-0.1
3	72.8	72.7	-0.1
4	35.6	35.6	0
5	43.4	43.3	-0.1
6	28.3	28.2	-0.1
7	32.0	31.9	-0.1
8	37.1	37.0	-0.1
9	52.8	52.7	-0.1
10	51.7	51.6	-0.1
11	21.4	21.4	0
12	37.4	37.2	-0.2
13	43.4	43.3	-0.1
14	55.8	55.7	-0.1
15	24.7	24.6	-0.1
16	27.1	27.1	0
17	55.3	55.3	0
18	12.8	12.8	0
19	208.3	208.3	0
20	139.5	139.5	0
21	114.8	114.7	-0.1
OAc	170.8	170.7	-0.1
	21.3	21.3	0

Supplementary Table 9. NMR data of Sclerosteriod B comparison between the synthetic sample and natural one⁹

Scierosteriod B					
Position	Natural Sclerosteriod B (300 M, CDCl ₃)	Synthetic Sclerosteriod B (600 M, CDCl ₃)	∆ (Exp-Ref) (ppm)		
1	2.03 m	2.03 m	0		
3	5.22 m	5.21 m	-0.01		
4	5.47 br s	5.46 s	-0.01		
18	0.61 s	0.60 s	-0.01		
19	4.14 d (11.2)	4.13 d (11.3)	-0.01		
	4.49 d (11.2)	4.48 d (11.2)	-0.01		
20	5.74 ddd (17.4, 10.4, 7.2)	5.74 ddd (16.7, 10.6, 7.7)	0		
21	4.95 d (17.4)	4.96 m	0.01		
	4.96 d (10.4)	4.97 m	0.01		
OAc	2.05 s	2.05 s	0		
	2.06 s	2.06 s	0		

Position	Natural Sclerosteriod B (75 M, CDCl ₃)	Synthetic Sclerosteriod B (101 M, CDCl ₃)	∆ (Exp-Ref) (ppm)
1	31.5	31.7	0.2
2	25.4	25.5	0.1
3	70.0	70.1	0.1
4	122.2	122.4	0.2
5	145.0	145.1	0.1
6	36.4	36.5	0.1
7	32.3	32.5	0.2
8	33.1	33.2	0.1
9	54.4	54.6	0.2
10	40.5	40.7	0.2
11	21.1	21.2	0.1
12	37.6	37.8	0.2
13	43.5	43.6	0.1
14	55.6	55.8	0.2
15	24.6	24.8	0.2
16	27.1	27.3	0.2
17	55.2	55.3	0.1
18	12.9	13.1	0.2
19	66.9	67.0	0.1
20	139.6	139.8	0.2
21	114.7	114.9	0.2
OAc	171.0	171.1	0.1
	171.1	171.2	0.1
	21.2	21.3	0.1
	21.4	21.6	0.2

Supplementary Table 10. Crystal data and structure refinement for 23 (CCDC 1853184)

Identification code		CCDC 1853184		
Empirical formula		C23 H34 O4		
Formula weight		374.50		
Temperature		100(2) K		
Wavelength		0.71073 Å		
Crystal system		Triclinic		
Space group		P1		
Unit cell dimensions		a = 10.483(6) Å	a= 62.232(8)°.	
		b = 11.031(6) Å	b= 86.296(9)°.	
		c = 11.391(7) Å	g = 63.877(7)°.	
Volume		1030.0(10) Å3		
Z		2		
Density (calculated)		1.208 Mg/m ³		
Absorption coefficient		0.081 mm ⁻¹		
F(000)		408		
Crystal size		0.150 x 0.150 x 0.100 mn	1 ³	
Theta range for data collection	I	2.198 to 25.499°.		
Index ranges		-12<=h<=12, -13<=k<=13, -12<=l<=13		
Reflections collected		7412		
Independent reflections		6011 [R(int) = 0.0478]		
Completeness to theta = 25.24	12°	98.5 %		
Absorption correction		None		
Refinement method		Full-matrix least-squares on F2		
Data / restraints / parameters		6011 / 45 / 513		
Goodness-of-fit on F ²		0.968		
Final R indices [I>2sigma(I)]		R1 = 0.1002, wR2 = 0.26	74	
R indices (all data)		R1 = 0.1508, wR2 = 0.32	17	
Absolute structure parameter		0.1(10)		
Extinction coefficient		n/a		
Largest diff. peak and hole	0.601 and -0	.386 e.Å-3		

Supplementary Methods

Thanatephorus cucumeris NBRC 6298 was obtained from NITE Biological Resource Center. It is cultured either on PDA (200 g L⁻¹ potato, 20 g L⁻¹ dextrose and 15 g L⁻¹ agar) or YD liquid medium (25 g L⁻¹ dextrose and 20 g L⁻¹ yeast extract)¹¹ for spores and mycelia growth, respectively. Aspergillus oryzae NSAR1 and corresponding plasmids pAdeA and pTAex3 were obtained from Prof. Ikuro Abe. A. oryzae is cultured either on DPY (dextrin-polypeptone-yeast extract: 2 % dextrin, 1 % polypeptone and 0.5 % yeast extract) medium or Czapek-Dox medium (218.6 g L⁻¹ D-sorbitol, 3 g L⁻¹ NaNO₃, 1 g L⁻¹ KH₂PO₄, 0.5 g L⁻¹ MgSO₄ 7H₂O, 0.5 g L⁻¹ KCl, 0.01 g L⁻¹ FeSO₄ 7H₂O, 30 g L⁻¹ sucrose and 20 g L⁻¹ Agar) supplemented with appropriate nutrients.¹²⁻¹⁴ DNA isolation and manipulation in Escherichia coli were performed according to standard methods.¹⁵ PCR amplifications were carried out on an authorized thermal cycler (Veriti 96 Well, ABI) using PrimeSTAR Max DNA polymerase (TaKaRa, Japan). TransScript RT/RI Enzyme Mix (TransGen, China) was used to generate cDNA through reverse transcription from mRNA. Primer synthesis and DNA sequencing were performed at Genewiz Biotech Co., Ltd. (China). Restriction enzymes were purchased from TaKaRa Biotechnology Co., Ltd. (China). Strains and plasmids used in this study are listed in Supplementary Table 3. HPLC analysis was carried out on an SHIMADZU LC-20A Prominence HPLC system. ORFs were identified using the Frame Plot 4.0 beta program (http://nocardia.nih.go.jp/fp4/). The corresponding deduced proteins were compared with other known proteins in the databases by using available BLAST methods (http://www.ncbi.nlm.nih.gov/blast/).

All reactions dealing with moisture-sensitive compound were performed by standard Schlenk techniques in oven-dried reaction vessels under Argon atmosphere. Unless otherwise noted, all solvents were dried by JC Meyer Solvent Drying System. Most reagents were purchased from commercial sources and used without further purification, unless otherwise stated. Reactions were monitored by thin layer chromatography (TLC) carried out on 0.2 mm commercial silica gel plates, using UV light as the visualizing agent or basic solution of KMnO₄ or Phosphomolybdic acid and heat as a developing agent. ¹H NMR spectra were recorded on Bruker 400 MHz or 600 MHz instrument and ¹³C NMR spectra were recorded on Bruker 100 MHz instrument and were calibrated using residual undeuterated solvent as an internal reference (CDCl₃ @ 7.26 ppm ¹H NMR, 77.16 ppm ¹³C NMR). The following abbreviations were used to explain multiplicities: s= singlet, d= doublet, t= triplet, q= quartet, dd= doublet of doublets, dt= doublet of doublets, m= multiplet, br= broad. High resolution mass spectra (HRMS) were recorded on DIONEX UltiMate 3000 & Bruker Compact TOF mass spectrometer.

Supplementary Notes

Supplementary Note 1: Cortexolone (**1**, Supplementary Figure 79A) synthesis and characterization. To a suspension of **RSA** (5.0 g, 12.9 mmol) in MeOH (60 mL) and H₂O (40 mL) was added K₂CO₃ (3.56 g, 25.7mmol, 2.0 equiv) at 5 °C. After stirring for 11 h, MeOH was removed *in vaccuo*, then the mixture was filtered and washed with H₂O (50 mL). The solid was dried to afford Cortexolone **1** (4.27 g, 96%). Physical state: white solid;

 $R_f = 0.7$ (silica gel, 1:1 CH₂Cl₂: EtOAc);

¹H NMR (400 MHz, CDCl₃) δ 5.75–5.72 (m, 1H), 4.67 (dd, *J* = 19.9, 4.9 Hz, 1H), 4.31 (dd, *J* = 19.9, 4.8 Hz, 1H), 3.10 (t, *J* = 4.9 Hz, 1H), 2.69 (ddd, *J* = 14.8, 11.5, 3.1 Hz, 1H), 2.46–2.25 (m, 4H), 2.03 (ddd, *J* = 13.4, 5.0, 3.2 Hz, 1H), 1.85 (dddd, *J* = 16.4, 12.2, 7.5, 3.0 Hz, 2H), 1.78–1.56 (m, 7H), 1.47–1.33 (m, 3H), 1.18 (s, 3H), 1.16–1.04 (m, 1H), 0.97 (ddd, *J* = 11.9, 10.4, 4.1 Hz, 1H), 0.71 (s, 3H).

Supplementary Note 2: 19-OH-cortexolone **(2**, Supplementary Figure 79B) and 19-OH-17-acetyl-cortexolone **(7)** synthesis and characterization.

T. cucumeris was inoculated into the liquid medium and cultured at 30 °C and 200 rpm for 2 d. After that, 4 mL seed culture was transferred to a 250 mL Erlenmeyer flask containing 100 mL of YD liquid medium and continued to incubation under the same culture conditions for 2 d. 17-acetyl-cortexolone **6** (25 mg) was treated with fresh cultured *T. cucumeris* liquid medium (0.25 g L⁻¹). After bioconvertion for 24 h, all of the substrate **6** has been converted into **2** and **7** (**2**:**7** = 0.18: 1). After three days, compound **7** almost converted into **2** (20 mg, 80% yield). Following this way, we further scaled up the biotransformation. Substrates **6** (7.5 g) and FeSO₄ were evenly added into 30 3 L-Erlenmeyer flasks each containing 1 L of *T. cucumeris* culture on the 3rd day (the final concentration for **6** and FeSO₄ are 0.25 g L⁻¹ and 1.5 mM respectively). The cultures were then fermented under the same conditions for 3 d. After fermentation, the culture was added with ethyl acetate and extracted under sonication for 15 min for three times. Organic phase was combined and dried *in vacuo*. the resulting residue was purified by silica gel column chromatography (1:1 CH₂Cl₂: EtOAc) to afford the desired reduction product **2** (5.6 g, 80.3%). (The ¹H NMR and ¹³C NMR matched the literature reported data¹)

For 7:

Physical state: white solid;

 $R_f = 0.25$ (silica gel, 1:1 CH₂Cl₂: EtOAc);

HRMS (*m*/*z*): calcd for C₂₃H₃₃O₆, [M+H]⁺ 405.2277; found, 405.2274;

¹H NMR (400 MHz, CDCl₃): δ 5.94 (s, 1H), 4.26 (d, J = 2.7 Hz, 2H), 4.04 (dd, J = 10.6, 1.2 Hz, 1H), 3.90 (d, J = 10.7 Hz, 1H), 2.90–2.66 (m, 2H), 2.46–2.33 (m, 3H), 2.08 (s, 3H), 1.92–1.64 (m, 8H), 1.57–1.42 (m, 2H), 1.41–1.33 (m, 1H), 1.27–1.03 (m, 3H), 0.94–0.89 (m, 1H), 0.67 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 206.3, 200.2, 171.0, 166.7, 127.0, 94.0, 67.1, 66.0, 53.4, 51.3, 47.8, 43.80, 36.3, 35.1, 33.6, 33.5, 32.1, 30.9, 30.8, 23.9, 21.3, 21.1, 14.5.

For **2**:

Physical state: white solid;

 $R_f = 0.2$ (silica gel, 1:1 petroleum ether: EtOAc);

 $[\alpha]_{D}^{25}$ = +132 (c 0.33, EtOH)

HRMS (*m*/*z*): calcd for C₂₁H₃₀O₅Na, [M+Na]⁺ 385.1985; found, 385.1995;

¹H NMR (400 MHz, CD₃OD) δ 5.88 (d, *J* = 1.6 Hz, 1H), 4.62 (d, *J* = 19.3 Hz, 1H), 4.28 (d, *J* = 19.3 Hz, 1H), 4.02 (dd, *J* = 11.1, 1.2 Hz, 1H), 3.85 (d, *J* = 11.1 Hz, 1H), 2.82–2.63 (m, 2H), 2.55 (tdd, *J* = 14.1, 5.2, 1.9 Hz, 1H), 2.45–2.23 (m, 3H), 1.99–1.91 (m, 1H), 1.86–1.71 (m, 5H), 1.59–1.33 (m, 5H), 1.17–1.02 (m, 2H), 0.67 (s, 3H).

¹³C NMR (101 MHz, CD₃OD) δ 213.3, 203.2, 171.7, 126.7, 90.3, 67.8, 66.0, 55.3, 52.3, 45.3, 37.5, 35.8, 35.0, 34.7, 34.5, 33.8, 32.1, 30.8, 24.5, 22.3, 15.4.

Supplementary Note 3: C₂₀-OH-cortexolone (**4**, Supplementary Figure 79C) synthesis and characterization.

Following the Cortexolone bioconversion by *A.oryzae* NSAR1 procedure, cortexolone **1** (25 mg) was treated with fresh cultured *A. oryzae* NSAR1 liquid medium (0.25 g L⁻¹). After work-up and HPLC purification, C_{20} -OH-cortexolone **4** (10.6 mg, 42% yield) was obtained as a white solid.

Physical state: yellow solid;

 $R_f = 0.4$ (silica gel, 1:2 CH₂Cl₂: EtOAc);

 $[\alpha]_{D}^{25}$ = +45.0 (c 0.1, CHCl₃/MeOH 1:1)

HRMS (*m*/*z*): C₂₁H₃₃O₄, [M+H]⁺ 349.2379; found, 349.2385;

¹H NMR (400 MHz, MeOD) δ 5.68 (s, 1H), 3.74 (dd, *J* = 7.3, 3.2 Hz, 1H), 3.66–3.55 (m, 2H), 2.53–2.39 (m, 2H), 2.33–2.22 (m, 2H), 2.06 (ddd, *J* = 13.4, 5.1, 3.1 Hz, 1H), 1.91–1.75 (m, 3H), 1.73–1.54 (m, 6H), 1.52–1.40 (m, 2H), 1.31–1.24 (m, 1H), 1.21 (s, 3H), 1.10–0.98 (m, 1H), 0.96–0.89 (m, 1H), 0.86 (s, 3H). ¹³C NMR (101 MHz, MeOD) δ 202.5, 175.5, 124.1, 86.0, 76.6, 65.2, 55.3, 50.5, 40.0, 37.0, 36.8, 34.7, 34.5, 34.0, 33.5, 33.1, 24.9, 21.8, 17.7, 15.2.

Supplementary Note 4: Compound 8 (Supplementary Figure 79D) synthesis and characterization.

To a solution of 19-OH-cortexolone **2** (10 mg, 30 μ mol, 1.0 equiv) in MeOH (1.0 mL) was added aq. NaOH (3.0 M, 10 μ L, 0.03 mmol, 1.0 equiv) and H₂O₂ (30% in H₂O, 20 μ L, 0.15 mmol, 5.0 equiv) at 0 °C. After stirring for 4 h. The reaction mixture was diluted with CH₂Cl₂ (5 mL), washed with H₂O (5 mL) and brine (5 mL). The combined extracts were dried over anhydrous Na₂SO₄, filtered and concentrated. The crude product was purified by silica gel column chromatography (1:1 CH₂Cl₂: EtOAc) to afford epoxide **8** (6.6 mg, 17.4 μ mol, 58%) as a white solid.

Physical state: white solid;

 $R_f = 0.3$ (silica gel, 1:2 CH₂Cl₂: EtOAc);

 $[\alpha]_{D}^{25}$ = +40.1 (c 0.46, CH₃OH)

HRMS (*m*/*z*): calcd for C₂₁H₃₀O₆Na, [M+Na]⁺ 401.1935; found, 401.1944;

¹H NMR (400 MHz, Methanol- d_4) δ 4.72–4.52 (m, 2H), 4.28 (d, J = 19.2 Hz, 1H), 4.02 (d, J = 11.3 Hz,

1H), 3.76 (d, *J* = 11.4 Hz, 1H), 2.68 (ddd, *J* = 14.3, 11.4, 2.7 Hz, 1H), 2.36–2.21 (m, 2H), 2.20–2.10 (m, 1H), 1.96–1.90 (m, 1H), 1.86–1.73 (m, 3H), 1.68–1.60 (m, 2H), 1.56–1.47 (m, 2H), 1.44–1.37 m, 1H), 1.37–1.30 (m, 4H), 1.23–1.09 (m, 3H), 0.66 (s, 3H).

¹³C NMR (101 MHz, MeOD) δ 211.9, 207.1, 89.0, 68.8, 66.4, 63.5, 59.7, 50.8, 46.1, 41.4, 35.0, 33.5, 31.6, 30.5, 30.5, 29.7, 23.2, 21.7, 20.7, 14.1.

Supplementary Note 5: Compound **S34** (Supplementary Figure 79E) synthesis and characterization. To a solution of 19-OH-cortexolone **2** (10.0 mg, 30.0 µmol, 1.0 equiv) in MeOH (1.5 mL) was added 10% Pd/C (5.0 mg) at 28 °C under H₂ atmosphere. After stirring for 1 h. The mixture was filtered over a pad of Celite[®] and concentrated *in vacuo*. Since the reduction selectivity could not be confirmed by ¹H NMR, further derivatization was required. The reductive product **9** (7.0mg, 19.2 µmol, 70%) was dissolved in CH₂Cl₂ (2.0 mL). Then, Ac₂O (10.0 mg, 5.0 equiv) and DMAP (3.0 mg, 0.02 mmol, 1.0 equiv) was added. The solution was stirred under argon for 12 h. Then, the reaction mixture was diluted with CH₂Cl₂ (5 mL), washed with saturated NaHCO₃ (3 x 5 mL) and brine (5 mL). The combined extracts were dried over anhydrous Na₂SO₄, filtered and concentrated. the crude product was purified by silica gel column chromatography (2:1 petroleum ether: EtOAc) to afford **S34** (7.7 mg, 63%) as a white solid.

Physical state: white solid;

 R_f = 0.6 (silica gel, 1:1 petroleum ether: EtOAc);

 $[\alpha]_{D}^{25}$ = +35.5 (c 0.48, CHCl₃)

HRMS (*m*/*z*): calcd for C₂₅H₃₆O₇Na, [M+Na]⁺ 471.2353; found, 471.2358;

¹H NMR (400 MHz, CDCl₃) δ 5.08 (dd, J = 17.5, 12.9 Hz, 1H), 4.83 (d, J = 17.4 Hz, 0.19H_α), 4.80 (d, J = 17.4 Hz, 0.64H_β), 4.46–4.37 (m, 1H), 4.08 (d, J = 11.3 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) *δ* 212.2, 205.1, 171.2, 170.7, 90.0, 67.8, 66.3, 51.4, 48.5, 42.0, 40.4, 37.9, 36.9, 36.6, 35.5, 34.9, 31.0, 30.7, 29.7, 29.3, 25.9, 25.5, 23.5, 21.0, 20.9, 20.6, 14.8.

Supplementary Note 6: Compound 10 (Supplementary Figure 79F) synthesis and characterization.

To a solution of 19-OH-cortexolone **2** (6.0 mg, 16.6 μ mol, 1.0 equiv) in CH₂Cl₂ (1.0 mL) was added Ac₂O (7.8 μ L, 0.08 mmol, 5.0 equiv) and DMAP (2.0 mg, 0.017 mmol, 1.0 equiv) at 29 °C. After stirring for 4 h. Reaction mixture was diluted with CH₂Cl₂ (5 mL), washed with saturated NaHCO₃ (3 x 5 mL) and brine (5 mL). The organic phase was dried over anhydrous Na₂SO₄, filtered and concentrated. Without further purification, crude product was dissolved in dioxane (1.0 mL). Then, TBSCI (0.6 mg, 4.0 μ mol, 0.1 equiv) and DDQ (12.0 mg, 0.052 mmol, 1.3 equiv) were added to mixture at 0 °C under argon atmosphere. The mixture was reflux for 5 h, then diluted with CH₂Cl₂ (5 mL), washed with saturated NaHCO₃ (3 x 5 mL) and brine (5 mL). The combined extracts were dried over anhydrous Na₂SO₄, filtered and concentrated. the crude product was purified by silica gel column chromatography (3:1 petroleum ether: EtOAc) to afford **10** (6.5 mg, 14.6 μ mol, 81%) as a colorless oil.

Physical state: colorless oil;

 R_f = 0.5 (silica gel, 1:1 petroleum ether: EtOAc);

 $[\alpha]_{D}^{25} = +23.7 (c \ 0.18, CHCl_{3})$

HRMS (*m*/*z*): calcd for C₂₅H₃₄O₈Na, [M+Na]⁺ 485.2146; found, 485.2145;

¹H NMR (400 MHz, CDCl₃) δ 7.08 (d, *J* = 10.2 Hz, 1H), 6.35 (dd, *J* = 10.2, 1.9 Hz, 1H), 6.18 (d, *J* = 1.6 Hz, 1H), 5.06 (d, *J* = 17.5 Hz, 1H), 4.81 (d, *J* = 17.5 Hz, 1H), 4.62 (d, *J* = 11.0 Hz, 1H), 4.39 (d, *J* = 10.9 Hz, 1H), 2.77–2.68 (m, 1H), 2.56–2.48 (m, 1H), 2.45–2.38 (m, 1H), 2.16 (s, 3H), 2.07–1.98 (m, 1H), 1.97–1.92 (m, 1H), 1.91 (s, 3H), 1.83–1.62 (m, 4H), 1.55–1.46 (m, 1H), 1.44–1.34 (m, 1H), 1.30–1.09 (m, 4H), 0.73 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 205.2, 186.4, 170.9, 170.8, 164.5, 151.9, 130.4, 126.6, 89.8, 68.0, 63.7, 52.6, 50.6, 48.5, 47.9, 36.2, 34.9, 33.9, 32.8, 30.4, 23.8, 23.1, 20.8, 20.7, 14.8.

Supplementary Note 7: Compound 11 (Supplementary Figure 79G) synthesis and characterization.

Argon was bubbled for 20 min through stirred Ac₂O (1.0 mL) containing 19-OH-cortexolone **2** (5.0 mg, 14.5 µmol, 1.0 equiv) and Nal (8.7 mg, 60 µmol, 4.0 equiv). The mixture was cooled to 0 °C, and TMSCI (7.6 µL, 60 µmol, 4.0 equiv) was added dropwise, then, the mixture was allowed to warm to 25 °C and stirring for 4 h under an argon atmosphere. The reaction mixture was then poured into saturated aqueous NaHCO₃ (10 mL). After the mixture was stirred for 10 min, the product was extracted using EtOAc (3 × 15 mL). The combined extracts were washed with 10% aqueous Na₂S₂O₃ (2 × 10 mL), and brine (5 mL) and dried over anhydrous Na₂SO₄. The solvent was removed to afford acetylized product which was used without further purification or characterization. Then, the acetylized product was dissolved in dioxane (1.0 mL), and PhIO (5.1 mg, 25 µmol, 1.7 equiv) was added. The solution was stirred under argon for 7 h. Then, the mixture was diluted with EtOAc (10 mL) and washed with H₂O (10 mL) and brine (10 mL). The combined extracts were dried over anhydrous Na₂SO₄, filtered and concentrated. The crude product was purified by silica gel column chromatography (2:1 petroleum ether: EtOAc) to afford **11** (3.5 mg, 7.5 µmol, 52% for two steps) as a white solid.

Physical state: white solid;

 R_f = 0.4 (silica gel, 1:1 petroleum ether: EtOAc);

 $[\alpha]_{D}^{25}$ = +59.4 (c 0.51, CHCl₃)

HRMS (*m*/*z*): calcd for, C₂₅H₃₀O₇Na, [M+Na]⁺ 467.2040; found, 467.2045;

¹H NMR (400 MHz, CDCl₃) δ 6.00 (s, 1H), 5.08 (d, *J* = 17.5 Hz, 1H), 4.81 (d, *J* = 17.4 Hz, 1H), 4.75 (dd, *J* = 11.1, 1.4 Hz, 1H), 4.41–4.35 (m, 2H), 2.79–2.70 (m, 1H), 2.68–2.57 (m, 1H), 2.45–2.32 (m, 3H), 2.17 (s, 3H), 2.14–2.04 (m, 2H), 2.02 (s, 3H), 1.87–1.71 (m, 5H), 1.58–1.37 (m, 4H), 1.15–1.07 (m, 1H), 0.75 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 205.0, 199.9, 170.9, 170.7, 162.0, 128.9, 89.8, 72.7, 68.4, 67.8, 53.6, 50.7, 48.3, 41.1, 38.7, 34.79, 34.76, 34.5, 30.4, 30.3, 29.7, 23.5, 21.2, 21.1, 20.6, 14.7

Supplementary Note 8: Compound 12 (Supplementary Figure 79H) synthesis and characterization.

To a solution of **2** (100 mg, 0.28 mmol) in anhydrous acetonitrile (70 mL) was dropwise added TMSI (221 mg, 1.1 mmol, 4.0 equiv) at -20 °C under argon atmosphere. After stirring for 2.5 h, the reaction mixture was quenched with saturated Na₂S₂O₃ solution. Most of acetonitrile was removed under reduced pressure, then, the mixture was diluted with CH₂Cl₂ (50 mL), washed with saturated NaHCO₃ (2 x 25 mL) and brine (15 mL). The combined extracts were dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo*. The crude product was purified by silica gel chromatography (40:1 CH₂Cl₂: MeOH) to give **12** (80 mg, 84%, β/α = 20:1) as a white solid. (The ¹H NMR and ¹³C NMR matched the literature reported data⁵)

Physical state: white solid;

 $R_f = 0.4$ (silica gel, 15:1 CH₂Cl₂: MeOH);

 $[\alpha]_{D}^{25} = +156 (c \ 0.33, CHCl_{3})$

HRMS (*m*/*z*): calcd for C₂₁H₃₀O₄Na, [M+Na]⁺ 369.2036; found, 369.2039;

¹H NMR (600 MHz, CDCl₃): δ 5.99 (s, 1H), 4.24 (d, *J* = 19.2 Hz, 1H), 4.20 (d, *J* = 19.0 Hz, 1H), 4.09 (d, *J* = 10.7 Hz, 1H), 3.94 (d, *J* = 10.8 Hz, 1H), 2.83–2.69 (m, 1H), 2.52–2.35 (m, 5H), 2.29–2.24 (m, 1H), 2.01–1.93 (m, 2H), 1.85–1.76 (m, 4H), 1.73–1.68 (m, 2H), 1.56–1.49 (m, 1H), 1.45–1.28 (m, 2H), 1.22–1.11 (m, 2H), 0.99 (s, α-0.14H), 0.73 (s, β-3H).

¹³C NMR (101 MHz, CDCl₃): *δ* 210.2, 200.4, 167.0, 126.9, 69.5, 65.9, 59.0, 56.5, 53.8, 44.8, 43.9, 38.8, 36.3, 35.1, 33.6, 33.5, 32.1, 24.5, 23.0, 21.5, 13.7.

Supplementary Note 9: Compound 14 (Supplementary Figure 80A) synthesis and characterization.

To a solution of **2** (10 mg, 0.03 mmol) in 1:1 CH₂Cl₂:EtOH (2.0 mL) at 0 °C was added NaBH₄ (0.7 mg, 0.6 equiv). After 1.5 h, A mixture of acetone ans water (1:1, 2.0 mL) were added, the mixture was warmed to ambient temperature, followed by addition of NaIO₄ (32 mg, 5 equiv). The resulting white slurry was stirred overnight, filtered through Celite[®] and evaporated until the majority of CH₂Cl₂, EtOH and acetone had been removed to provide crude product. The crude product was purified by silica gel chromatography (2:1 petroleum ether: EtOAc) to give **14** (7.0 mg, 84%).

Physical state: white solid;

 R_f = 0.35 (silica gel, 2:1 petroleum ether: EtOAc);

¹H NMR (400 MHz, CDCl₃): δ 5.96 (s, 1H), 4.07 (dd, J = 10.7, 1.3 Hz, 1H), 3.94 (d, J = 10.7 Hz, 1H), 2.72 (ddd, J = 16.9, 14.1, 5.9 Hz, 1H), 2.52–2.32 (m, 5H), 2.16–1.94 (m, 3H), 1.91–1.74 (m, 4H), 1.64–1.44 (m, 3H), 1.23–1.05 (m, 3H), 0.91 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): *δ* 220.4, 199.9, 166.2, 127.3, 66.1, 54.1, 51.3, 47.7, 43.9, 36.0, 35.8, 35.1, 33.6, 33.5, 31.8, 31.0, 21.8, 21.0, 14.0.

Supplementary Note 10: Compound **15** (Supplementary Figure 80B) **and S33** synthesis and characterization.

To a solution of **12** (80 mg, 0.23mmol, 1.0 equiv) in anhydrous CH₂Cl₂ (5 mL) were added imidazole (156

mg, 2.3 mmol, 10.0 equiv) and TBSCI (347 mg, 2.3 mmol, 10.0 equiv) at 30 °C under argon atmosphere. After stirring for 14 h, the mixture was diluted with CH_2CI_2 (15 mL), washed with saturated NaHCO₃ (2 x 15 mL), 1 M HCI (2 x 15 mL) and brine (15 mL). The combined extracts were dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo*. The crude product was purified by silica gel chromatography (15:1 petroleum ether: EtOAc) to give **15** (120 mg, 90%) as a colorless oil and **S35** (8.5 mg, 6%) as a colorless oil.

For **15**:

Physical state: colorless oil;

 R_f = 0.5 (silica gel, 5:1 petroleum ether: EtOAc);

 $[\alpha]_{D}^{25} = +109.1 \ (c = 1.0, \ CHCl_3);$

HRMS (*m*/*z*): calcd for C₃₃H₅₈O₄Si₂Na, [M+Na]⁺ 597.3766; found, 597.3750;

¹H NMR (400 MHz, CDCl₃): δ 5.85 (s, 1H), 4.21 (d, *J* = 17.8 Hz, 1H), 4.13 (d, *J* = 17.8 Hz, 1H), 3.87 (d, *J* = 9.9 Hz, 1H), 3.83 (d, *J* = 9.8 Hz, 1H), 2.70–2.56 (m, 2H), 2.43–2.25 (m, 4H), 2.21–2.10 (m, 1H), 1.92–1.83 (m, 2H), 1.74–1.62 (m, 6H), 1.52 (qd, *J* = 13.1, 3.8 Hz, 1H), 1.35–1.23 (m, 2H), 1.16–0.97 (m, 3H), 0.90 (s, 9H), 0.82 (s, 9H), 0.67 (s, 3H), 0.09–0.05 (m, 6H), 0.02 (s, 3H), 0.01 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): *δ* 209.9, 200.3, 167.9, 126.0, 70.7, 65.8, 57.7, 56.7, 53.9, 44.7, 43.7, 39.1, 36.4, 34.9, 33.7, 33.5, 32.1, 26.0, 25.8, 24.6, 23.2, 21.7, 18.6, 18.1, 13.9, -5.2, -5.6, -5.7.

For **S33**:

Physical state: colorless oil;

 R_f = 0.53 (silica gel, 5:1 petroleum ether: EtOAc);

 $[\alpha]_{D}^{25} = +45.7 (c = 1.9, CHCl_3);$

HRMS (*m*/*z*): calcd for C₃₃H₅₈O₄Si₂Na, [M+Na]⁺ 597.3766; found, 597.3738;

¹H NMR (400 MHz, CDCl₃): δ 5.83 (s, 1H), 4.15 (d, *J* = 17.9 Hz, 1H), 4.05 (d, *J* = 17.9 Hz, 1H), 3.86 (d, *J* = 9.9 Hz, 1H), 3.82 (d, *J* = 9.8 Hz, 1H), 3.05 (dd, *J* = 8.3, 2.4 Hz, 1H), 2.63–2.54 (m, 1H), 2.39–2.22 (m, 4H), 1.91–1.47 (m, 9H), 1.32–1.27 (m, 2H), 1.17–1.02 (m, 2H), 1.01–0.95 (m, 1H), 0.94 (s, 3H), 0.91 (s, 9H), 0.83 (s, 9H), 0.08 (s, 3H), 0.06 (s, 3H), 0.02 (s, 3H), 0.01 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): *δ* 214.1, 200.1, 167.9, 125.9, 70.6, 65.7, 54.5, 53.2, 50.6, 46.0, 43.5, 36.5, 34.8, 34.8, 33.7, 33.3, 32.2, 25.88, 25.86, 25.7, 24.3, 21.6, 20.5, 18.4, 18.0, -5.3, -5.5, -5.7, -5.8.

Supplementary Note 11: Compound **16** (Supplementary Figure 80C) synthesis and characterization. To a solution of **15** (5.5 mg, 9.6 μ mol, 1.0 equiv) in MeOH (1.0 mL) was added 10% Pd/C (5.5 mg, onetime weight of starting material) at room temperature under H₂ atmosphere. After stirring for 4 h, NaBH₄ (1.9 mg, 0.05 mmol, 5.2 equiv) was added at 0 °C. When the starting material was completely consumed, the mixture was filtered through a pad of Celite[@] and concentrated, the resulting residue was purified by silica gel column chromatography (8:1 petroleum ether: EtOAc) to afford the desired reduction product **16** (5.0 mg, 8.7 µmol, 91%) as a white solid.

Physical state: white solid;

 $R_f = 0.4$ (silica gel, 5:1 petroleum ether: EtOAc);

 $[\alpha]_{D}^{25} = +2.6 \ (c = 0.6, \ CHCl_3);$

HRMS (*m*/*z*): calcd for C₃₃H₆₄O₄Si₂Na, [M+Na]⁺ 603.4235; found, 603.4234;

¹H NMR (400 MHz, CDCl₃): δ 3.77 (d, *J* = 10.5 Hz, 1H), 3.63–3.46 (m, 4H), 3.25 (dd, *J* = 9.5, 7.2 Hz, 1H), 2.39 (s, 1H), 2.23 (dt, *J* = 13.5, 3.7 Hz, 1H), 2.05 (dt, *J* = 12.7, 3.4 Hz, 1H), 1.73 (d, *J* = 10.4 Hz, 1H), 1.64–1.43 (m, 11H), 1.37–1.25 (m, 4H), 1.18–0.93 (m, 8H), 0.83 (s, 9H), 0.82 (s, 9H), 0.71 (s, 3H), 0.63 (ddd, *J* = 19.7, 11.4, 3.8 Hz, 2H), 0.00 (d, *J* = 1.0 Hz, 10H), -0.01 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): *δ* 74.3, 71.5, 66.9, 60.5, 56.2, 55.1, 52.3, 45.0, 43.1, 40.4, 39.3, 38.8, 36.0, 32.4, 32.0, 31.8, 28.5, 27.1, 26.02, 25.99, 24.9, 24.5, 22.7, 18.4, 18.2, 12.8, -5.2, -5.3, -5.5, -5.6.

Supplementary Note 12: Compound 17 (Supplementary Figure 80D) synthesis and characterization.

To a solution of **16** (82 mg, 0.14 mmol, 1.0 equiv) in anhydrous THF (5.0 mL) was added HF·Pyridine (1 M, 0.5 mL) at 50 °C under argon atmosphere. After stirring for 4.5 h, the mixture was poured into saturated NaHCO₃ (20 mL) and extracted with CH_2CI_2 (3 x 15 mL). Then, the organic phase was washed with 1 M HCl (3 x 15 mL), dried over anhydrous Na₂SO₄, filtered and concentrated. Without purification, the desilyl product was dissolved in acetone (3 mL) and H₂O (3 mL). Then, NaIO₄ (150 mg, 0.7 mmol, 5.0 equiv) was added to the mixture at rt. After stirring for 3 h, the mixture was diluted with CH_2CI_2 (15 mL), washed with H₂O (3 x 15 mL) and brine (15 mL). The combined extracts were dried over anhydrous Na₂SO₄, filtered and concentrated. The crude product was purified by silica gel column chromatography (20:1 CH_2CI_2 : MeOH) to afford the desired aldehyde **17** (43 mg, 0.13 mmol, 95% for two steps) as a white solide.

Physical state: white solid;

 $R_f = 0.5$ (silica gel, 6:1 CH₂Cl₂: MeOH);

 $[\alpha]_{D}^{25} = +46.3 (c = 0.6, CHCl_3);$

HRMS (*m*/*z*): calcd for C₂₀H₃₂O₃Na, [M+Na]⁺ 343.2244; found, 343.2244;

¹H NMR (400 MHz, CDCl₃): δ 9.75 (d, *J* = 2.2 Hz, 1H), 3.91 (d, *J* = 11.6 Hz, 1H), 3.80 (d, *J* = 11.6 Hz, 1H), 3.65 (tt, *J* = 10.7, 4.9 Hz, 1H), 2.32–2.22 (m, 2H), 2.16–2.04 (m, 1H), 1.98 (dt, *J* = 12.5, 3.4 Hz, 1H), 1.93–1.83 (m, 1H), 1.77–1.52 (m, 6H), 1.43–1.32 (m, 3H), 1.29–1.08 (m, 6H), 0.99–0.90 (m, 1H), 0.84 (dd, *J* = 13.8, 3.6 Hz, 1H), 0.78 (s, 3H), 0.77–0.70 (m, 1H).

¹³C NMR (101 MHz, CDCl₃): *δ* 205.3, 71.1, 63.0, 60.8, 56.7, 54.7, 45.1, 45.0, 39.3, 39.1, 38.5, 35.6, 32.1, 32.0, 31.3, 28.2, 24.9, 22.6, 21.1, 14.3.

Supplementary Note 13: Stereonsteriod A (18, Supplementary Figure 80E) synthesis and characterization.

To a solution of Ph_3PCH_3Br (179 mg, 0.5 mmol, 10.0 equiv) in anhydrous THF (1.0 mL) was added *n*BuLi (1.5 M in hexane, 0.32 mL, 10.0 equiv) at 0 °C under argon. After stirring for 30 min, a solution of **17** (16 mg, 0.05 mmol, 1.0 equiv) in anhydrous THF (0.5 mL) was dropwise added to the mixture. Then, reaction

was quenched with saturated NH₄Cl solution after stirring for another 3 h, diluted with EtOAc (15 mL) and washed with H₂O (3 x 15 mL). The organic phase was dried over anhydrous Na₂SO₄, filtered and concentrated. The crude product was purified by silica gel column chromatography (20:1 CH₂Cl₂: MeOH) to afford **Stereonsteriod A** (15.4 mg, 0.043 mmol, 93%) as a colorless gum.

Physical state: colorless gum;

 $R_f = 0.4$ (silica gel, 2:1 petroleum ether: EtOAc);

 $[\alpha]_{D}^{25} = +3.6 (c = 0.2, CHCl_3);$

HRMS (*m*/*z*): calcd for C₂₁H₃₄O₂Na, [M+Na]⁺ 341.2451; found, 341.2432;

¹H NMR (400 MHz, CDCl₃): δ 5.76 (ddd, J = 17.6, 10.9, 7.7 Hz, 1H), 4.98 (s, 1H), 4.95 (d, J = 7.7 Hz, 1H), 3.93 (d, J = 11.6 Hz, 1H), 3.80 (d, J = 11.7 Hz, 1H), 3.66 (tt, J = 10.8, 4.9 Hz, 1H), 2.27 (dt, J = 14.0, 3.9 Hz, 1H), 1.96–1.86 (m, 2H), 1.82–1.67 (m, 5H), 1.58–1.48 (m, 3H), 1.44–1.35 (m, 2H), 1.28–1.14 (m, 5H), 1.04–0.94 (m, 2H), 0.86–0.68 (m, 2H), 0.63 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): *δ* 140.0, 114.6, 71.2, 61.0, 56.1, 55.5, 55.1, 45.2, 43.8, 39.4, 38.7, 38.2, 36.2, 32.2, 32.1, 31.3, 28.3, 27.3, 24.9, 22.8, 13.4.

Supplementary Note 14: Acetylation of Stereonsteriod A (Supplementary Figure 80F)

To a solution of **Stereonsteriod A** (7.5 mg, 23.5 μ mol, 1.0 equiv) in pyridine (1 mL) was added Ac₂O (3.6 mg, 35.3 μ mol, 1.5 equiv) and DMAP (2.8 mg, 23.5 μ mol, 1.0 equiv) at room temperature under an argon atmosphere. After stirred overnight, the mixture was quenched by H₂O (5 mL) and subsequently extracted with CH₂Cl₂ (3 x 10 mL). The organic phase was dried over anhydrous Na₂SO₄, filtered and concentrated. The crude product was purified by silica gel column chromatography (15:1 to 8:1 to 3:1 to 1:1 petroleum ether: EtOAc) to afford **Ceratosteriod D (19)** (1.5 mg, 3.7 µmol, 16%), **Ceratosteriod C (21)** (1.9 mg, 5.3 µmol, 22%), **Sclerosteriod A (20)** (1.4 mg, 3.9 µmol, 17%) and recovered **Stereonsteriod A (18)** (3.0 mg, 9.4µmol, 40%).

For Sclerosteriod A (20):

Physical state: colorless oil;

 $R_f = 0.4$ (silica gel, 2:1 petroleum ether: EtOAc);

 $[\alpha]_{D}^{25} = -22.7 \ (c = 0.1, \text{ CHCl}_3);$

HRMS (*m*/*z*): calcd for C₂₃H₃₆O₃Na, [M+Na]⁺ 383.2557; found, 383.2559;

¹H NMR (600 MHz, CDCl₃): δ 5.74 (ddd, *J* = 16.4, 10.9, 7.7 Hz, 1H), 4.99–4.91 (d, *J* = 17.9 Hz, 2H), 4.34 (d, *J* = 12.1 Hz, 1H), 4.20 (d, *J* = 12.1 Hz, 1H), 3.64 (s, 1H), 2.25–2.17 (m, 1H), 2.06 (s, 3H), 1.98–1.91 (m, 1H), 1.88–1.82 (m, 1H), 1.80–1.60 (m, 6H), 1.55–1.45 (m, 2H), 1.40–1.14 (m, 7H), 1.04–0.83 (m, 4H), 0.79–0.71 (m, 1H), 0.57 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 171.3, 139.8, 114.5, 70.9, 62.9, 55.9, 55.3, 54.6, 45.03, 43.6, 38.4, 38.0, 37.8, 35.9, 32.0, 31.8, 31.6, 28.2, 27.2, 24.7, 21.9, 21.2, 13.0.

For Ceratosteriod C (21):

Physical state: colorless gum;

 $R_f = 0.8$ (silica gel, 2:1 petroleum ether: EtOAc);

 $[\alpha]_{D}^{25} = +18.4 \ (c = 0.1, \ CHCl_3);$

HRMS (*m*/*z*): calcd for C₂₃H₃₆O₃Na, [M+Na]⁺ 383.2557; found, 383.2549;

¹H NMR (600 MHz, CDCl₃): δ 5.75 (ddd, *J* = 16.3, 11.1, 7.7 Hz, 1H), 5.03–4.90 (m, 2H), 4.74 (tt, *J* = 11.0, 5.0 Hz, 1H), 3.95 (d, *J* = 11.7 Hz, 1H), 3.81 (d, *J* = 11.5 Hz, 1H), 3.56 (s, 1H), 2.30–2.28 (m, 1H), 2.03 (s, 3H), 1.97–1.93 (m, 1H), 1.91–1.85 (m, 1H), 1.81–1.74 (m, 1H), 1.73–1.63 (m, 6H), 1.55–1.40 (m, 6H), 1.34–1.12 (m, 3H), 1.07–0.80 (m, 3H), 0.77–0.70 (m, 1H), 0.62 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 170.9, 140.0, 114.7, 73.5, 61.0, 56.0, 55.5, 54.9, 45.0, 43.8, 39.4, 38.1, 36.2, 34.5, 32.1, 31.2, 29.9, 28.2, 28.1, 27.3, 24.9, 22.7, 21.6, 13.4.

For Ceratosteriod D (19):

Physical state: colorless gum;

 $R_f = 0.9$ (silica gel, 2:1 petroleum ether: EtOAc);

 $[\alpha]_{D}^{25} = -7.4 \ (c = 0.42, \ CHCl_3);$

HRMS (*m*/*z*): calcd for C₂₅H₃₈O₄Na, [M+Na]⁺ 425.2662; found, 425.2670;

¹H NMR (600 MHz, CDCl₃) δ 5.74 (ddd, *J* = 16.3, 11.0, 7.8, 1H), 5.01–4.92 (m, 2H), 4.72 (tt, *J* = 11.0, 4.9 Hz, 1H), 4.33 (d, *J* = 12.1 Hz, 1H), 4.23 (d, *J* = 12.1 Hz, 1H), 2.23 (d, *J* = 13.6 Hz, 1H), 2.06 (s, 3H), 2.02 (s, 3H), 1.96–1.92 (m, 1H), 1.85 (d, *J* = 12.1 Hz, 1H), 1.81–1.59 (m, 5H), 1.51–1.27 (m, 8H), 1.23–1.12 (m, 1H), 1.05–0.90 (m, 4H), 0.80–0.72 (m, 1H), 0.57 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): *δ* 171.4, 170.9, 139.9, 114.7, 73.2, 62.9, 56.0, 55.5, 54.6, 45.0, 43.8, 38.1, 37.9, 36.1, 34.3, 32.1, 31.7, 28.3, 27.7, 27.3, 24.9, 21.9, 21.6, 21.4, 13.2.

Supplementary Note 15: Stereonsteriod B (22, Supplementary Figure 80G) synthesis and characterization.

To a solution of **Ceratosteriod C** (2.0 equiv, 5.6 μ mol, 1.0 equiv) in anhydrous CH₂Cl₂(1 mL) was added DMP (5.0 mg, 11.1 μ mol, 2.0 equiv) at r.t. under an argon atmosphere. The reaction was stirring for 3 h, then washed with saturated NaHCO₃ (3 x 5 mL) and brine (5 mL). The organic phase was dried over anhydrous Na₂SO₄, filtered and concentrated. The crude product was purified by silica gel column chromatography (15:1 petroleum ether: EtOAc) to afford **Stereonsteriod B** (2.0 mg, 100%) as a white solid.

Physical state: white solid;

 $R_f = 0.7$ (silica gel, 5:1 petroleum ether: EtOAc);

 $[\alpha]_{D}^{25} = +21.2 (c = 0.05, CHCl_3);$

HRMS (*m*/*z*): calcd for C₂₃H₃₄O₃Na, [M+Na]⁺ 381.2400; found, 381.2406;

¹H NMR (600 MHz, C**DCI₃):** δ 10.02 (s, 1H), 5.72 (ddd, *J* = 17.5, 10.5, 7.9 Hz, 1H), 5.00–4.91 (m, 2H), 4.70 (tt, *J* = 10.5, 4.7 Hz, 1H), 2.42 (d, *J* = 13.5 Hz, 1H), 2.00 (s, 3H), 1.98–1.85 (m, 4H), 1.83–1.75 (m, 2H), 1.73–1.65 (m, 2H), 1.60–1.51 (m, 2H), 1.50–1.34 (m, 4H), 1.25–1.15 (m, 2H), 1.11–1.04 (m, 1H), 1.03–0.90 (m, 4H), 0.51 (s, 3H)

¹³C NMR (101 MHz, CDCl₃): δ 208.3, 170.7, 139.5, 114.7, 72.7, 55.7, 55.3, 52.7, 51.6, 43.4, 43.3, 37.2, 37.0, 35.6, 31.9, 30.7, 28.4, 28.2, 27.1, 24.6, 21.4, 21.3, 12.8.

Supplementary Note 16: Compound 25 (Supplementary Figure 81A) synthesis and characterization. Argon was bubbled for 20 min through stirred Ac₂O (0.5 mL) containing compound **12** (6.9 mg, 19.9 µmol, 1.0 equiv) and Nal (12 mg, 80 µmol, 4.0 equiv). The mixture was cooled to 0 °C, and Me₃SiCl (9.0 mg, 80 µmol, 4.0 equiv) was added dropwise, then, the mixture was allowed to warm to 25 °C and stirring was continued for 4 h under an argon atmosphere. The reaction mixture was then poured into saturated aqueous NaHCO₃ (10 mL). After the mixture was stirred for 10 min, the product was extracted using EtOAc (3 × 15 mL). The combined extracts were washed with 10% aqueous $Na_2S_2O_3$ (2 × 10 mL), and brine (5 mL) and dried over Na₂SO₄. The solvent was removed to yield compound 24 which was used without further purification or characterization. Compound 24 was dissolved in EtOH (1 mL), and NaBH₄ (8 mg, one-time weight of starting material) was added. The solution was stirred under argon overnight (24 h). The reaction was guenched with acetone (1 mL) and stirred for another 10 min. Then, $H_2O(1 \text{ mL})$ and NaIO₄ (21 mg, 0.1 mmol, 5.0 equiv) were added at rt. After stirred for 1 h, the mixture was diluted with EtOAc (10 mL) and washed with H_2O (10 mL) and brine (10 mL). The organic phase was dried over anhydrous Na₂SO₄, filtered and concentrated. The crude product was purified by silica gel column chromatography (2:1 petroleum ether: EtOAc) to afford 25 (4.4 mg, 13.8 µmol, 69% for two steps) as a white solid.

Physical state: white solid;

 $R_f = 0.6$ (silica gel, 10:1 CH₂Cl₂: MeOH);

 $[\alpha]_{D}^{25} = -27.8 \ (c = 0.3, \text{ CHCl}_3);$

HRMS (*m*/*z*): calcd for C₂₀H₃₁O₃Na, [M+Na]⁺ 341.2087; found, 341.2065;

¹H NMR (400 MHz, CDCl₃) δ 9.77 (d, *J* = 2.2 Hz, 0.78H, C₁₇-Hα), 9.75 (d, *J* = 2.9 Hz, 0.22H, C₁₇-Hβ), 5.79–5.70 (m, 1H), 3.89–3.80 (m, 1H), 3.65–3.50 (m, 2H), 2.55–2.20 (m, 2H), 2.19–2.02 (m, 3H), 1.96–1.82 (m, 3H), 1.79–1.61 (m, 4H), 1.51 (d, *J* = 4.1 Hz, 1H), 1.47–1.35 (m, 2H), 1.34–1.25 (m, 2H), 1.73–1.07 (m, 1H), 1.04–0.81 (m, 5H).

¹³C NMR (101 MHz, CDCl₃) δ 205.3, 135.7, 127.2, 71.5, 62.9, 62.9, 57.5, 50.5, 45.1, 42.4, 41.7, 38.7, 33.6, 33.0, 32.0, 31.2, 24.9, 21.3, 21.2, 14.3.

Supplementary Note 17: Reported **Sclerosteroid B (26,** Supplementary Figure 81B) synthesis and characterization.

To a solution of Ph_3PCH_3Br (42 mg, 0.12 mmol, 10.0 equiv) in anhydrous THF (1.0 mL) was added *n*BuLi (1.6 M in hexane, 73 µL, 10.0 equiv) at 0 °C under an argon atmosphere. After stirring for 30 min, a solution of **25** (4.2 mg, 11.7 µmol, 1.0 equiv) in anhydrous THF (0.2 mL) was dropwise added to the mixture. After stirred for another 2 h, Ac₂O (24 mg, 0.24 mmol, 20.0 equiv) and DMAP (1.5 mg, 0.012 mmol, 1.0 equiv) were added at rt under an argon atmosphere. After stirred for 5 h, the mixture was

diluted with EtOAc (10 mL) and washed with NaHCO₃ (3 x 10 mL). The organic phase was dried over anhydrous Na₂SO₄, filtered and concentrated. The crude product was purified by silica gel column chromatography (8:1 petroleum ether: EtOAc) to afford **26** (2.7 mg, 6.8 μ mol, 60%) as a colorless oil. Physical state: colorless oil;

 R_f = 0.9 (silica gel, 2:1 petroleum ether: EtOAc);

 $[\alpha]_{D}^{25} = -64.3 \ (c = 0.3, \text{ CHCl}_3);$

HRMS (*m*/*z*): calcd for C₂₅H₃₆O₄Na, [M+Na]⁺ 423.2506; found, 423.2510;

¹H NMR (400 MHz, CDCl₃) δ 5.81–5.70 (m, 1H), 5.66–5.61 (m, 1H), 5.02–4.82 (m, 2H), 4.63 (tt, *J* = 10.9, 5.1 Hz, 1H), 4.53–4.44 m, 1H), 4.01–3.94 (m, 1H), 2.44–2.28 (m, 2H), 2.14–1.98 (d, *J* = 6.0 Hz, 9H), 1.94–1.67 (m, 5H), 1.65–1.59 (m, 1H), 1.55–1.39 (m, 3H), 1.23–1.05 (m, 3H), 1.04–0.91 (m, 2H), 0.82 (s, 0.65, C₁₇-H β), 0.62 (s, 2.59H, C₁₇-H α).

¹³C NMR (101 MHz, CDCl₃) *δ* 170.8, 170.6, 139.7, 134.6, 126.8, 114.7, 73.4, 64.6, 56.4, 55.2, 50.4, 43.5, 39.8, 38.1, 37.4, 33.5, 33.0, 31.4, 27.9, 27.2, 24.8, 21.4, 21.3, 21.2, 12.9.

Supplementary Note 18: Compound **27 (**Supplementary Figure 81C) synthesis and characterization. To a solution of **12** (15 mg, 43 µmol, 1.0 equiv) in CH₂Cl₂/MeOH (1.5 mL, v: v = 3:2) was added CeCl₃ (32 mg, 0.13 mmol, 3.0 equiv) at -78 °C under an argon atmosphere. Then, a solution of NaBH₄ (3.3 mg, 87 µmol, 2.0 equiv) in EtOH (0.2 mL) was slowly added. The reaction mixture was allowed to warm to 0 °C for 20 min. Then, the reaction was quenched with acetone (1 mL) and stirred for 10 min. H₂O (1 mL) and NaIO₄ (46 mg, 0.22 mmol, 5.0 equiv) were added to the mixture at rt. After stirring for 1 h, the mixture was diluted with EtOAc (15 mL) and washed with H₂O (3 x 15 mL). The organic phase was dried over anhydrous Na₂SO₄, filtered and concentrated. The crude product was purified by silica gel column chromatography (2:1 petroleum ether: EtOAc) to afford **27** (10.4 mg, 32.7 µmol, 76%) as a white solid. **Physical state**: white solid;

 $R_f = 0.6$ (silica gel, 10:1 CH₂Cl₂: MeOH);

 $[\alpha]_{D}^{25} = +37.7 \ (c = 0.3, \text{CHCl}_3);$

¹**H NMR (400 MHz, CDCI₃)**: δ 9.76 (d, J = 2.1 Hz, 0.91 H), 9.73 (d, J = 2.9 Hz, 0.07 H), 5.73–5.67 (m, 1H), 4.19–4.13 (m, 1H), 3.97 (dd, J = 10.7, 1.2 Hz, 1H), 3.64 (d, J = 10.7 Hz, 1H), 2.28 (td, J = 9.0, 2.1 Hz, 1H), 2.20–2.06 (m, 3H), 2.02–1.97 (m, 1H), 1.97–1.89 (m, 1H), 1.84–1.63 (m, 5H), 1.60–1.51 (m, 1H), 1.45–1.38 (m, 1H), 1.38–1.24 (m, 3H), 1.14–1.04 (m, 1H), 1.02–0.91 (m, 2H), 0.77 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 205.0, 142.5, 128.6, 66.8, 65.8, 62.8, 56.3, 53.8, 45.0, 42.7, 38.8, 36.1, 33.0, 32.6, 31.9, 29.9, 24.8, 21.1, 21.1, 14.1.

Supplementary Note 19: Sclerosteriod B (28, Supplementary Figure 81D) synthesis and characterization.

To a solution of Ph₃PCH₃Br (44 mg, 0.124 mmol, 10.0 equiv) in anhydrous THF (1.0 mL) was added *n*BuLi (2.5 M in hexane, 50 μ L, 10.0 equiv) at 0 °C under an argon atmosphere. After stirring for 30 min,

a solution of **27** (4.0 mg, 12.4 μ mol, 1.0 equiv) in anhydrous THF (0.2 mL) was dropwise added to the mixture. After stirred for another 3 h, Ac₂O (24 mg, 0.24 mmol, 20.0 equiv) and DMAP (1.5 mg, 0.012 mmol, 1.0 equiv) were added at rt under an argon atmosphere. After stirred for 2 h, the mixture was diluted with EtOAc (10 mL) and washed with NaHCO₃ (3 x 10 mL). The organic phase was dried over anhydrous Na₂SO₄, filtered and concentrated. The crude product was purified by silica gel column chromatography (8:1 petroleum ether: EtOAc) to afford **Sclerosteriod B** (3.5 mg, 8.8 μ mol, 70%) as a colorless oil.

Physical state: colorless oil;

 $R_f = 0.7$ (silica gel, 1:2 CH₂Cl₂: EtOAc);

 $[\alpha]_{D}^{25} = +14.7 (c = 0.3, CHCl_3);$

HRMS (*m*/*z*): calcd for C₂₅H₃₆O₄Na, [M+Na]⁺ 423.2506; found, 423.2510;

¹H NMR (400 MHz, CDCl₃): δ 5.74 (ddd, *J* = 16.7, 10.6, 7.7 Hz, 1H), 5.49–5.43 (m, 1H), 5.25–5.17 (m, 1H), 5.00–4.91 (m, 2H), 4.48 (d, *J* = 11.2 Hz, 1H), 4.13 (d, *J* = 11.3 Hz, 1H), 2.25–2.15 (m, 1H), 2.11–2.02 (m, 8H), 1.98–1.89 (m, 2H), 1.83–1.60 (m, 6H), 1.56–1.49 (m, 3H), 1.46–1.30 (m, 2H), 1.20–1.13 (m, 1H), 1.00–0.91 (m, 2H), 0.90–0.87 (m, 1H), 0.60 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 171.2, 171.2, 171.2, 145.1, 139.8, 122.4, 114.9, 77.5, 70.1, 67.0, 55.8, 55.3, 54.6, 43.6, 40.7, 37.8, 36.5, 33.2, 32.5, 31.7, 29.9, 27.3, 25.5, 24.8, 21.6, 21.3, 21.2, 13.1.

Supplementary References

1. Renata, H., Zhou, Q., Dünstl, G., Felding, J., Merchant, R. R., Yeh, C. H., Baran, P. S.. Development of a concise synthesis of ouabagenin and hydroxylated corticosteroid analogues. *J. Am. Chem. Soc.*, **137**, 1330-1340 (2015).

2. Kirk, D. N., Boon L. Y. New syntheses of 19, 21-dihydroxypregn-4-ene-3, 20-dione, 21-hydroxy-19norpregn-4-ene-3, 20-dione, and 11β, 19, 21-trihydroxypregn-4-ene-3, 20-dione. *J. Chem. Soc., Perkin Trans. 1* **0**, 2945-2951 (1983).

3. Elks, Joseph, ed. The dictionary of drugs: chemical data: chemical data, structures and bibliographies. Springer, 2014.

4. Terasawa, T.; Okada, T., Convenient preparative routes to 19-hydroxy, 19-oxo-, 19-oic-, and 19-nordeoxycorticosterone. *Tetrahedron* **42**, 537-545 (1986).

5. Huang, J.; Wang, H., Method for preparing 19-demethyl-4-androstenedione, CN 106928301 A, 2017-07-17.

6. Hofmann, K. & Stoffel W. TMbase - A database of membrane spanning proteins segments. *Biol. Chem.* Hoppe-Seyler **374**,166 (1993).

7. Wang, S.-K.; Dai, C.-F.; Duh, C.-Y., Cytotoxic Pregnane Steroids from the Formosan Soft Coral *Stereonephthya crystalliana*. *J. Nat. Prod.* **69**, 103-106 (2006).

8. Ferraboschi P, De Mieri M, Ragonesi L. Lipase-catalyzed preparation of corticosteroid 17α-esters endowed with antiandrogenic activity. *Tetrahedron Lett.* **49**, 4610-4612 (2008).

9. Fang, H.-Y.; Liaw, C.-C.; Chao, C.-H.; Wen, Z.-H.; Wu, Y.-C.; Hsu, C.-H.; Dai, C.-F.; Sheu, J.-H., Bioactive pregnane-type steroids from the soft coral Scleronephthya gracillimum. *Tetrahedron* **68**, 9694-9700 (2012).

10. Lu, C.-K.; Wang, S.-K.; Duh, C.-Y., New pregnane steroids from Formosan red alga Ceratodictyon spongiosum and symbiotic sponge Sigmadocia symbiotica. *Bull Chem Soc Jpn.* **84**, 943-946 (2011).

11. Clark, T. A.; Chong, R.; Maddox, I. S., An investigation into the 19-hydroxylation of androstenedione, cortexolone and progesterone by selected fungi. *Appl. Microbiol. Biotechnol.* **21**, 132-134 (1985).

12. Wang, Y Fujii, T.; Yamaoka, H.; Gomi, K.; Kitamoto, A.; Kumagai, C., Cloning and nucleotide sequence of the ribonuclease T1 gene (rntA) from Aspergillus oryzae and its expression in *Saccharomyces cerevisiae* and *Aspergillus oryzae*. *Biosci. Biotech. Biochem.* **59**, 1869-1874 (1995).

13. Jin, F. J.; Maruyama, J.-i.; Juvvadi, P. R.; Arioka, M.; Kitamoto, K., Development of a novel quadruple auxotrophic host transformation system by argB gene disruption using adeA gene and exploiting adenine auxotrophy in *Aspergillus oryzae*. *FEMS Microbiol*. *Lett.* **239**, 79-85 (2004).

14. Jin, F. J.; Maruyama, J.-i.; Juvvadi, P. R.; Arioka, M.; Kitamoto, K., Adenine auxotrophic mutants of *Aspergillus oryzae*: development of a novel transformation system with triple auxotrophic hosts. *Biosci. Biotech. Biochem.* **68**, 656-662 (2004).

15. Sambrook, J.; Russell, D. W., *Molecular Cloning: A Laboratory Manual, 3rd ed.* Cold Spring Harbor Laboratory Press, New York: 2001.