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S1. Notes on Intensity Statistics for Ideal Crystals

Intensity statistics for the ratios of intensity moments <I2>/<1>?, <F>2/<F?>, and <|E2-1|> arise
naturally from the idealized probability distributions of intensities p(l), which have been known since
1949 (Wilson, 1949). The ideal probability distribution function (PDF) for acentric reflections is:

pa(Ddl = exp(<_II>)d << ; >) =nlg ; L << ; >>

While the PDF for centric distributions is:

(Ddl = 2<1I> -1 d( I )_ I d( I )
Pc - T exI)(2<1>) 2<1> _y1/2(2<1>) 2<1>

Consider the case for acentric peaks. It is common to consider resolution-normalized data. We define

resolution-normalized intensities, Z, and resolution-normalized structure factors, E, as follows:

I I
I=——" E=VI= |——
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Which allows the PDF to be expressed naturally in terms of Z:
pa(Z2)dzZ = exp(=2)d(Z) = y1(Z2)d(Z)

From which the cumulative distribution function (CDF), N(z), can be expressed:

zZ Z
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And the ratio of moments is determined as usual:
<I? >=f Pp,(Ddl =2 <1 >?
0

And so it follows:
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Similarly,
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Finally, the expectation value of <|E2-1|>:

o) [oe]
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0
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Following a similar analysis for centric peaks, one finds the CDF for acentric peaks is:

Ne() = jo pe(2)dz =erf( [2)

Where erf is the error function. The ideal ratios of moments are given in Table 2.

The L test was proposed in 2003 (Padilla & Yeates, 2003) as a method to assess data quality using
local intensity differences, particularly as a robust test for twinning. The authors define the unitless
guantity L by comparing two peaks near each other in reciprocal space:

I -1, 1-1
= —)12=]1—
L+1, 1+1L

Following the authors’ original derivation, the CDF is found by integrating:

N(L) = f f (1—L)P([1,12)d12d11
0 “hiiFr)
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Which can be differentiated to give the probability density function P(L):

d(N(L 1
P =2 =3

Which is again integrated to give the CDF of |L|, N(|L|):
N(L]) = |L]

As is shown in Figure 4. The expectation values of |L| and |L?| are straightforward to arrive at from

here:
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Figure S1 Full schematic of the neural network used for neural network integration.
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Table S1  Merging statistics for peaks with I/o > 1 for a given integration method to a resolution
of 1.65 A. While it is difficult to compare merging statistics from different peak sets, it is clear that
neural networks have the possibility to extent completeness at high-resolution shells without

compromising data quality.

Neutron Unit Cell a=b=733A,c=99.0A a=p=90°y=120°
Parameters
Space Group P3,21
Number of Orientations 5
Resolution Range (A) 13.97-1.65 (171-1.65)
Neural Profile Fitting k-NN Spherical
Network

Number of Unique 36,253 (3,252) | 35,503 (2,984) | 35,184 (3,028) | 36,446 (3,465)
Reflections
Completeness 95.93% 93.95% 93.10% 96.44%

(87.61%) (80.39%) (81.57%) (93.35%)
Multiplicity 3.75(2.20) 3.57(1.93) 3.51(1.98) 3.47 (2.52)
Mean I/c 9.8 (2.7) 10.9 (2.1) 7.9 (2.1) 8.0 (4.4)
Rmerge 11.8% (36.5%) | 12.4% (24.3%) | 20.4% (41.2%) | 17.2% (26.6%)
Rpim 6.4% (26.1%) 6.8% (18.4%) 11.3% (30.7%) | 9.7% (18.7%)
CCy2 0.991 (0.353) 0.987 (0.389) 0.963 (0.073) 0.977 (-0.021)
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Table S2

Summary statistics for peaks with I/c > 1 for the given integration method to a
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resolution of 1.65 A (left, shaded) and for peaks with I/c > 1 for all three integration methods to a

resolution of 1.8 A. These data show that intensity statistics depend more strongly on the integration

method than peak selection.

Model | <I>>/<I> | <F>%/<F? <L> <> <P>/<l> | <F>%/<F? <L> <>
2 > 2 >
Theory 2.0 0.785 0.518 0.33 2.0 0.785 0.518 0.333
NN 1.869 0.831 0.429 0.255 1.859 0.830 0.431 0.254
k-NN 1.714 0.859 0.393 0.218 1.772 0.850 0.402 0.226
PF 1.710 0.863 0.378 0.207 1.773 0.850 0.400 0.225
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Table S3  Crystallographic data and refinement statistics for X-ray data. Values for the outer

resolution shell are given in parentheses.

Diffraction source
Wavelength (A)
Temperature (K)

Detector

Crystal-detector distance (mm)
Rotation range per image (°)

Exposure time per image (s)

Space group
a=b(A)
c(A)
a=B(°)
v ()
Mosaicity (°)
Resolution range (A)
Total No. of reflections
No. of unique reflections
Completeness (%)
Multiplicity

(/o(1))

Rmeas

Rigaku FRE SuperBright Cu Ka rotating-anode generator

1.5418
296

R-Axis IV*™
135

0.5

60

P3,21
73.40
99.43

90

120

0.31
50.0-1.57 (1.60-1.57)
459516
43596
99.4 (91.3)
10.5(2.8)
26.6 (2.2)

0.08 (0.47)



