Lateral Flow Assessment and Unanticipated Toxicity of Kratom

Lauren C. Smith, Lucy Lin, Candy S. Hwang,[‡] Bin Zhou, Diane M. Kubitz,¹ Huiying Wang[§], and Kim D. Janda^{*}

Departments of Chemistry, Immunology and Microbial Science, Skaggs Institute for Chemical Biology and ^ICenter for Antibody Development and Production; The Scripps Research Institute, La Jolla, CA, 92037 USA; §ABiox Company, 720 East First Street, Newberg, OR 97132, USA

Table of Contents

Figure S1. ¹ H NMR spectrum of mitragynine	S2
Figure S2. ¹³ C NMR spectrum of mitragynine	S3
Figure S3. ¹ H NMR spectrum of 2	S4
Figure S4. ¹³ C NMR spectrum of 2	S5
Figure S5. ¹ H NMR spectrum of 3	S6
Figure S6. ¹³ C NMR spectrum of 3	S7
Figure S7. HPLC chromatogram and mass trace of Mit-hapten (4)	S8
Figure S8. ¹ H NMR spectrum of 7-hydroxymitragynine	S9
Figure S9. ¹³ C NMR spectrum of 7-hydroxymitragynine	S10
Figure S10. MALDI-TOF MS spectrum of unconjugated BSA	S11
Figure S11. MS-ESI(+) spectrum of unconjugated BSA	S12
Figure S12. MALDI-TOF MS spectrum of Mit-BSA	S13
Figure S13. MALDI-TOF MS spectrum of Mit-FliC	S14
Figure S14. Survival curve and LD50 determination of mitragynine administered intravenousl	ly
	S15
Figure S15. Survival curve and LD ₅₀ determination of 7-hydroxymitragynine administered	
intravenously	S15
Figure S16. Survival curve and LD ₅₀ determination of heroin administered intravenously	S15
Figure S17. Survival curve and LD ₅₀ determination of orally administered mitragynine	S16
Figure S18. Survival curve of orally administered 7-hydroxymitragynine	S16
Table S1. Hybridoma panel with midpoint titers and IC ₅₀ value range	S17
Table S2. Competitive ELISA IC ₅₀ values for select hybridomas	S18
Table S3. Post mortem urine mitragynine levels from several toxicology reports	S18
Figure S19. Image of lateral flow strip and peak measurement read-out from Leelu	S19
Figure S20. Standard curve for 7-hydroxymitragynine and MIT29B7 strips in human urine	S19
Table S4. Physiochemical properties of mitragynine	S20
Table S5. Bioavailability properties of mitragynine and 7-hydroxymitragynine	S21

Figure S2. ¹³C NMR spectrum of mitragynine

Figure S3. ¹H NMR spectrum of **2**

Figure S4. ¹³C NMR spectrum of **2**

Figure S6. ¹³C NMR spectrum of **3**

Figure S12. MALDI-TOF MS spectrum of Mit-BSA

Figure S14. Survival curve and LD₅₀ determination of mitragynine administered intravenously

Figure S15. Survival curve and LD_{50} determination of 7-hydroxymitragynine administered intravenously

Figure S16. Survival curve and LD₅₀ determination of heroin administered intravenously

Figure S17. Survival curve and LD₅₀ determination of orally administered mitragynine

Figure S18. Survival curve of orally administered 7-hydroxymitragynine

Entry	mAb	Mit-BSA Midpoint Titer	Mit Isotype	GαM Midpoint Titer	GαM Isotype	IC ₅₀ (μΜ)
1	1F12	4-8	kg1	256	kg1	1-10
2	7D12	512-1024	lg2b	256-512	k, l, g1, g2b, g3	1-10
3	11C2	1024-2048	lg2b	256-512	k, l, g1, g2b	0.1-1
4	13G12	256	kg1	256-512	kg1	~ 1
5	16A1	64-128	kg2a	64	kg2a	1-10
6	16C7	256+	kg2a	256+	kg2a	>>10
7	17B7	64-128	kg2b	256+	kg1, 2b	0.1-1
8	17E8	256+	kg2a	256	kg2a	>>10
9	17G7	256+	kg2a	128-256	kg2a	>>10
10	17H11	256+	kg1	256+	kg1	1-10
11	19A4	256+	kg2b	256+	kg2b	>>10
12	21B2	64	kg2a	64	kg2a, m	>>10
13	21F10	256+	kg1	64	kg1	1-10
14	22D8	64	kg1	64	kg1	>>10
15	23A4	256+	kg1	256	kg1	>>10
16	23D7	128	kg1	128	kg1	1-10
17	23D9	256+	kg2a	128	kg2a	~ 1
18	24H7	128	kg2a	64	kg2a	~ 1
19	24H8	256	kg1	256	kg1	1-10
20	24H9	256+	kg1	128-256	kg1	>>10
21	25A7	128	kg2a	32-64	kg2a	~ 1
22	25G11	256+	kg1	256+	kg1	~ 1
23	26B8	256+	kg2b	256+	kg2b	>>10
24	27H9	128	kg2a	64	kg2a	1-10
25	28B6	256+	kg1	256+	kg1	>>10
26	28C12	256+	kg2a	128-256	kg2a	~ 1
27	28E1	256	kg1	128	kg1	>>10
28	28E9	128	kg1	64-128	kg1	~ 1
29	28F5	256+	kg1	256+	kg1	>>10
30	28G12	256+	kg2a	128	kg2a	1-10
31	29B7	128-256	kg1	128-256	kg1	0.1-1
32	29F3	256+	lg1	256	lg1	~ 1

Table S1. Hybridoma panel with midpoint titers and IC₅₀ value range

GaM – Goat anti Mouse

mAb	Urine IC ₅₀ (µg/mL)	Buffer IC ₅₀ (µg/mL)
11C2	0.037(±0.000)	0.446(±0.251)
17B7	1.45(±0.000)	0.607(±0.321)
29B7	3.28(±2.23)	1.23(±0.000)
13G12	0.376(±0.012)	0.247(±0.021)
23D9	1.50(±0.121)	0.390(±0.006)
24H7	0.186(±0.013)	0.550(±484)
25A7	2.22(±0.781)	0.233(±0.133)
25G11	6.17(±3.27)	0.508(±0.000)
28C12	0.852(±0.05)	0.100(±0.002)
28E9	-	0.569(±0.113)
29F3	0.912(±0.043)	0.098(±0.0004)
17H11	0.997(±0.000)	0.347(±0.028)

Table S2. Competitive ELISA IC₅₀ values for select hybridomas

Table S3. Post mortem urine mitragynine levels from several toxicology reports

Urine Concentration (µg/mL)	Reference
0.167	Nelsen, J. L., et al, J Med Toxicol 2010, 6 (4), 424-6.
1.2	Holler, J. M., et al, <i>J Anal Toxicol</i> 2011, 35 (1), 54-9.
3.47	Karinen, R., et al, Forensic Sci Int 2014, 245, e29-32.
0.37	McIntyre, I. M., et al, J Anal Toxicol 2015, 39 (2), 152-5.
>0.4	Domingo, O., et al, Forensic Sci Int 2017, 271, e1-e7.

Figure S19. Image of lateral flow strip and peak measurement read-out from Leelu

Figure S20. Standard curve for 7-hydroxymitragynine and MIT29B7 strips in human urine

Table S4. Physiochemical properties of mitragynine

Compound	рКа	Method	Source
Mitragynine	8.11 ± 0.11	UV Spectrophotometer	Ramanathan, S.; et. al., Understanding the physicochemical properties of mitragynine, a principal alkaloid of Mitragyna speciosa, for preclinical evaluation. <i>Molecules</i> 2015 , <i>20</i> (3), 4915-27.
Mitragynine	8.08 ± 0.04	Microplate Spectrophotometer	Ramanathan, S.; et. al., Understanding the physicochemical properties of mitragynine, a principal alkaloid of Mitragyna speciosa, for preclinical evaluation. <i>Molecules</i> 2015 , <i>20</i> (3), 4915-27.
Compound	Solubility	Solvent	Source
Mitragynine	88.9 ± 1.6 μg/ml	Buffer, pH 7	Ramanathan, S.; et. al., Understanding the physicochemical properties of mitragynine, a principal alkaloid of Mitragyna speciosa, for preclinical evaluation. <i>Molecules</i> 2015 , <i>20</i> (3), 4915-27.
Mitragynine	64.6 ± 1.2 μg/ml	Water	Ramanathan, S.; et. al., Understanding the physicochemical properties of mitragynine, a principal alkaloid of Mitragyna speciosa, for preclinical evaluation. <i>Molecules</i> 2015 , <i>20</i> (3), 4915-27.
Compound	logP	logD	Source
Mitragynine	1.70	0.78	Ramanathan, S.; et. al., Understanding the physicochemical properties of mitragynine, a principal alkaloid of Mitragyna speciosa, for preclinical evaluation. <i>Molecules</i> 2015 , <i>20</i> (3), 4915-27.

Compound	Monolayer permeability (% Transport)	Cell type	Source
Mitragynine (10 µM)	11.4 ± 0.8	Caco-2	Manda, V. K.; et. al., Evaluation of in vitro absorption, distribution, metabolism, and excretion (ADME) properties of mitragynine, 7-hydroxymitragynine, and mitraphylline. <i>Planta Med</i> 2014 , <i>80</i> (7), 568-76.
Mitragynine (10 µM)	6.8 ± 0.6	MDR-MDCK	Manda, V. K.; et. al., Evaluation of in vitro absorption, distribution, metabolism, and excretion (ADME) properties of mitragynine, 7-hydroxymitragynine, and mitraphylline. <i>Planta Med</i> 2014 , <i>80</i> (7), 568-76.
7-Hydroxymitragynine (10 μM)	7.8 ± 0.8	Caco-2	Manda, V. K.; et. al., Evaluation of in vitro absorption, distribution, metabolism, and excretion (ADME) properties of mitragynine, 7-hydroxymitragynine, and mitraphylline. <i>Planta Med</i> 2014 , <i>80</i> (7), 568-76.
7-Hydroxymitragynine (10 μM)	5.6 ± 0.9	MDR-MDCK	Manda, V. K.; et. al., Evaluation of in vitro absorption, distribution, metabolism, and excretion (ADME) properties of mitragynine, 7-hydroxymitragynine, and mitraphylline. <i>Planta Med</i> 2014 , <i>80</i> (7), 568-76.
Compound	Metabolism (t _{1/2})	Method	Source
Mitragynine (1.5 mg/kg)	2.9 ± 2.1 hr	IV delivery in Rats	Parthasarathy, S.; et. al., Determination of mitragynine in plasma with solid-phase extraction and rapid HPLC-UV analysis, and its application to a pharmacokinetic study in rat. <i>Anal Bioanal Chem</i> 2010 , <i>397</i> (5), 2023-30.
Mitragynine (50 mg/kg)	6.6 ± 1.3 hr	Oral delivery in Rats	Parthasarathy, S.; et. al., Determination of mitragynine in plasma with solid-phase extraction and rapid HPLC-UV analysis, and its application to a pharmacokinetic study in rat. <i>Anal Bioanal Chem</i> 2010 , <i>397</i> (5), 2023-30.
7-Hydroxymitragynine	24 min	Human liver microsomes	Manda, V. K.; et. al., Evaluation of in vitro absorption, distribution, metabolism, and excretion (ADME) properties of mitragynine, 7-hydroxymitragynine, and mitraphylline. <i>Planta Med</i> 2014 , <i>80</i> (7), 568-76.

Table S5. Bioavailability properties of mitragynine and 7-hydroxymitragynine

Compound	Stability in SGF (%RD)	Incubation Time	Source
Mitragynine	-22.5%	30	Ramanathan, S.; et. al., Understanding the physicochemical properties of mitragynine, a principal alkaloid of Mitragyna speciosa, for preclinical evaluation. <i>Molecules</i> 2015 , <i>20</i> (3), 4915-27.
Mitragynine	-8.9%	30	Manda, V. K.; et. al., Evaluation of in vitro absorption, distribution, metabolism, and excretion (ADME) properties of mitragynine, 7-hydroxymitragynine, and mitraphylline. <i>Planta Med</i> 2014 , <i>80</i> (7), 568-76.
7-Hydroxymitragynine	-7.6%	30	Manda, V. K.; et. al., Evaluation of in vitro absorption, distribution, metabolism, and excretion (ADME) properties of mitragynine, 7-hydroxymitragynine, and mitraphylline. <i>Planta Med</i> 2014 , <i>80</i> (7), 568-76.

Compound	Stability in SIF (%RD)	Incubation Time	Source
Mitragynine	+4.43%	30	Ramanathan, S.; et. al., Understanding the physicochemical properties of mitragynine, a principal alkaloid of Mitragyna speciosa, for preclinical evaluation. <i>Molecules</i> 2015 , <i>20</i> (3), 4915-27.
Mitragynine	-0.96%	30	Manda, V. K.; et. al., Evaluation of in vitro absorption, distribution, metabolism, and excretion (ADME) properties of mitragynine, 7-hydroxymitragynine, and mitraphylline. <i>Planta Med</i> 2014 , <i>80</i> (7), 568-76.
7-Hydroxymitragynine	-1.23%	30	Manda, V. K.; et. al., Evaluation of in vitro absorption, distribution, metabolism, and excretion (ADME) properties of mitragynine, 7-hydroxymitragynine, and mitraphylline. <i>Planta Med</i> 2014 , <i>80</i> (7), 568-76.

Compound	Plasma Protein Binding (% Free Drug Concentration)	P-glycoprotein inhibition (EC ₅₀)	Source
Mitragynine (15 µM)	6.2 ± 1.3	$18.2\pm3.6~\mu\text{M}$	Manda, V. K.; et. al., Evaluation of in vitro absorption, distribution, metabolism, and excretion (ADME) properties of mitragynine, 7-hydroxymitragynine, and mitraphylline. <i>Planta Med</i> 2014 , <i>80</i> (7), 568-76.
7-Hydroxymitragynine (15 μM)	10.3 ± 1.5	32.4 ± 1.9 μM	Manda, V. K.; et. al., Evaluation of in vitro absorption, distribution, metabolism, and excretion (ADME) properties of mitragynine, 7-hydroxymitragynine, and mitraphylline. <i>Planta Med</i> 2014 , <i>80</i> (7), 568-76.