

Supplementary figure 1. Localization of ABCB5<sup>+</sup> MSCs in healthy murine skin Microphotographs of 5 $\mu$ m sections from murine skin subjected to immunostaining for ABCB5 (green) and the endothelial marker CD31 (red) revealed both a perivascular (1) and a dispersed interfollicular dermal localization (2) of ABCB5<sup>+</sup> cells. The hair follicles are transversally cut, and the unspecific staining (autofluorescence) of the roundish structure represents a hair which is dislocated by cutting the biopsy. Nuclei of all studied skin sections were counterstained with DAPI (blue). Scale bars: 50 $\mu$ m; e = epidermis; d = dermis; hf, hair follicle, transversally cut. Dashed white line delineates epidermal from dermal layers.





"Upper lineage" fibroblast markers



"Upper lineage" fibroblast markers



F





G

ABCB5 a-SMA DAPI

"Lower lineage" fibroblast marker



# Supplementary figure 2. ABCB5<sup>+</sup> MSCs may belong to upper rather than lower fibroblast lineage

(A) Heatmap depicting transcriptome profiling of samples (n=3) from low (2-3) and high (above 10) passaged ABCB5<sup>+</sup>-derived MSCs. The color reflects the log2 scale of relative expression. (B) Heatmap depicting genes involved in the maintenance of stemness from early and late passaged ABCB5<sup>+</sup>-derived MSCs. (C) A clear co-localization of ABCB5 (green) with the stem cell marker SSEA-4 (red) was observed in a distinct subpopulation of dermal cells (yellow overlay). (D-E) Microphotographs of human skin subjected to double immunofluorescence staining for ABCB5 (green) and the two marker proteins of "upper lineage" fibroblasts (red) revealed a co-expression of ABCB5 with DPP4 (CD26) and a partial co-localization of ABCB5 and PRDM1 (BLIMP1). (F) A co-localization of ABCB5 (green) with the stem cell marker POU5F1 (OCT-4) (red). (G) ABCB5 (green) was consistently not found co-expressed with the lower lineage fibroblast and myofibroblasts marker  $\alpha$ -smooth muscle actin ( $\alpha$ -SMA) (red). Nuclei of all studied skin sections were counterstained with DAPI (blue). Scale bars: 50µm; e = epidermis; d = dermis. Dashed white line delineates epidermal from dermal layers.



#### Supplementary figure 3. ABCB5<sup>+</sup> sorted dermal MSC marker expression profile

Both ABCB5<sup>+</sup> and ABCB5<sup>-</sup> sorted plastic-adherent human dermal cells were negative for Melan-A, CD133, CD318 and CD271 by flow cytometry (black histograms) as shown here in overlay with the respective isotype controls (grey lines). All histograms show data obtained for donor B03 (Table S1) and are representative for dermal cell fractions from six donors.



# Supplementary figure 4. Modulation of activated macrophages by ABCB5<sup>+</sup> MSCs from multiple donors

(A-C)The *in vitro* anti-inflammatory effect on classically (by IFN- $\gamma$  + LPS) activated macrophages at an MSC : macrophage ratio of 1:5 is shown for both the pooled samples as well as for the ABCB5<sup>+</sup> sorted dermal MSCs from the individual donors (B01, B08, B09, B10, B11 and B12; Table S1) that comprise the pooled donors sample. Co-culture of human dermal ABCB5<sup>+</sup> -derived MSC with human macrophages matured from peripheral blood monocytes at a ratio of 1:5 significantly downregulates the secretion of the pro-inflammatory M1 cytokines TNF $\alpha$  (left) and IL-12/IL-23p40 (middle) upon classical IFN- $\gamma$ /LPS activation while upregulated The anti-inflammatory M2 cytokine IL-10 (right) as measured by ELISA. ns = not significant; \* *p* < 0.05; \*\* *p* < 0.01; \*\*\* *p* < 0.001, ttest.



Supplementary figure 5. In the wound bed, injected ABCB5<sup>+</sup> MSCs are localized close to endogenous macrophages

Double immunofluorescence staining of endogenous murine macrophages (F4/80, green) in day 3 iron overloaded chronic wound beds with human specific  $\beta$ 2 microglobulin (red) shows the injected human ABCB5<sup>+</sup> MSCs close to endogenous macrophages. An overview (left panel) with higher magnification of the indicated rectangle (middle and right panel). Nuclei were counterstained with DAPI (blue). Scale bars: 50µm; e = epidermis; d = dermis.



# Supplementary figure 6. IL-1 $\beta$ expression is highly increased in human CVU and wounds of iron overload mice

(A) Specific mRNA levels for IL-1 $\beta$  were highly increased in human chronic venous leg ulcers (CVU) compared to human healthy skin as assessed by qPCR. (B) The ratio of IL-1 $\beta$  mRNA expression in wounds of iron overload mice to wounds of acute wound healing model mice is highly increased compared to the ratio of IL-1 $\beta$  expression in healthy skin of both model systems. (C) Representative microphotographs of human skin sections confirm high IL-1 $\beta$  expression in human CVU compared to normal skin of donor A14 (Table S1) and to an acute wound. (D) Co-immunostaining for the murine macrophage marker F4/80 (green) and IL-1 $\beta$  (red) of murine iron-model skin and murine iron model wound sections show macrophages as a main source of IL-1 $\beta$  in iron model wounds and confirm a higher IL-1 $\beta$  expression in iron model wounds compared to healthy skin as well as to murine acute wounds. (A, B) n=3; (C) scale bars = 100µm; e = epidermis; d = dermis. Dashed line delineates epidermis from dermis. (D) Scale bars = 50µm. Nuclei were stained with DAPI (blue). \*\*\* p < 0.001, t-test.



# Supplementary figure 7. Endogenous murine ABCB5<sup>+</sup> MSCs express IL-1RA in iron overload wounds

Representative microphotographs of co-immunostainings for ABCB5 (green) and IL-1RA (red) show ABCB5<sup>+</sup> cells in their endogenous niches in human healthy skin, murine healthy skin and iron overload model mouse wounds treated with PBS injection at day 6. In unwounded healthy skin, neither human nor murine endogenous ABCB5<sup>+</sup> MSCs co-expressed IL-1RA. By contrast, a strong co-expression of ABCB5 and IL-1RA was observed in chronic wounds of the iron-overload model. Moreover, the number of ABCB5 positive cells was found to be increased. Scale bars = 50µm.



# Supplementary figure 8. Endogenous IL-1RA production by macrophages is independent of MSC treatment

Double immunofluorescence staining of endogenous murine IL-1RA (green) in day 3 acute (first panel) and iron overloaded chronic wound beds (three right panels) with markers for (**A**) macrophages (F4/80, red) and (**B**) neutrophil granulocytes (GR1, red) shows that endogenous IL-1RA is produced by a subpopulation of murine macrophages but not by neutrophils. (**C**) Treatment of chronic mouse wounds with either ABCB5<sup>-</sup> cell or ABCB5<sup>+</sup> MSC injection did not change the proportion of macrophages producing IL-1RA. Nuclei of all studied wound sections were counterstained with DAPI (blue). Scale bars: 50µm.



Supplementary figure 9. Recombinant human IL-1RA treatment of iron model and acute model wounds. (A) Intradermal injection of 250ng/wound rhIL-1RA in PBS around the wound edge at day one post-wounding (grey), significantly accelerated wound closure of iron-overload mice as compared to injection with PBS alone (black) to a rate comparable with acute model full-thickness excisional mouse wounds (open). (B) By contrast, rhIL-1RA injection in to acute wounds (grey) was unable to significantly accelerate wound closure (except for a minor effect at day 7), when compared to PBS injected wound (open symbols). ns = not significant; \* p < 0.05; \*\* p < 0.01; \*\*\* p < 0.001, t-test.



Supplementary figure 10. rhTSG-6 administration does not accelerate wound healing in iron model.

(A) Both ABCB5<sup>+</sup> MSCs and ABCB5<sup>-</sup> HDFs produced TSG-6 to a higher extent than BM-MSCs upon co-culture with classically activated mouse macrophages. (B) Similarly to IL-1RA, also TSG-6 production by ABCB5<sup>+</sup> MSCs was evident by double immunostaining with antibodies directed against  $\beta$ 2M and TSG-6 *in vivo* 6h after intradermal injection around iron model wound edges. Scale bars = 50µm, staining with DAPI for the nuclei (blue). (C) Wound closure in iron overloaded mice ( $\circ$ ) was accelerated with rhIL-1RA ( $\mathbf{V}$ ), but not with rhTSG-6 ( $\mathbf{A}$ ) injections at a time-dose regiment that significantly accelerated wound closure in acute full-thickness excisional wounds of mice. A presumed synergistic effect between rhIL-1RA and rhTSG-6 ( $\mathbf{A}$ ) was not observed. Wound size analysis was performed blinded for this experiment. ns = not significant; \* *p* < 0.05; \*\* *p* < 0.01; \*\*\* *p* < 0.001, t-test.



FSC-A

# Supplementary figure 11. Flow cytometry analysis for mouse and human wound macrophage immune-phenotyping

(A) Singlet cells by scatter characteristics (left and middle) were further gated by F4/80-eFluor450 expressing events for further M1/M2-marker analysis (right). This gating strategy allowed for the identification of a substantial F4/80<sup>+</sup> mouse macrophage population (bottom) compared to the respective eFluor450-conjugated isotope control staining (top). (B) Debris was excluded by gating for scatter characteristics. Gating of human macrophages was performed in the anti-human specific CD68-FITC channel.

#### **Supplementary Materials and Methods**

#### Expansion and isolation of ABCB5<sup>+</sup> and ABCB5<sup>-</sup> dermal cell fractions

Plastic adherent dermal cells were expanded at the maximum for 16 passages equaling a cumulative population doubling of 25 and separated into ABCB5<sup>+</sup> and ABCB5<sup>-</sup> fractions by respective two and three consecutive rounds of magnetic bead sorting with mouse antihuman ABCB5 IgG<sub>1</sub> antibody (clone UG3C2-2D12;(47)). More than 90% sort purity is one of the release criteria of GMP-grade dermal ABCB5<sup>+</sup> cells (Table S2). By flow cytometry, average purity of ABCB5<sup>+</sup> cells was 98.33% ± 1.12% (n = 243). For experiments, sorted cells were either cryopreserved or cultured up to a maximum of 72 hours. Purity at this time-point was typically > 70%. ABCB5<sup>+</sup> dermal MSCs were cultured in Ham's F10 supplemented with 15% heat-inactivated high quality fetal bovine serum, 6mM HEPES, 2.8µg/ml hydrocortisone, 100U/ml penicillin/streptomycin, 2mM L-glutamine, 10µg/ml insulin, 0.2mg/ml glucose, 6.16ng/ml PMA (Sigma-Aldrich) and 0.6ng/ml recombinant human basic fibroblast growth factor (Prospecbio), at 37°C and 3% CO<sub>2</sub>. Versene (Gibco) was used to detach ABCB5<sup>+</sup> dermal cells from the culture plastic. ABCB5<sup>-</sup> HDFs were maintained in DMEM with 10% high guality fetal bovine serum, 100U/ml penicillin/streptomycin and 2mM L-glutamine (Biochrom), at 37°C and 5% CO<sub>2</sub>.

#### The C57BL/6 mouse model relevant for CVU pathophysiology

C57/BL/6 mice were injected intraperitoneally seven times with 5mg/200µl iron-dextran or 200µl PBS-Dextran (Sigma-Aldrich) on a three day interval. One day after the last iron injection, four 6mm full-excisional wounds were inflicted with biopsy punchers (Stiefel) on the dorsal skin of shaved mice while under anesthesia. Wounds were photographed next

to a lineal measure in order to quantify the wound areas using Adobe Photoshop software (Adobe Systems).

#### IL-1β Quantitative PCR

Total RNA was isolated from human chronic venous leg ulcers (CVUs), murine wounds and corresponding healthy control skin using a commercial kit (RNeasy Microarray Tissue Mini Kit, Qiagen) as described by the manufacturer. Two µg of RNA per sample were reverse transcribed using illustra Ready-To-Go RT-PCR Beads (GE Healthcare). Quantity and quality of total RNA and cDNA were assessed using Nanodrop 1000 (Thermo Scientific) and QIAxcel Advance system (Qiagen). The 7300 real time PCR system (Applied Biosystems, Life Technologies) was used to amplify cDNA using Power SYBR green master mix (Applied Biosystems, Life Technologies). Primers specific for human IL-1β (FW: 5'-CCCAAGCAATACCCAAAGA-3' and REV: 5'-CCACTTTGCTCTTGACTTCTA-3') 5'and IL-1β (FW: mouse TCACAAGCAGAGCACAAG-3' and REV: 5'-GAAACAGTCCAGCCCATAC-3') were used for data given in Fig. S6.

2

#### Supplementary table 1. Human skin donors

(**A**) Donor data of healthy skin used in this study for *in vivo* characterization of ABCB5<sup>+</sup> dermal cells and of CVU for IL-1 $\beta$  immunostaining of CVU and normal human skin (Fig. S1 and S6). (**B**) Donor data of healthy skin used in this study for dermal cell ABCB5-sorting. \*A pool of cells from donors B01, B08, B09, B10, B11 and B12 was used for Figures 3-7 after testing for anti-inflammatory capacity of ABCB5<sup>+</sup> dermal MSCs of each donor and the pooled sample (Fig. S4).

A: Donor data of healthy skin used in this study for *in vivo* characterization of ABCB5<sup>+</sup> dermal cells and of CVU for IL-1 $\beta$  immunostaining of CVU and normal human skin

| Donor ID | Gender (m/f) | Age at biopsy (yrs) | Skin biopsy location                              | Figure Nr(s). |
|----------|--------------|---------------------|---------------------------------------------------|---------------|
| A01      | m            | 19                  | Lower leg                                         | 1B            |
| A02      | f            | 15                  | Upper belly                                       | 1B            |
| A03      | f            | 20                  | Shoulder                                          | 1B            |
| A04      | f            | 18                  | Lower leg                                         | 1B            |
| A05      | m            | 13                  | High-parietal                                     | 1B            |
| A06      | f            | 38                  | Shoulder                                          | 1B            |
| A07      | f            | 42                  | Lumbal region                                     | 1B            |
| A08      | m            | 33                  | Lower back                                        | 1B            |
| A09      | m            | 26                  | Back                                              | 1B            |
| A10      | m            | 38                  | Neck                                              | 1A-B          |
| A11      | f            | 74                  | Shoulder                                          | 1A            |
| A12      | f            | 16                  | Gluteal region                                    | 1C-F          |
| A13      | f            | 62                  | Breast                                            | 1C-F, S7      |
| A14      | m            | 73                  | CVU + normal control (parallel lower extremities) | S6            |

B: Donor data of healthy skin used in this study for dermal cell ABCB5-sorting

| Donor ID                 | Gender (m/f) | Age at biopsy (yrs) | Skin biopsy location | Figure Nr(s).             |
|--------------------------|--------------|---------------------|----------------------|---------------------------|
| B01                      | f            | 58                  | Behind left ear      | 2A, 3D, 4B-E, 5, 7, S3    |
| B02                      | f            | 19                  | Gluteal region       | 2D-H (graphs)             |
| B03                      | m            | 20                  | Gluteal region       | 2 (graphs + pictures), S4 |
| B04                      | f            | 20                  | Gluteal region       | 2D-H (graphs)             |
| B05                      | f            | 20                  | Gluteal region       | 2D-H (graphs)             |
| B06                      | f            | 19                  | Inside upper arm     | 2D-H (graphs)             |
| B07                      | m            | 27                  | Upper arm            | 2D-H (graphs)             |
| B08                      | f            | 66                  | Behind left ear      | S3                        |
| B09                      | f            | 51                  | Behind left ear      | S3                        |
| B10                      | m            | 76                  | Behind left ear      | S3                        |
| B11                      | m            | 51                  | Behind left ear      | S3                        |
| B12                      | f            | 76                  | Behind left ear      | S3                        |
| B13                      | m            | 51                  | Behind left ear      | not shown                 |
| B14                      | m            | 75                  | Behind left ear      | not shown                 |
| B01+B08+B09+B10+B11+B12* | -            | -                   | Behind left ear      | 3-7, S3                   |

\*Pooled-donor cell samples

# Supplementary table 2. Release criteria for GMP-compliant dermal ABCB5<sup>+</sup> MSC preparations used in this study

| Parameter                                 | Test Method        | Specification             |
|-------------------------------------------|--------------------|---------------------------|
| Total count viable cells                  | Flow cytometry     | ≥ 90%                     |
| Cell vitality                             | Flow cytometry     | ≥ 90%                     |
| Microbiological control cellular products | Adapted            | No growth                 |
| Mycoplasma                                | NAT                | Not detectable, <10CFU/ml |
| Endotoxin level                           | LAL-test           | ≤ 2 EU/mI                 |
| Cell viability                            | Flow cytometry     | ≥ 75%                     |
| CD90 surface expression                   | Flow cytometry     | ≥ 90%                     |
| Bead residues                             | Flow cytometry     | ≤ 0.5 %                   |
| Content of ABCB5-positive cells           | Flow cytometry     | ≥ 90%                     |
| Potency Assay (angiogenic)                | Immunofluorescence | Tube formation assay      |

| Supplementary table 3. List | of antibodies used in this study |
|-----------------------------|----------------------------------|
|-----------------------------|----------------------------------|

| Epitope                     | Clone      | Species       | Applied reactivity | Company/Reference       |
|-----------------------------|------------|---------------|--------------------|-------------------------|
| ABCB5<br>(RFGAYLIQAGRMTPEG) | 3C2-1D12   | Mouse IgG1    | Human, mouse       | (47)                    |
| Aggrecan                    | Polyclonal | Goat IgG      | Human              | R&D Systems #AF1220     |
| CD31                        | Polyclonal | Rabbit IgG    | Human, mouse       | Abcam #28364            |
| CD68                        | Y1/82A     | Mouse IgG2b κ | Human              | BD #556059              |
| CD206                       | Polyclonal | Rabbit        | Human              | Abcam #64693            |
| F4/80                       | BM8        | Rat IgG2a κ   | Mouse              | eBioscience #14-4801-85 |
| β2 microglobulin            | Polyclonal | Rabbit        | Human              | Abcam #87483            |
| IL-1β                       | Polyclonal | Rabbit        | Human              | Sdix #2360.00.02        |
| IL-1β                       | Polyclonal | Rabbit        | Human, mouse       | Abcam #9722             |
| IL-1RA                      | EPR6483    | Rabbit IgG    | Mouse              | Abcam #124962           |
| NG2                         | Polyclonal | Rabbit IgG    | Human              | Millipore #AB5320       |
| SOX2                        | D6D9       | Rabbit IgG    | Human              | Cell Signaling #3579    |
| SSEA4                       | Polyclonal | Rabbit IgG    | Human              | Bioss #bs-3609R         |
| TSG-6                       | A38.1.20   | Rat IgG       | Human              | Santa Cruz sc-65886     |
| ΤΝFα                        | Polyclonal | Rabbit        | Human              | Abcam #183896           |

#### A: Primary antibodies used for immunostaining

#### **B:** Flow cytometry antibodies

| Epitope                     | Clone       | Species         | Applied reactivity | Company/Reference                |
|-----------------------------|-------------|-----------------|--------------------|----------------------------------|
| ABCB5<br>(RFGAYLIQAGRMTPEG) | 3C2-1D12    | Mouse IgG1      | Human              | (47)                             |
| CD14-PerCp                  | TÜK4        | Mouse IgG2a     | Human              | Miltenyi Biotec #130-095-198     |
| CD20-PerCp                  | LT20.B4     | Mouse IgG1      | Human              | Miltenyi Biotec #130-095-198     |
| CD34-PerCp                  | AC136       | Mouse IgG2a     | Human              | Miltenyi Biotec #130-095-198     |
| CD45-PerCp                  | 5B1         | Mouse IgG2a     | Human              | Miltenyi Biotec #130-095-198     |
| CD68-FITC                   | eBioY1/82A  | Mouse IgG2b κ   | Human              | eBioscience #11-0689-42          |
| CD73-APC                    | AD2         | Mouse IgG1      | Human              | Miltenyi Biotec #130-095-198     |
| CD90-FITC                   | DG3         | Mouse IgG1      | Human              | Miltenyi Biotec #130-095-198     |
| CD105-PE                    | 43A4E1      | Mouse IgG1      | Human              | Miltenyi Biotec #130-095-198     |
| CD133                       | polyclonal  | Rabbit IgG      | Human              | Abcam #ab16518                   |
| CD206- eFluor450            | 19.2        | Mouse IgG1k     | Human              | eBioscience #48-2069-41          |
| CD271-FITC                  | ME20.4-1.H4 | Mouse IgG1      | Human              | Miltenyi Biotec #130-91-917      |
| CD318                       | polyclonal  | Rabbit IgG      | Human              | Bioss #5880-R                    |
| Dectin-1-PE                 | 15E2        | Mouse IgG2a κ   | Human              | eBioscience #12-9856-42          |
| IL-12/IL23 p40-eFluor450    | EBioHP40    | Mouse IgG1 κ    | Human              | eBioscience #48-7235-41          |
| MelanA                      | 1F12        | Mouse IgG1      | Human              | LifeSpan Biosciences #LS-C174654 |
| SSEA4-PE                    | MC-813-70   | Mouse IgG3      | Human              | eBioscience #12-8843-71          |
| TNFα-PerCP-Cy5.5            | MAb11       | Mouse IgG1 κ    | Human              | eBioscience #45-7349-41          |
| Arginase 1-PE               | polyclonal  | Sheep IgG       | Mouse              | R&D Systems #IC5868P             |
| CD206-AF647                 | C068C2      | Rat IgG2a κ     | Mouse              | BioLegend #141711                |
| Dectin-1-FITC               | REA154      | Rec. human IgG1 | Mouse              | Miltenyi Biotec #130-102-986     |
| IL12/IL23 p40-PerCp-Cy5.5   | C17.8       | Rat IgG2a κ     | Mouse              | eBioscience #45-7123-80          |
| NOS2-PE                     | CXNFT       | Rat IgG2a κ     | Mouse              | eBioscience #12-5920-80          |
| TNF-α-PerCp-Cy5.5           | MP6-XT22    | Rat IgG1 ĸ      | Mouse              | BioLegend #506322                |