Supplemental information

This file includes:

Figures S1 to S7 Tables S1 to S5

E3 ubiquitin-protein ligase TRIM21-mediated lysine capture by UBE2E1 reveals substrate-targeting mode of a ubiquitin-conjugating E2

Madhanagopal Anandapadamanaban^{1,2}, Nikolaos C. Kyriakidis^{3,4#}, Veronika Csizmók^{1#}, Amélie Wallenhammar¹, Alexander C. Espinosa³, Alexandra Ahlner¹, Adam R. Round^{5,6}, Jill Trewhella^{1,7}, Martin Moche⁸, Marie Wahren-Herlenius³ & Maria Sunnerhagen¹*

From the ¹Department of Physics, Chemistry and Biology, Division of Chemistry, Linköping University, SE-58183 Linköping, Sweden

³Unit of Experimental Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, 17176 Stockholm, Sweden

⁵European Molecular Biology Laboratory, Grenoble Outstation, 6 rue Jules Horowitz, 38042 Grenoble, France

⁷School of Life and Environmental Sciences (SoLES), The University of Sydney, NSW 2006, Australia

⁸ Department of Medical Biochemistry and Biophysics, Protein Science Facility, Karolinska Institutet, SE-17177 Stockholm, Sweden.

These authors contributed equally to this work.

²Present address: Medical Research Council, Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Ave., Cambridge CB2 0QH, UK

⁴Present address: Escuela de Medicina, Facultad de Ciencias de la Salud, Grupo de Investigación en Biotecnología Aplicada a Biomedicina (BIOMED), Universidad de Las Américas (UDLA), Quito, Ecuador

⁶ Present address: European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany

*To whom correspondence should be addressed: Maria Sunnerhagen, maria.sunnerhagen@liu.se

Figure S1. Intracellular localization of TRIM21 isoforms, UBE2D1 and UBE2E1 in HeLa cells.

(A) Intracellular localization of TRIM21 isoforms with UBE2D1 or UBE2E1 in HeLa cells. DAPI blue staining shows EGFP-TRIM21 mainly located in the cytoplasm and at low levels in the nucleus, whereas EGFP-TRIM21 β is located mainly in the nucleus. JRed-UBE2D1 localized to the cytoplasm as does EGFP-TRIM21, whereas JRed-UBE2E1 is almost exclusively localized in the nucleus, suggesting a possible co-localization with the EGFP-TRIM21 β isoform. Scale bar, 10 μ m. (B) Experimental controls: Transfection of HeLa cells with 500 ng of EGFP-C3 or Jred-C empty vectors resulted in an evenly distributed expression pattern of the fluorescent tags. Untransfected cells emitted no signal both in the green and the red spectra. Similar results were obtained with immunofluorescent staining of HeLa cells with PBS replacing the rabbit anti-human UBE2E1 antibody. (C) Combined ¹H and ¹⁵N CSPs of UBE2D1 upon TRIM21_R binding; solid/dashed lines and inset as in Figure. 1F. The E2 active site is highlighted (yellow sphere).

Figure S2. Structural assembly of the TRIM21_R-UBE2E1_C complex.

(A) Superpositions of $TRIM21_R$ -UBE2E1_C complete 2:2 complexes. (B) Superpositions of E2s on $TRIM21_R$ -UBE2E1_C and UBE2D1-Ub-TRIM25 complex (PDB ID 5FER). (C) UBE2E1_C (current study, grey) superimposed onto the core domain (residue 46-193) of full-length UBE2E1 (PDB ID 3BZH, magenta), resulting RMSD value of 0.44. The c-alpha residue of S42 is shown in both E2 structure in sphere highlighting the N-terminal variation.

Figure S3. Solution structure and interface of TRIM21R dimer. (A) Sequence and secondary structure in TRIM21R, together with sequence alignment to TRIM5, TRIM6, TRIM22, and TRIM34 (Chromosome 11), TRIM38 (Chromosome 6) and TRIM25 (Chromosome 17). The classic "RING" comprises residues 16-55 in TRIM21. are shown together with the alignment of TRIM proteins. (B) The TRIM21_R homodimer is shown, highlighting residues with reduced accessible surface according to VADAR analysis (Willard, 2003) (> 10%; annotated) and interfacial hydrogen bonds (hatched lines). A reciprocal interaction network across the TRIM21 interface involves Ser28/28'-Arg64'/64 (inset). (C) Analytical gel filtration chromatogram for TRIM21R at two different concentrations (200 µM and 20 µM) show the corresponding elution as a dimer (Table inset). Using the experimental standard plot (see Methods) the elution profiles of TRIM21R chromatogram corresponds to a molecular weight of 20.4 kDa, which corresponds well to that of a dimer (gel phase distribution coefficient, $K_{av} (0.28)$. (D) I(q) vs q as log-log plots show the flattening at low-q, indicating the data were measured to sufficiently low-q to characterise the longest dimensions in the sample which was free of non-specific aggregation. Symbols represent SAXSess data measured in buffer containing 10% glycerol; concentrations such as 1.5 mg/ml (green), 3.1 mg/ml (blue), 5 mg/ml (red) and 8.25 mg/ml (black), measured on the Anton Paar SAXSess benchtop instrument. The cyan line represents the averaged ESRF data, which is in excellent agreement with the averaged SAXSess data (symbol), showing excellent agreement between the two independent measurements. Inset showing Guinier plot is for the ESRF 1.5, 2.0, 2.55 mg/mL averaged data, starting at the minimum q specification for BL29 and extending to qRg = 1.3. The filled symbols with the red fitted line is the Guinier region and the open symbols show points beyond the Guinier region. The Pearson's R2 coefficient is 0.997 indicating a good linear fit. (E) Kratky plot for TRIM21_R subunit in solution, ESRF Averaged 1.5, 2.0, 2.55 mg/mL data show the initial bell shape characteristic of a folded protein with a strong upturn at high-q, indicating a portion of the structure is flexible. (F) P(r) versus r for TRIM21₁₋₉₁ in solution, SAXSess data averaged for 3.1, 5, 8.3 mg/mL was used given the significantly lower q_{min} for these data improved the reliability of the bead modelling.

Figure S4: HSQCs of ¹⁵N UBE2E1_{CS} **binding to unlabelled TRIM21**_R wt and mutants. (A) ¹H, ¹⁵N-TROSY-HSQC of ¹⁵N-UBE2E1_{CS} (blue spectrum), with assigned residues labelled. For all NMR analysis, a UBE2E1_{CS} construct containing a mutation of the active cysteine (C131S) was used. (B) ¹H, ¹⁵N-TROSY-HSQC of 15N-UBE2E1_{CS} + 2 equivalents of TRIM21_R (red spectrum), overlaid on the spectrum of 15N-UBE2E1_{CS} (blue). Residues affected by the interaction visibly show significant peak shifts; the less clear shifts highlighted with a straight indicator line. (C) Chemical shift perturbations (CSPs) fitted (black line) to calculate the apparent Kd (inserted). (D) CSPs of ¹⁵N UBE2E1_{CS} in presence of 2.0 eq TRIM21_R mutants R55A. (E) CSPs in titrations of 15N-UBE2E1_{CS} with the unlabeled TRIM21_R R55A mutant are shown for some residues. (F) CSPs of ¹⁵N UBE2E1_C in presence of 2.0 eq TRIM21_R mutants L20A. (G) Overlay of ¹⁵N UBE2E1_{CS} A142D in the absence (red)

or presence (magenta) of 2 molar equivalents of an unlabelled $TRIM21_R$ indicates no binding. See Methods for details. NMR analysis of ¹⁵N UBE2D1 WT and ¹⁵N UBE2E1_{CS} binding to unlabelled $TRIM21_R$ mutants. CSPs of ¹⁵N UBE2E1_{CS} in the presence of 2.0 eq unlabelled $TRIM21_R$ wild-type (black) as a function of sequence (black), together with CSPs of ¹⁵N UBE2E1_{CS} in presence of 2.0 eq $TRIM21_R$ mutants (red). The following $TRIM21_R$ mutants were analysed (**H**) a double mutant E12+13/K and (**I**) a R55K mutant.

Figure S5. E2-o-Ub oxyester hydrolysis assay

(A) TRIM21-mediated hydrolysis of UBE2E1_C (C131S)–Ub oxyester using wt and mutated TRIM21_R. No hydrolysis occurred in the absence of TRIM21_R, or in the presence of TRIM21_R with a mutated R55A "linchpin" residue, ensuring that the hydrolysis of the oxyester bond is completely dependent on the presence of an E3 catalytic element. (**B**) Reaction rates were calculated from the slopes of the linear phase showing the hydrolysis of E2~Ub oxyester band by fitting the quantified intensities as a function of time. The quantified intensities are averaged as the mean \pm s.d. of triplicate experiments. The sample without an E3 (TRIM21_R) was used as a standard and this correspond to the concentration of E2~Ub oxyester at the start of the reaction measured using UV absorbance at 280nm. (**C**) Coomasie-stained SDS-PAGE gels of the above oxyester conjugate and analysis of the respective TRIM21_R mutants at increasing time points. The variables are annotated in the SDS-PAGE gels.

The interactions between RING-type E3 ligases and the donor ubiquitin are shown in a series of RING-type E2-Ub-E3 ternary complexes displayed in similar orientations (Dou et al., 2013; 2012b; Koliopoulos et al., 2016; Plechanovová et al., 2012; Pruneda et al., 2012; Sanchez et al., 2016; Taherbhoy et al., 2015; PDB IDs as annotated). In each structure, contacting residues from E3 to donor Ub are shown in spheres and annotated.

Figure S7. Supporting data for Ub model and substrate complex

(A) Same as Supplementary Figure.1A, with the donor Ub (orange) modelled onto the E2 chain-N. The Ub model is obtained by superposition of E2's from the TRIM25-UbcH5-Ub to our structure of chain NEA, as in Figure. 3. The closed-state Ub can be modeled into the structure without clashes, together with the entire NEAF chain assembly, and in the same asymmetric unit. Together, this jointly supports that the crystal structure reflects the properties of a functionally relevant multidomain assembly rather than a collapsed aggregate of domains.

Composite omit 2fo-fc map are shown for UBE2E1-TRIM21 (**B**) and UBE2E1 only (**C**) structures, contoured at 1.2 sigma. This omit map figure is produced as similar to our Main Fig. 3B and 3F. A composite omit 2fo-fc map was made using phenix 1.13-2998 software (Afonine, P.V. et al. FEM: feature-enhanced map. Acta Crystallog r D Biol Crystallogr **71**, 646-66 (2015).

(**D**) UBE2E1_C-TRIM21_R complex (chains NEA) superimposed on the TRIM25(copper)-UBE2D1(gold)~Ub(brown) (PDB ID **5FER**) ternary complex by their respective E2 coordinates (C α RMSD of 0.54Å). Orientation as in (I). Black dashed lines indicate hydrogen bonds connecting TRIM25-R54 ("linchpin") to E2 and to the Ub c-terminal tail.

Table S1: List of C_α RMSDs to its relative chains and the complex that they form as indicated.

Superposition of the TRIM21_R-UBE2E1_C 2:2 complex (chains NEAK) onto the TRIM25-UBE2D1 crystal structure (PDB id: 5FER, Ub chain is removed). Supplementary Table 1 lists the corresponding RMSDs between protomers and assemblies described in Supplementary Fig.1a.

Main chain	Aligning chain	Ca RMSDs			
F2 chains:					
(146 residues are aligned)					
	F_2 chain LIK L M O	0.26+/-0.03			
	LIBE2E1c alone	0.38			
E2 (chain N)	(this study 51 BN)	0.50			
	(IIIS Study, SEDIA)				
	UBE2E1 _{full-length} (3BZH, residues 42-193)	0.46			
UBE2E1 _{core} alone	UBE2E1 _{full-length} (3BZH, residues 42-193)	0.47			
(this study,					
5LBN)					
RING dimers:		·			
(150 residues are a	ligned)				
RING chain EA RING chain FD,BC, HG 0.43+/-0.17					
Overall Cα RMSI	Ds for 2:2 complexes, E2-TRIM21 _R -E2:				
(401 residues are a	ligned)				
chain NEAK	chain MBCO	0.92			
	chain IFDL	1.2			
	5FER (UBE2D1-Ub-TRIM25), Ub				
	removed				
chain MBCO	chain IFDL	1.8			
E2 C RMSDs fo	r 1:2 complexes (E2-TRIM21 _R)	·			
(306 residues are aligned)					
chain NEA	chain LFD, IFD, KEA, JHG, OBC,	0.26+/-0.03			
	MBC				

Table S2: Interacting residues and hydrogen bond distance in the TRIM21_R-UBE2E1_C interface (chain NEA as in Main Fig. 1A). PDBePISA (Protein Interfaces, Surfaces and Assemblies) was used to identify the hydrogen bonds and calculate the distance.

UBE2E1 _C -TRIM21 _R interface (chain NE)				
Hydrogen Bonds	-			
N:ARG 51[NH1]	3.54	E:PRO 17[O]		
N:ARG 51[NH1]	2.49	E:ILE 18[O]		
N:LYS 54[NZ]	3.37	E:ILE 18[O]		
N:SER 140[OG]	2.72	E:PRO 52[O]		
N:ASN 138[OD1]	3.38	E:ARG 55[NE]		
N:ASN 138[O]	2.89	E:ARG 55[NH2]		
Salt Bridges				
N:LYS 54[NZ]	3.37	E:ASP 21[OD1]		
N:LYS 50[NZ]	3.61	E:ASP 21[OD2]		
TRIM21 _R homodimer interface	(chain EA)			
Hydrogen Bonds	Γ			
A:ASN 75[ND2]	3.45	E:MET 9[0]		
A:ASN 71[ND2]	2.96	E:GLU 13[OE1]		
A:ARG 64[NH1]	2.98	E:SER 28[0]		
A:ARG 64[NH1]	3.27	E:SER 28[OG]		
A:ARG 64[NH2]	2.68	E:ASN 62[0]		
A:ASN 66[ND2]	2.81	E:ASN 66[OD1]		
A:GLU 78[0]	3.28	E:ARG 6[NH1]		
A:GLU 82[OE2	2.53	E:ARG 6[NH1]		
A:GLU 78[0]	3.41	E:ARG 6[NH2]		
A:GLN 68[OE1]	3.59	E:SER 34[OG]		
A:SER 28[OG]	2.67	E:ARG 64[NH1]		
A:ASN 62[0]	2.80	E:ARG 64[NH2]		
A:ASN 66[0D1]	2.93	E:ASN 66[ND2]		
A:CYS 31[0]	3.20	E:ARG 67[NH2]		
A:GLU 13[OE1]	2.87	E:ASN 71[ND2]		
A:MET 9[0]	3.51	E:ASN 75[ND2]		
Salt Bridges				
A:ARG 64[NH2]	3.96	E:GLU 30[OE1]		
A:GLU 82[OE2]	2.53	E:ARG 6[NH1]		

Table S3. SAXS data acquisition, sample details and software employed.

(a) Data collection parameters				
Instrumentation	ESRF	Anton Paar SAXSess		
Beam geometry	$250 \ \mu m \times 150 \ \mu m$	10 mm line, AH=0.24, LH=0.12*		
q-range measured (Å ⁻¹)	0.02-0.5 Å ⁻¹	0.009-0.63		
Exposure time (seconds)	5 s x 10	4 x 15 min		
Temperature (°C)	20	20		

*Parameters input to GNOM for trapezoidal approximation for slit beam geometry

(b) Sample details

	TRIM21 _R			
Molar ratio in UBE2E1 _{core} :TRIM21 ₁ . 91 complex	-			
Contrast from sequence and solvent constituents ($\Delta \rho$, 10 ¹⁰ cm ⁻²)	3.078**			
Partial specific volume from sequence $(v, \text{ cm}^3 \text{ g}^{-1})$	0.721			
Molecular weight from sequence	10410 (monomer)			
** TRIM21- samples measured using the SAXSess included 10% glycerol i				

** TRIM21_R samples measured using the SAXSess included 10% glycerol in buffer

(c) Software employed for data reduction, analysis and interpretation

SAXS data reduction to $I(q) \vee q$	SAXSQuant (Anton Paar) for SAXSess and as described at ref 86
Calculation of M_r , $\Delta \rho$ and ϑ values from sequence	MULCh ⁸²
SAXS data processing and analysis: Guinier and $P(r)$	ATSAS 2.7.1 SAS Data Analysis ⁸³
ab initio bead modelling	DAMMIF ⁸⁵ (via ATSAS on-line)
Crystal structure fits to data	CRYSOL ⁸⁴
3D graphic model representations	PyMol Molecular Graphics System, Version 1.2r3pre (Schrödinger)

ESRF BL29 Data	29 Data SAXSess Data			
Guinier Analysis				
Protein concentration (mg/mL)	R_g (Å) for $qR_g < 1.3$	Molecular mass, M_r , from $I(0)$ values* (ratio to expected value for the monomer)	Protein concentration (mg/mL)	R_g (Å) for $qR_g <$ 1.3
1.5	19.6 ± 0.1	17121 (1.64)	1.5	19.4 ± 0.6
2.0	19.5 ± 0.1	18334 (1.76)	3.1	19.1 ± 0.7
2.55	19.9 ± 0.1	18344 (1.76)	5.0	18.4 ± 0.7
Average of 1.5, 2.0, 2.55	19.7 ± 0.4	-	8.3	19.2 ± 0.6
			Average of 3.1, 5.0, 8.3	18.8 ± 0.3
P(r) analysis				
Protein concentration (mg/mL)	$R_{g}(\mathrm{\AA})$	$d_{max}(\text{\AA})$	$R_{g}(\text{\AA})$	$d_{max}(\text{\AA})$
1.5	20.30 ± 0.02	80	$18.9 \pm .04$	60
2.0	20.49 ± 0.01	80	19.0 ± 0.04	57
2.55	20.68 ± 0.01	80	19.2 ± 0.03	60
Average of 1.5, 2.0, 2.55	20.54 ± 0.01	80	19.4 ± 0.04	60
			19.2 ± 0.03	62
* SAXSQuant desmeared data used for SAXSess analyses. Molecular weight values determined using				
$M_r = \frac{I \circ N_A}{c \rho_M^2}$ where N _A = Avogadro's number, C = protein concentration (g/mL), $\Delta \rho_M = \Delta \rho \vartheta$ and $\Delta \rho = $ contrast in cm ⁻² and ϑ = partial specific volume cm ³ /g				

Table S4. SAXS-derived structural parameters for $TRIM21_{\rm R}$

Table S5. List of the distances of acceptor residue to the active Cys for the known structures of E2-Ub/Ubl-E3-Substrate (PDB ids are annotated).

Structures* (PDB ID)	E3	E2	Substrate	Acceptor residue	Distance from acceptor amide to E2 active Cys
6FGA, this study	TRIM21	UBE2E1	TRIM21 _R	K61"	5.3 Å
6FGA, with modeled K61"	TRIM21	UBE2E1	TRIM21 _R	K61"	4.4 Å
5JNE	SIZ1	UBC9	PCNA	K164 (C in structure)	5.6 Å
2GRN	-	UBC9	RANGap1	K524	3.4 Å
4P5O	RBX1	UBC12	CUL1	K720 (R in structure)	5.25 Å

*Structures of E2s in complex with donor and acceptor Ub(K63) are not included.