Supplementary Information for

ORIGINAL ARTICLE

Development of the triazole-fused pyrimidine derivatives as highly potent and reversible inhibitors of histone lysine specific demethylase 1 (LSD1/KDM1A)

Zhonghua Li^{a,c,d,†}, Lina Ding^{a,c,d,†}, Zhongrui Li^{a,c,d,†}, Zhizheng Wang^{a,c,d}, Fengzhi Suo^{a,c,d}, Dandan Shen^{a,c,d}, Taoqian Zhao^{a,c,d}, Xudong Sun^{a,c,d}, Junwei Wang^{a,c,d}, Ying Liu^{a,c,d}, Liying Ma^{a,c,d}, Bing Zhao^{a,c,d}, Pengfei Geng^{a,c,d}, Bin Yu^{a,b,c,d,*}, Yichao Zheng^{a,c,d,*}, Hongmin Liu^{a,c,d,*}

^aSchool of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China

^bState key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China

^cCo-Innovation Center of Henan Province for New Drug R&D and Preclinical Safety, Zhengzhou 450001, China

^dKey Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001, China

*Corresponding authors.

E-mail addresses: <u>zzuyubin@hotmail.com</u> (Bin Yu); <u>yichaozheng@zzu.edu.cn</u>

(Yichao Zheng); <u>liuhm@zzu.edu.cn</u> (Hongmin Liu).

[†]These authors made equal contributions to this work.

Running title: Development of triazole-fused pyrimidine derivatives as inhibitors of LSD1/KDM1A

Table of Contents

1.	CoMFA model of LSD1 inhibitors	Page 2
2.	Table S1	Page 3
3.	Table S2	Page 3
4.	Figure S1	Page 4
5.	Table S3	Page 4
6.	Experimental section	Page 5
	6.1. 3D-QSAR Model Generation	Page 5
	6.2. Spectrum data of compounds	Page 6
Re	ference	Page 20
^{1}H	Page 21	

1. CoMFA Model of LSD1 Inhibitors. To further understand the structure requirement of LSD1 inhibition, we performed a 3D-QSAR study based on our synthesized compounds that the bioactivities were determined using CoMFA method in Sybyl-X 2.0. All the studied compounds were aligned based on the docking conformation of compound 15u and the result was shown in Fig. S1A. The partial least-squares (PLS) method was implemented to perform the CoMFA analyses, and the result was shown in Table S1. The CoMFA model had a leave-one-out cross-validated correlation coefficient q^2 of 0.641, an optimal number of components of 9, a non-cross-validated correlation coefficient r^2 of 0.987, a standard error of the estimate (SEE) of 0.108, an F value of 376.609, and a predictive correlation coefficient r_{pred}^2 of 0.809, indicating that this model has a great predictive ability¹. As shown in Fig. S1B and Table S2, the good linear relationships of experimental pIC_{50} and calculated $pIC_{\rm 50}$ further indicated that the generated CoMFA model would be suitable for the activity prediction. Moreover, we could see that the residual of experimental pIC_{50} and calculated pIC_{50} of all test set compounds were smaller than 0.5 logarithmic unit. The contour map of the CoMFA model was shown in Fig. S1C. The green and yellow regions represent the steric bulky groups favorable and unfavorable for the bioactivity, respectively. The red and blue areas indicate that adding the negatively or positively partial-charged groups would be good for increasing the bioactivity, individually. As shown in Fig. S1C, there was a green contour near R^2 group connecting to the triazole ring, indicating that adding steric larger group may increase the bioactivity. For example, compounds bearing the steric phenyl group (\mathbb{R}^2) had better binding affinity than other compounds with relatively smaller groups. A yellow area was near R^1 at position 2 of the pyrimidine ring, suggesting that bulky groups (\mathbf{R}^{1}) were unfavorable for the bioactivity, and compounds containing the linear propargyl group (\mathbf{R}^{1}) had better binding affinity than those with the phenyl group. Moreover, the red contour near the tetrazole ring implied that negatively charged group could increase the bioactivity. This could explain the importance of the tetrazole ring. Generally, the docking results and our CoMFA model could help us understand the binding modes and SARs of our synthesized compounds,

and would be useful for further inhibitor design.

CoMFA model
0.641
9
0.987
0.108
376.609
0.809
0.466
0.534

2. Table S1 Statistical results of the CoMFA model.

^aAbbreviations used: q^2 , leave-one-out cross-validated correlation coefficient; ONC, optimal number of components; r^2 , non-cross-validated correlation coefficient; SEE, standard error of the estimate; r^2_{pred} , a predictive correlation coefficient.

3. Table S2 Experimental pIC_{50} , calculated pIC_{50} , and their residuals of the studied compounds based on our CoMFA model.

Comnd	Exptl	Caled pIC-	Residual	Compd. $\frac{\text{Exptl}}{\text{pIC}_{50}}$	Exptl	Calcd.	Residual	
Compu.	pIC ₅₀	Calco .piC ₅₀	Residual		pIC ₅₀	Residual		
Training set of compounds								
8a	5.405	5.414	0.009	15 l	6.604	6.657	0.053	
8b	5.580	5.592	0.012	15m	6.259	6.254	-0.005	
8e	5.979	5.970	-0.009	15p	7.097	7.087	-0.010	
8f	5.677	5.694	0.017	15r	6.742	6.744	0.002	
8h	5.987	5.982	-0.005	15s	6.996	7.006	0.010	
8j	6.223	6.207	-0.016	15u	7.310	7.286	-0.024	
8k	6.072	6.064	-0.008	15v	7.131	7.154	0.023	
15b	6.470	6.457	-0.013	15w	7.032	7.013	-0.019	
15c	6.333	6.334	0.001	15y	6.867	6.869	0.002	
15e	5.682	5.574	-0.108	15z	6.521	6.522	0.001	
15f	6.597	6.587	-0.010	15ab	7.137	7.159	0.022	
15g	6.836	6.854	0.018	15ac	6.638	6.631	-0.007	
15h	6.676	6.664	-0.012	15ad	6.117	6.118	0.001	
15i	6.801	6.798	-0.003	15af	6.316	6.304	-0.012	
15j	6.545	6.616	0.071	15ah	6.830	6.816	-0.014	
15k	6.733	6.663	-0.070	15ai	6.896	6.895	-0.001	
Test set of	f compound	s						
8c	5.051	5.312	0.261	15t	6.839	6.761	-0.078	
8g	5.596	5.852	0.256	15x	7.260	7.036	-0.224	
15 a	6.347	6.318	-0.029	15 aa	6.386	6.483	0.097	
15d	6.384	6.294	-0.090	15ae	6.014	6.274	0.260	
15n	6.447	6.346	-0.101	15ag	5.753	5.986	0.233	
15q	6.622	6.441	-0.181					

4. Figure S1 (A) Structural alignment based on the conformation of the compound **15u**. (B) Plots of experimental versus predicted pIC_{50} values of compounds in both training and test sets for the CoMFA model. (C) CoMFA contour map with compound **15u**. Bulky group favored (contribution level of 90%) and disfavored (contribution level of 10%) areas are in green and yellow, respectively. Positively partial-charged favored (contribution level of 90%) and disfavored (contribution level of 10%) areas are in green and yellow, respectively. Positively partial-charged favored (contribution level of 90%) and disfavored (contribution level of 10%) areas are in blue and red, respectively.

Kinase	IC ₅₀ (nmol/L)			
BTK	100.4			
CDK1	2.4			
CDK2	1.0			
CDK4	26.9			
CDK6	132.9			
CDK7	71.9			
CDK9	16.7			

5. Table S3 Inhibitory effect of staurosporine on BTK and CDKs.

6. Experimental section

6.1. 3D-QSAR Model Generation

The 3D-QSAR study was carried out by generating the CoMFA model of our developed 43 pyrimidine-triazole derivatives in Sybyl-X 2.0. All the compounds were randomly divided into a training set composed of 32 compounds and a test set containing another 11 ligands for the examination of the generated 3D-QSAR model. The conformation of each compound was taken from the result of our docking simulations and then structural superimposition was implemented based on the core ring of pyrimidine-triazole using the conformation of the compound 15u as a template. The IC₅₀ values of compounds in both training and test sets were converted to pIC_{50} (-logIC₅₀) values as dependent variables in the CoMFA studies. All the aligned molecules were placed in a rectangular box and an sp^3 -hybridized carbon probe atom with a van der Waal's radius of 1.52 Å as well as a charge of +1 was used for the calculation of the steric and electrostatic fields of CoMFA, and grid spacing was set to 2.0 Å. Steric and electrostatic contributions were truncated at 30 kcal/mol. The dielectric constant was applied with distance dependence. The partial least-squares (PLS) analyses were performed with the training set of compounds using leave-one-out(LOO) cross-validation while the optimum number of components set as 10. With the purpose of reducing the noise, the minimum column filtering σ value was set as 2.0 kcal/mol. The q^2 and ONC values were calculated and given by the software automatically. Subsequently, the non-cross-validated analyses were performed with the optimum number of components determined in the cross-validation to develop the final model. A series statistical results were obtained to confirm the reliability of our 3D-QSAR model. Then the CoMFA model was further tested by predicting the bioactivities of the compounds in the test set. Predictive ability of the model could also be evaluated by forecasting the activity of an external test set of molecules using the models derived from the training set. Predictive correlation coefficient (r_{pred}^2) was calculated by the following formula¹ ($r^2_{pred} = (SD-PRESS)/SD$), where SD was the sum of squared deviations between the biological activities of the test set molecules

and the meanactivity of the training set molecules, while PRESS was the sum of squared deviations between the observed

6.2. Spectrum data of compounds

6.2.1.

2-(5-(*Propylthio*)-7-(*pyridin*-2-*ylthio*)-3*H*-[1,2,3]*triazolo*[4,5-*d*]*pyrimidin*-3-*yl*)*ethan*-1-ol (**8b**). Yellow sticky oil. ¹H NMR (400 MHz, CDCl₃) δ 8.68–8.69 (m, 1H), 7.80–7.82 (m, 2H), 7.38–7.42 (m, 1H), 4.71–4.74 (t, *J*=5.0 Hz, 2H), 4.16–4.18 (t, *J*=5.0 Hz, 2H), 2.84–2.87 (t, *J*=7.2 Hz, 2H), 1.52–1.61 (m, 2H), 0.90–0.93 (t, *J*=7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.5, 163.7, 150.8, 150.0, 148.9, 137.3, 131.7, 131.4, 124.2, 60.7, 50.4, 33.4, 22.3, 13.3. HR-MS (ESI): Calcd. C₁₄H₁₆N₆OS₂, [M+H]⁺: 349.0905, Found: 349.0902.

6.2.2.

2-(5-(*Propylthio*)-7-(*pyrimidin*-2-ylthio)-3*H*-[1,2,3]triazolo[4,5-d]pyrimidin-3-yl)etha n-1-ol (8c). Pale yellow solid, m.p. 70–71 °C, yield 69%. ¹H NMR (400 MHz, DMSO-d₆) δ 8.85 (d, J=4.9 Hz, 2H), 7.58–7.60 (t, J=4.9 Hz, 1H), 4.97–5.00 (t, J=5.8 Hz, 1H), 4.62–4.65 (t, J=5.4 Hz, 2H), 3.91–3.95 (m, 2H), 3.00–3.04 (t, J=7.0 Hz, 2H), 1.58–1.67 (m, 2H), 0.91–0.95 (t, J=7.4 Hz, 3H). ¹³C NMR (100 MHz, DMSO-d₆) δ 169.5, 165.2, 160.8, 159.5, 149.9, 132.7, 121.3, 59.2, 50.3, 33.1, 22.4, 13.6. HR-MS (ESI): Calcd. C₁₃H₁₅N₇OS₂, [M+Na]⁺: 372.0677, Found: 372.0677.

6.2.3.

2-(5-(*Propylthio*)-7-(*p*-tolylthio)-3*H*-[1,2,3]triazolo[4,5-d]pyrimidin-3-yl)ethan-1-ol (8d). Orange solid, m.p. 107–108 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.50–7.52 (d, *J*=8.4 Hz, 2H), 7.27–7.29 (d, *J*=8.0 Hz, 2H), 4.72–4.74 (t, *J*=4.8 Hz, 2H), 4.14–4.18 (m, 2H), 3.34–3.37 (t, *J*=6.6 Hz, 1H), 2.75–2.79 (t, *J*=7.2 Hz, 2H), 2.43 (s, 3H), 1.43–1.49 (m, 2H), 0.82–0.86 (t, *J*=7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.3, 165.1, 148.7, 140.4, 136.0, 131.6, 130.2, 122.0, 60.8, 50.6, 33.4, 22.5, 21.4, 13.3. HR-MS (ESI): Calcd. C₁₆H₁₉N₅OS₂, [M+Na]⁺: 384.0929, Found: 384.0931.

6.2.4.

2-(7-((1,3,4-Thiadiazol-2-yl)thio)-5-(propylthio)-3H-[1,2,3]triazolo[4,5-d]pyrimidin-3-yl)ethan-1-ol (8e). White solid, m.p. 149–150 °C, yield 75%. ¹H NMR (400 MHz, DMSO- d_6) δ 9.96 (s, 1H), 4.94–4.97 (t, J=6.0 Hz, 1H), 4.65–4.67 (t, J=5.4 Hz, 2H), 3.92–3.96 (m, 2H), 3.03–3.07 (t, J=7.2 Hz, 2H), 1.58–1.67 (m, 2H), 0.93–0.97 (t, J=7.3 Hz, 3H). ¹³C NMR (100 MHz, DMSO- d_6) δ 169.5, 159.4, 158.0, 155.1, 149.6, 131.2, 59.3, 50.4, 33.1, 22.4, 13.6. HR-MS (ESI): Calcd. C₁₁H₁₃N₇OS₃, [M+Na]⁺: 378.0241, Found: 378.0241.

6.2.5.

2-(7-((4-Amino-1,2,3-thiadiazol-5-yl)thio)-5-(propylthio)-3H-[1,2,3]triazolo[4,5-d]py rimidin-3-yl)ethan-1-ol (**8***f*). Pale yellow solid, m.p. 163–164 °C, yield 79%. ¹H NMR (400 MHz, DMSO- d_6) δ 7.79 (s, 2H), 4.90–4.93 (t, J=5.9 Hz, 1H), 4.63 (t, J=5.4 Hz, 2H), 3.90–3.94 (m, 2H), 3.03–3.07 (t, J=7.2 Hz, 2H), 1.58–1.67 (m, 2H), 0.94–0.97 (t, J=7.3 Hz, 3H). ¹³C NMR (100 MHz, DMSO- d_6) δ 173.6, 168.9, 160.3, 149.1, 138.4, 130.8, 58.8, 49.8, 32.8, 22.1, 13.1. HR-MS (ESI): Calcd. C₁₁H₁₄N₈OS₃, [M+H]⁺: 371.0531, Found: 371.0530.

6.2.6.

2-(7-(*Benzo[d]oxazol-2-ylthio*)-5-(*propylthio*)-3*H*-[1,2,3]triazolo[4,5-d]pyrimidin-3-y l)ethan-1-ol (**8**g). Pale yellow solid, m.p. 86–88 °C, yield 85%. ¹H NMR (400 MHz, DMSO- d_6) δ 7.92–7.94 (m, 1H), 7.85–7.88 (m, 1H), 7.56–7.60 (m, 1H), 7.50–7.54 (m, 1H), 4.95 (br, 1H), 4.61–4.63 (t, J=5.4 Hz, 2H), 3.89–3.92 (m, 2H), 2.76–2.79 (t, J=7.2 Hz, 2H), 1.33–1.42 (m, 2H), 0.67–0.71 (t, J=7.4 Hz, 3H). ¹³C NMR (100 MHz, DMSO- d_6) δ 169.5, 160.0, 153.7, 152.8, 149.9, 141.8, 131.4, 127.5, 125.8, 120.9, 111.7, 59.2, 50.3, 33.1, 22.1, 13.2. HR-MS (ESI): Calcd. C₁₆H₁₆N₆O₂S₂, [M+Na]⁺: 411.0674, Found: 411.0675.

6.2.7.

2-(5-(*Propylthio*)-7-(*thiazol-2-ylthio*)-3*H*-[1,2,3]*triazolo*[4,5-*d*]*pyrimidin-3-yl*)-*ethan-1-ol* (*8h*). White solid, m.p. 125–126 °C, yield 76%. ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, *J*=3.4 Hz, 1H), 7.68 (d, *J*=3.4 Hz, 1H), 4.74–4.77 (t, *J*=4.8 Hz, 2H), 4.17–4.21 (m, 2H), 2.96–3.00 (m, 3H), 1.62–1.71 (m, 2H), 0.98–1.02 (t, *J*=7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.3, 160.7, 152.0, 149.2, 143.6, 131.0, 125.0, 60.0, 49.9, 33.3, 22.2, 13.4. HR-MS (ESI): Calcd. C₁₂H₁₄N₆OS₃, [M+H]⁺: 355.0469, Found: 355.0458.

6.2.8.

2-(7-((1-Methyl-1H-imidazol-2-yl)thio)-5-(propylthio)-3H-[1,2,3]triazolo[4,5-d]-pyri midin-3-yl)ethan-1-ol (**8i**). Light yellow solid, m.p. 161–162 °C, yield 70%. ¹H NMR (400 MHz, CDCl₃) δ 7.29 (d, J=1.2 Hz, 1H), 7.25 (d, J=1.3 Hz, 1H), 4.71–4.73 (t, J=5.0 Hz, 2H), 4.17 (m, 2H), 3.73 (s, 3H), 2.89–2.93 (m, 2H), 1.59–1.65 (m, 2H), 0.97–1.00 (t, J=7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 174.9, 167.4, 154.2, 136.3, 136.1, 135.7, 130.0, 64.6, 54.5, 38.8, 38.2, 27.0, 18.1. HR-MS (ESI): Calcd. C₁₃H₁₇N₇OS₂, [M+H]⁺: 352.1014, Found: 352.1002.

6.2.9.

2-(7-((1-Methyl-1H-tetrazol-5-yl)thio)-5-(propylthio)-3H-[1,2,3]triazolo[4,5-d]-pyri midin-3-yl)ethan-1-ol (**8***j*). White solid, m.p. 102–103 °C, yield 71%. ¹H NMR (400 MHz, DMSO- d_6) δ 4.93–4.96 (t, *J*=5.8 Hz, 1H), 4.62–4.65 (t, *J*=5.4 Hz, 2H), 4.12 (s, 3H), 3.89–3.93 (m, 2H), 2.85–2.88 (t, *J*=7.2 Hz, 2H), 1.48–1.57 (m, 2H), 0.90–0.94 (t, *J*=7.3 Hz, 3H). ¹³C NMR (100 MHz, DMSO- d_6) δ 169.5, 158.7, 149.9, 145.9, 131.5, 59.2, 50.3, 35.2, 33.1, 22.4, 13.5. HR-MS (ESI): Calcd. C₁₁H₁₅N₉OS₂, [M+Na]⁺: 376.0739, Found: 376.0741.

6.2.10.

2-(7-(Benzo[d]thiazol-2-ylthio)-5-(propylthio)-3H-[1,2,3]triazolo[4,5-d]pyrimidin-3yl)ethan-1-ol (8k). White solid, m.p. 154–155 °C, yield 82%. ¹H NMR (400 MHz, DMSO- d_6) δ 8.23–8.25 (m, 1H), 8.10–8.12 (m, 1H), 7.55–7.63 (m, 2H), 4.95–4.98 (t, J=5.8 Hz, 1H), 4.64–4.67 (t, J=5.4 Hz, 2H), 3.92–3.96 (m, 2H), 2.95–2.99 (t, J=7.2 Hz, 2H), 1.48–1.57 (m, 2H), 0.77–0.80 (t, J=7.4 Hz, 3H). ¹³C NMR (100 MHz, DMSO- d_6) δ 169.4, 159.1, 155.2, 152.1, 149.5, 137.3, 131.1, 127.3, 126.7, 123.4, 122.6, 59.3, 50.4, 33.1, 22.3, 13.4. HR-MS (ESI): Calcd. C₁₆H₁₆N₆OS₃, [M+Na]⁺: 427.0445, Found: 427.0445.

6.2.11.

2-(2-(7-(*Benzo[d]thiazol-2-ylthio*)-5-(*propylthio*)-3*H*-[1,2,3]triazolo[4,5-d]pyrimidin-3-yl)ethoxy)ethan-1-ol (8l). White solid, m.p. 114–115 °C, yield 75%. ¹H NMR (400 MHz, CDCl₃) δ 8.08–8.10 (m, 1H), 7.91–7.97 (m, 1H), 7.52–7.56 (m, 1H), 7.45–7.49 (m, 1H), 4.78–4.81 (t, *J*=5.2 Hz, 2H), 4.03–4.06 (t, *J*=5.2 Hz, 2H), 3.65 (m, 2H), 3.58–3.60 (t, *J*=4.2 Hz, 2H), 2.91–2.95 (t, *J*=7.4 Hz, 2H), 1.50–1.59 (m, 2H), 0.80–0.84 (t, *J*=7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.8, 160.2, 155.2, 152.2, 149.2, 137.4, 131.1, 126.6, 126.0, 123.5, 121.3, 72.6, 68.7, 61.6, 46.9, 33.5, 22.2, 13.2. HR-MS (ESI): Calcd. C₁₈H₂₀N₆O₂S₃, [M+H]⁺: 449.0888, Found: 449.0887.

6.2.12.

3-(*Furan-2-ylmethyl*)-7-((*1-methyl-1H-tetrazol-5-yl*)*thio*)-5-(*propylthio*)-3*H*-[*1*,2,3]*tri azolo-*[*4*,5-*d*]*pyrimidine* (**15***a*). Pale yellow solid, m.p. 136–137 °C, yield 81%. ¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, *J*=1.9 Hz, 1H), 6.51 (d, *J*=3.3 Hz, 1H), 6.35 (m, 1H), 5.74 (s, 2H), 4.13 (s, 3H), 2.91–2.94 (t, *J*=7.2 Hz, 2H), 1.60–1.69 (m, 2H), 0.99–1.03 (t, *J*=7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.4, 158.0, 149.2, 146.8, 145.0, 143.5, 131.1, 110.8, 110.5, 43.4, 34.8, 33.5, 22.1, 13.4. HR-MS (ESI): Calcd. C₁₄H₁₅N₉OS₂, [M+Na]⁺: 412.0739, Found: 412.0738.

6.2.13.

7-((1-Methyl-1H-tetrazol-5-yl)thio)-5-(propylthio)-3-(2-(thiophen-2-yl)ethyl)-3H-[1,2, 3]triazolo[4,5-d]pyrimidine (15b). White solid, m.p. 123–124 °C, yield 76%. ¹H

NMR (400 MHz, CDCl₃) δ 7.14 (m, 1H), 6.87–6.89 (m, 1H), 6.76 (d, *J*=3.1 Hz, 1H), 4.83–4.86 (t, *J*=7.2 Hz, 2H), 4.14 (s, 3H), 3.55–3.59 (t, *J*=7.2 Hz, 2H), 2.87–2.91 (t, *J*=7.2 Hz, 2H), 1.59–1.65 (m, 2H), 0.99–1.02 (t, *J*=7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.2, 157.9, 149.4, 145.1, 138.3, 131.0, 127.1, 126.1, 124.7, 48.4, 34.8, 33.5, 29.6, 22.2, 13.4. HR-MS (ESI): Calcd. C₁₅H₁₇N₉S₃, [M+Na]⁺: 442.0667, Found: 442.0664.

6.2.14.

3-Isobutyl-7-((1-methyl-1H-tetrazol-5-yl)thio)-5-(propylthio)-3H-[1,2,3]triazolo[4,5d]pyrimidine (15c). White solid, m.p. 91–92 °C, yield 85%. ¹H NMR (400 MHz, CDCl₃) δ 4.39–4.41 (d, J=7.2 Hz, 2H), 4.16 (s, 3H), 2.89–2.92 (t, J=7.2 Hz, 2H), 2.39–2.45 (m, 1H), 1.59–1.68 (m, 2H), 0.97–1.02 (m, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 171.0, 157.9, 149.6, 145.1, 131.0, 54.3, 34.8, 33.5, 29.1, 22.2, 20.0, 13.3. HR-MS (ESI): Calcd. C₁₃H₁₉N₉S₂, [M+Na]⁺: 388.1103, Found: 388.1105.

6.2.15.

3-Cyclopentyl-7-((1-methyl-1H-tetrazol-5-yl)thio)-5-(propylthio)-3H-[1,2,3]triazolo[4,5-d]pyrimidine (**15d**). White solid, m.p. 93–95 °C, yield 83%. ¹H NMR (400 MHz, CDCl₃) δ 5.23–5.30 (m, 1H), 4.15 (s, 3H), 2.90–2.94 (t, *J*=7.2 Hz, 2H), 2.25–2.30 (m, 4H), 1.99–2.09 (m, 2H), 1.77–1.86 (m, 2H), 1.60–1.67 (m, 2H), 0.99–1.02 (t, *J*=7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.4, 157.8, 148.9, 145.2, 131.5, 59.8, 34.8, 33.5, 32.5, 24.6, 22.2, 13.3. HR-MS (ESI): Calcd. C₁₄H₁₉N₉S₂, [M+Na]⁺: 400.1103, Found: 400.1104.

6.2.16.

4-(3-(7-((1-Methyl-1H-tetrazol-5-yl)thio)-5-(propylthio)-3H-[1,2,3]triazolo[4,5-d]pyr imidin-3-yl)propyl)morpholine (**15e**). Pale yellow oil, yield 68%. ¹H NMR (400 MHz, CDCl₃) δ 4.02–4.04 (t, J=4.9 Hz, 4H), 3.92 (s, 3H), 3.62–3.65 (t, J=5.8 Hz, 2H), 3.31–3.35 (t, J=7.0 Hz, 2H), 3.26 (br, 4H), 3.01–3.05 (t, J=7.2 Hz, 2H), 2.16–2.22 (m, 2H), 1.70–1.75 (m, 2H), 1.00–1.03 (t, J=7.3 Hz, 3H). ¹³C NMR (100 MHz, DMSO-d₆) δ 166.5, 155.4, 152.6, 137.6, 120.0, 64.3, 54.7, 51.9, 38.4, 32.7, 32.1, 23.8, 22.6, 13.3. HR-MS (ESI): Calcd. C₁₆H₂₄N₁₀OS₂, [M+H]⁺: 437.1654, Found: 437.1635.

6.2.17.

3-(2-(1*H*-indol-3-yl)ethyl)-7-((1-methyl-1*H*-tetrazol-5-yl)thio)-5-(propylthio)-3*H*-[1,2, 3]triazolo[4,5-d]pyrimidine (**15f**). Yellow solid, m.p. 131–132 °C, yield 75%. ¹H NMR (400 MHz, CDCl₃) δ 7.99 (br, 1H), 7.54 (d, *J*=7.9 Hz, 1H), 7.34 (d, *J*=8.2 Hz, 1H), 7.18–7.21 (m, 1H), 7.09–7.13 (m, 1H), 6.91 (d, *J*=2.4 Hz, 1H), 4.87–4.91 (t, *J*=7.3 Hz, 2H), 4.10 (s, 3H), 3.45–3.49 (t, *J*=7.2 Hz, 2H), 2.75–2.78 (t, *J*=7.2 Hz, 2H), 1.52–1.60 (m, 2H), 0.96–0.99 (t, *J*=7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.9, 157.7, 149.4, 145.2, 136.2, 131.0, 127.0, 122.4, 122.3, 119.6, 118.1, 111.3, 110.9, 60.4, 47.7, 34.8, 33.4, 22.0, 13.4. HR-MS (ESI): Calcd. C₁₉H₂₀N₁₀S₂, [M+Na]⁺: 475.1212, Found: 475.1210.

6.2.18.

7-((1-Methyl-1H-tetrazol-5-yl)thio)-3-(3-phenylpropyl)-5-(propylthio)-3H-[1,2,3]triaz olo[4,5-d]pyrimidine (**15g**). Yellow semi-solid, yield 68%. ¹H NMR (400 MHz, CDCl₃) δ 7.24–7.28 (m, 2H), 7.13–7.20 (m, 3H), 4.58–4.62 (t, J=7.0 Hz, 2H), 4.14 (s, 3H), 2.87–2.91 (t, J=7.2 Hz, 2H), 2.67–2.71 (t, J=7.4 Hz, 2H), 2.34–2.41 (m, 2H), 1.58–1.67 (m, 2H), 0.98–1.01 (t, J=7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.9, 157.9, 149.4, 145.1, 139.9, 131.1, 128.5, 128.3, 126.3, 46.7, 34.8, 33.5, 32.7, 30.4, 22.2, 13.3. HR-MS (ESI): Calcd. C₁₈H₂₁N₉S₂, [M+H]⁺: 428.1440, Found: 428.1428.

6.2.19.

3-Benzyl-7-((1-methyl-1H-tetrazol-5-yl)thio)-5-(propylthio)-3H-[1,2,3]triazolo[4,5-d] pyrimidine (**15h**). White solid, m.p. 114–115 °C, yield 82%. ¹H NMR (400 MHz, CDCl₃) δ 7.44–7.46 (m, 2H), 7.34–7.39 (m, 3H), 5.75 (s, 2H), 4.14 (s, 3H), 2.92–2.95 (t, *J*=7.2 Hz, 2H), 1.60–1.67 (m, 2H), 1.01–1.04 (t, *J*=7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.3, 158.0, 149.2, 145.1, 134.1, 131.2, 129.0, 128.9, 128.6, 51.0,

34.8, 33.5, 22.2, 13.4. HR-MS (ESI): Calcd. C₁₆H₁₇N₉S₂, [M+Na]⁺: 422.0946, Found: 422.0945.

6.2.20.

3-(2-Chlorobenzyl)-7-((1-methyl-1H-tetrazol-5-yl)thio)-5-(propylthio)-3H-[1,2,3]triaz olo[4,5-d]pyrimidine (**15i**). White solid, m.p. 122–123 °C, yield 78%. ¹H NMR (400 MHz, CDCl₃) δ 7.41–7.43 (m, 1H), 7.28–7.32 (m, 1H), 7.21–7.25 (m, 2H), 5.88 (s, 2H), 4.14 (s, 3H), 2.90–2.93 (t, *J*=7.4 Hz, 2H), 1.59–1.66 (m, 2H), 0.97–1.01 (t, *J*=7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.5, 158.1, 149.4, 145.0, 133.7, 131.6, 131.0, 130.5, 130.2, 130.0, 127.3, 48.2, 34.8, 33.5, 22.1, 13.4. HR-MS (ESI): Calcd. C₁₆H₁₆ClN₉S₂, [M+Na]⁺: 456.0556, Found: 456.0556.

6.2.21.

3-(3-Chlorobenzyl)-7-((1-methyl-1H-tetrazol-5-yl)thio)-5-(propylthio)-3H-[1,2,3]triaz olo[4,5-d]pyrimidine (**15***j*). White solid, m.p. 97–98 °C, yield 75%. ¹H NMR (400 MHz, CDCl₃) δ 7.43(m, 1H), 7.27–7.33 (m, 3H), 5.71 (s, 2H), 4.13 (s, 3H), 2.91–2.95 (t, *J*=7.4 Hz, 2H), 1.60–1.69 (m, 2H), 0.99–1.03 (t, *J*=7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.5, 158.1, 149.1, 145.0, 135.8, 134.8, 131.2, 130.3, 129.1, 128.7, 126.7, 50.2, 34.9, 33.6, 22.1, 13.4. HR-MS (ESI): Calcd. C₁₆H₁₆ClN₉S₂, [M+Na]⁺: 456.0556, Found: 456.0559.

6.2.22.

3-(4-Chlorobenzyl)-7-((1-methyl-1H-tetrazol-5-yl)thio)-5-(propylthio)-3H-[1,2,3]triaz olo[4, 5-d]pyrimidine (**15k**). White solid, m.p. 130–131 °C, yield 81%. ¹H NMR (400 MHz, CDCl₃) δ 7.37–7.39 (m, 2H), 7.31–7.33 (m, 2H), 5.70 (s, 2H), 4.12 (s, 3H), 2.88–2.92 (t, *J*=7.2 Hz, 2H), 1.59–1.65 (m, 2H), 0.99–1.03 (t, *J*=7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.5, 158.1, 149.1, 144.9, 135.0, 132.4, 131.2, 130.0, 129.2, 50.2, 34.8, 33.5, 22.1, 13.4. HR-MS (ESI): Calcd. C₁₆H₁₆ClN₉S₂, [M+Na]⁺: 456.0556, Found: 456.0555.

6.2.23.

3-(4-Bromobenzyl)-7-((1-methyl-1H-tetrazol-5-yl)thio)-5-(propylthio)-3H-[1,2,3]triaz olo[4, 5-d]pyrimidine (15l). White solid, m.p. 133–134 °C, yield 78%. ¹H NMR (400 MHz, CDCl₃) δ 7.46–7.50 (m, 2H), 7.30–7.33 (m, 2H), 5.68 (s, 2H), 4.12 (s, 3H), 2.88-2.92 (t, *J*=7.2 Hz, 2H), 1.59–1.65 (m, 2H), 0.99–1.02 (t, *J*=7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.5, 158.1, 149.1, 145.0, 132.9, 132.2, 131.2, 130.3, 123.1, 50.3, 34.8, 33.6, 22.2, 13.4. HR-MS (ESI): Calcd. C₁₆H₁₆BrN₉S₂, [M+Na]⁺: 500.0051, Found: 500.0052.

6.2.24.

5-(*Benzylthio*)-3-(4-bromobenzyl)-7-((1-methyl-1H-tetrazol-5-yl)thio)-3H-[1,2,3]triaz olo[4, 5-d]pyrimidine (**15m**). Pale yellow solid, m.p. 157–158 °C, yield 75%. ¹H NMR (400 MHz, DMSO- d_6) δ 7.54–7.56 (m, 2H), 7.24–7.33 (m, 7H), 5.85 (s, 2H), 4.27 (s, 2H), 4.07 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.5, 158.4, 149.0, 144.9, 136.0, 132.9, 132.1, 131.1, 130.1, 128.6, 128.6, 127.5, 122.9, 50.1, 35.7, 34.8. HR-MS (ESI): Calcd. C₂₀H₁₆BrN₉S₂, [M+K]⁺: 563.9791, Found: 563.9789.

6.2.25.

5-(*Benzylthio*)-3-(4-chlorobenzyl)-7-((1-methyl-1H-tetrazol-5-yl)thio)-3H-[1,2,3]triaz olo[4,5-d]pyrimidine (**15n**). Pale yellow solid, m.p. 133–134 °C, yield 75%. ¹H NMR (400 MHz, CDCl₃) δ 7.27–7.33 (m, 9H), 5.70 (s, 2H), 4.24 (s, 2H), 4.06 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.7, 158.5, 149.0, 144.9, 136.1, 134.9, 132.4, 131.3, 129.9, 129.3, 128.7, 127.6, 50.2, 35.8, 34.8. HR-MS (ESI): Calcd. C₂₀H₁₆ClN₉S₂, [M+Na]⁺: 504.0556, Found: 504.0555.

6.2.26.

5-(*Benzylthio*)-3-(2-chlorobenzyl)-7-((1-methyl-1H-tetrazol-5-yl)thio)-3H-[1,2,3]triaz olo[4, 5-d]pyrimidine (**15o**). Light yellow solid, m.p. 143–144 °C, yield 71%. ¹H NMR (400 MHz, CDCl₃) δ 7.42–7.44 (m, 1H), 7.29–7.32 (m, 3H), 7.20–7.24 (m, 4H), 7.15–7.17 (m, 1H), 5.89 (s, 2H), 4.23 (s, 2H), 4.08 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.7, 158.5, 149.4, 145.0, 136.2, 133.6, 131.6, 131.1, 130.2, 130.0, 128.8, 128.6, 127.5, 127.4, 48.2, 35.8, 34.8. HR-MS (ESI): Calcd. C₂₀H₁₆ClN₉S₂, [M+Na]⁺: 504.0556, Found: 504.0558.

6.2.27.

3-(2-Chlorobenzyl)-7-((1-methyl-1H-tetrazol-5-yl)thio)-5-(methylthio)-3H-[1,2,3]tria zolo[4,5-d]pyrimidine (**15***p*). White solid, m.p. 165–166 °C, yield 78%. ¹H NMR (400 MHz, DMSO- d_6) δ 7.51–7.53 (m, 1H), 7.34–7.43 (m, 3H), 5.91 (s, 2H), 4.10 (s, 3H), 2.34 (s, 3H). ¹³C NMR (100 MHz, DMSO- d_6) δ 169.9, 158.6, 149.0, 145.4, 132.8, 131.9, 131.3, 130.8, 130.4, 129.6, 127.6, 47.9, 34.7, 13.9. HR-MS (ESI): Calcd. C₁₄H₁₂ClN₉S₂, [M+Na]⁺: 428.0243, Found: 428.0243.

6.2.28.

3-(2-Chlorobenzyl)-5-methyl-7-((1-methyl-1H-tetrazol-5-yl)thio)-3H-[1,2,3]triazolo[4 ,5-d]pyrimidine (**15***q*). Light yellow solid, m.p. 141–142 °C, yield 80%. ¹H NMR (400 MHz, CDCl₃) δ 7.42–7.44 (m, 1H), 7.27–7.32 (m, 1H), 7.21–7.25 (m, 1H), 7.12–7.15 (m, 1H), 5.93 (s, 2H), 4.16 (s, 3H), 2.65 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 166.5, 158.3, 149.5, 145.3, 133.5, 131.8, 131.6, 130.1, 130.0, 129.9, 127.3, 48.1, 34.8, 26.1. HR-MS (ESI): Calcd. C₁₄H₁₂ClN₉S, [M+H]⁺: 374.0703, Found: 374.0692.

6.2.29.

3-(2-Chlorobenzyl)-7-((1-methyl-1H-tetrazol-5-yl)thio)-3H-[1,2,3]triazolo[4,5-d]pyri midine (15r). White solid, m.p. 166–168 °C, yield 85%. ¹H NMR (400 MHz, CDCl₃) δ 8.76 (s, 1H), 7.43 (m, 1H), 7.29–7.33 (m, 1H), 7.24–7.27 (m, 2H), 5.99 (s, 2H), 4.16 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 159.1, 155.3, 148.6, 145.0, 133.7, 133.1, 131.5, 130.4, 130.3, 130.0, 127.3, 48.5, 34.8. HR-MS (ESI): Calcd. C₁₃H₁₀ClN₉S, [M+H]⁺: 360.0547, Found: 360.0533.

6.2.30.

3-Benzyl-7-((1-methyl-1H-tetrazol-5-yl)thio)-5-(prop-2-yn-1-ylthio)-3H-[1,2,3]triazol

o[4, 5-d]pyrimidine (15s). White solid, m.p. 138–139 °C, yield 81%. ¹H NMR (400 MHz, CDCl₃) δ 7.46–7.48 (m, 2H), 7.33–7.36 (m, 3H), 5.76 (s, 2H), 4.13 (s, 3H), 3.71 (d, *J*=2.8 Hz, 2H), 2.16–2.17 (t, *J*=2.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 169.0, 158.7, 149.0, 144.8, 133.9, 131.4, 129.0, 128.9, 128.8, 78.8, 71.0, 51.1, 34.9, 20.0. HR-MS (ESI): Calcd. C₁₆H₁₃N₉S₂, [M+Na]⁺: 418.0633, Found: 418.0635.

6.2.31.

3-Benzyl-7-((1-phenyl-1H-tetrazol-5-yl)thio)-5-(prop-2-yn-1-ylthio)-3H-[1,2,3]triazol o[4,5-d]pyrimidine (15t). Yellow solid, m.p. 142–143 °C, yield 69%. ¹H NMR (400 MHz, CDCl₃) δ 7.56–7.59 (m, 2H), 7.42–7.47 (m, 5H), 7.32–7.34 (m, 3H), 5.71 (s, 2H), 3.74 (d, *J*=2.4 Hz, 2H), 2.10 (t, *J*=2.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 168.8, 158.8, 148.9, 144.7, 133.8, 133.5, 131.3, 130.8, 129.6, 129.0, 128.9, 128.7, 124.9, 78.6, 71.0, 51.0, 20.1. HR-MS (ESI): Calcd. C₂₁H₁₅N₉S₂, [M+Na]⁺: 480.0790, Found: 480.0788.

6.2.32.

3-(2-Chlorobenzyl)-7-((1-phenyl-1H-tetrazol-5-yl)thio)-5-(prop-2-yn-1-ylthio)-3H-[1, 2,3]triazolo[4,5-d]pyrimidine (**15u**). Yellow solid, m.p. 157–158 °C, yield 71%. ¹H NMR (400 MHz, CDCl₃) δ 7.58–7.60 (m, 2H), 7.47–7.49 (m, 3H), 7.40–7.42 (m, 1H), 7.22–7.31 (m, 3H), 5.85 (s, 2H), 3.72 (d, *J*=2.4 Hz, 2H), 2.09–2.10 (t, *J*=2.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 169.0, 158.9, 149.2, 144.7, 133.8, 133.6, 131.4, 131.1, 130.8, 130.7, 130.3, 130.0, 129.6, 127.3, 124.9, 78.5, 71.1, 48.3, 20.1. HR-MS (ESI): Calcd. C₂₁H₁₄ClN₉S₂, [M+Na]⁺: 514.0400, Found: 514.0398.

6.2.33.

3-(3-Chlorobenzyl)-7-((1-phenyl-1H-tetrazol-5-yl)thio)-5-(prop-2-yn-1-ylthio)-3H-[1, 2,3]triazolo[4,5-d]pyrimidine (**15**v). Orange solid, m.p. 121–122 °C, yield 81%. ¹H NMR (400 MHz, CDCl₃) δ 7.57–7.59 (m, 2H), 7.47–7.48 (m, 3H), 7.43(m, 1H), 7.28–7.34 (m, 3H), 5.67 (s, 2H), 3.74–3.76 (d, *J*=2.4 Hz, 2H), 2.12 (t, *J*=2.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 169.1, 159.0, 148.9, 144.7, 135.6, 134.8, 133.6, 131.3,

130.8, 130.4, 129.6, 129.2, 128.8, 126.9, 124.9, 78.6, 71.1, 50.3, 20.1. HR-MS (ESI): Calcd. C₂₁H₁₄ClN₉S₂, [M+Na]⁺: 514.0400, Found: 514.0398.

6.2.34.

3-(4-Chlorobenzyl)-7-((1-phenyl-1H-tetrazol-5-yl)thio)-5-(prop-2-yn-1-ylthio)-3H-[1, 2,3]triazolo[4,5-d]pyrimidine (**15**w). Yellow solid, m.p. 136–137 °C, yield 75%. ¹H NMR (400 MHz, CDCl₃) δ 7.57–7.60 (m, 2H), 7.47–7.48 (m, 3H), 7.37–7.40 (m, 2H), 7.30–7.32 (m, 2H), 5.67 (s, 2H), 3.73 (d, *J*=2.4 Hz, 2H), 2.09–2.11 (t, *J*=2.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 169.0, 159.0, 148.8, 144.6, 135.0, 133.6, 132.2, 131.3, 130.8, 130.2, 129.6, 129.2, 124.9, 78.7, 71.0, 50.3, 20.1. HR-MS (ESI): Calcd. C₂₁H₁₄ClN₉S₂, [M+Na]⁺: 514.0400, Found: 514.0402.

6.2.35.

3-(4-Isopropylbenzyl)-7-((1-phenyl-1H-tetrazol-5-yl)thio)-5-(prop-2-yn-1-ylthio)-3H-[1,2,3]triazolo[4,5-d]pyrimidine (**15x**). Light yellow solid, m.p. 125–126 °C, yield 75%. ¹H NMR (400 MHz, DMSO-d₆) δ 7.68–7.71 (m, 2H), 7.54–7.56 (m, 3H), 7.34 (m, 2H), 7.22 (m, 2H), 5.74 (s, 2H), 3.91 (d, J=2.6 Hz, 2H), 3.18 (t, J=2.6 Hz, 1H), 2.81–2.88 (m, 1H), 1.15 (d, J=6.9 Hz, 6H). ¹³C NMR (100 MHz, DMSO-d₆) δ 167.6, 159.2, 148.6, 148.6, 145.7, 133.1, 132.1, 130.9, 130.8, 129.6, 128.5, 126.7, 125.0, 79.4, 73.4, 49.9, 33.1, 23.7, 19.4. HR-MS (ESI): Calcd. C₂₄H₂₁ClN₉S₂, [M+Na]⁺: 522.1259, Found: 522.1259.

6.2.36.

3-(4-Methoxybenzyl)-7-((1-phenyl-1H-tetrazol-5-yl)thio)-5-(prop-2-yn-1-ylthio)-3H-[1,2,3]triazolo[4,5-d]pyrimidine (**15y**). Light red solid, m.p. 140–141 °C, yield 76%. ¹H NMR (400 MHz, CDCl₃) δ 7.57–7.59 (m, 2H), 7.46–7.47 (m, 3H), 7.39–7.41 (m, 2H), 6.83–6.86 (m, 2H), 5.64 (s, 2H), 3.77 (s, 3H), 3.75 (d, J=2.8 Hz, 2H), 2.11–2.12 (t, J=2.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 173.3, 164.6, 163.4, 153.4, 138.2, 136.0, 135.5, 135.0, 134.3, 130.7, 129.6, 129.6, 119.0, 83.4, 75.8, 60.0, 55.3, 24.7. HR-MS (ESI): Calcd. C₂₂H₁₇N₉OS₂, [M+H]⁺: 488.1076, Found: 488.1060.

6.2.37.

5-(*Benzylthio*)-3-(4-chlorobenzyl)-7-((1-phenyl-1H-tetrazol-5-yl)thio)-3H-[1,2,3]triaz olo[4,5-d]pyrimidine (**15**z). Light red solid, m.p. 98–100 °C, yield 81%. ¹H NMR (400 MHz, CDCl₃) δ 7.53–7.55 (m, 2H), 7.40–7.45 (m, 3H), 7.25–7.31 (m, 9H), 5.63 (s, 2H), 4.25 (s, 2H), ¹³C NMR (100 MHz, CDCl₃) δ 170.4, 158.5, 148.8, 144.8, 136.2, 134.9, 133.5, 132.4, 131.2, 130.7, 129.9, 129.5, 129.2, 128.7, 128.6, 127.5, 124.9, 50.1, 35.8. HR-MS (ESI): Calcd. C₂₅H₁₈ClN₉S₂, [M+K]⁺: 582.0452, Found: 582.0453.

6.2.38.

5-(*Benzylthio*)-3-(4-bromobenzyl)-7-((1-phenyl-1H-tetrazol-5-yl)thio)-3H-[1,2,3]triaz olo[4,5-d]pyrimidine (**15aa**). Yellow solid, m.p. 122–123 °C, yield 76%. ¹H NMR (400 MHz, CDCl₃) δ 7.53–7.55 (m, 2H), 7.42–7.45 (m, 5H), 7.27–7.30 (m, 5H), 7.19–7.21 (m, 2H), 5.62 (s, 2H), 4.25 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 170.4, 158.6, 148.9, 144.8, 136.2, 133.6, 132.9, 132.2, 131.2, 130.7, 130.2, 129.6, 128.7, 128.7, 127.6, 124.9, 123.1, 50.2, 35.8. HR-MS (ESI): Calcd. C₂₅H₁₈BrN₉S₂, [M+Na]⁺: 610.0208, Found: 610.0206.

6.2.39.

3-(2-Chlorobenzyl)-5-(methylthio)-7-((1-phenyl-1H-tetrazol-5-yl)thio)-3H-[1,2,3]tria zolo[4,5-d]pyrimidine (**15ab**). Light yellow solid, m.p. 178–180 °C, yield 78%. ¹H NMR (400 MHz, DMSO- d_6) δ 7.66–7.71 (m, 2H), 7.56–7.58 (m, 3H), 7.49–7.52 (m, 1H), 7.32–7.42 (m, 3H), 5.86 (s, 2H), 2.37 (s, 3H). ¹³C NMR (100 MHz, DMSO- d_6) δ 169.9, 158.7, 148.9, 145.8, 133.1, 132.8, 131.8, 131.3, 130.9, 130.5, 130.4, 129.7, 129.6, 127.5, 124.9, 48.0, 14.0. HR-MS (ESI): Calcd. C₁₉H₁₄ClN₉S₂, [M+H]⁺: 468.0580, Found: 468.0567.

6.2.40.

3-(2-Chlorobenzyl)-5-((cyclopropylmethyl)thio)-7-((1-phenyl-1H-tetrazol-5-yl)thio)-3

H-[1,2, 3]triazolo[4,5-d]pyrimidine (15ac). Light brown solid, m.p. 113–115 °C, yield 75%. ¹H NMR (400 MHz, CDCl₃) δ 7.58–7.62 (m, 2H), 7.49 (m, 3H), 7.40 (m, 1H), 7.27–7.31 (m, 1H), 7.22–7.25 (m, 2H), 5.83 (s, 2H), 2.91 (d, *J*=7.2 Hz, 2H), 1.00 (m, 1H), 0.58 (m, 2H), 0.26 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 171.1, 158.1, 149.1, 144.9, 133.6, 133.4, 131.4, 130.7, 130.5, 130.1, 129.8, 129.5, 127.2, 124.8, 123.7, 48.1, 37.3, 9.9, 5.8. HR-MS (ESI): Calcd. C₂₂H₁₈ClN₉S₂, [M+H]⁺: 508.0893, Found: 508.0921.

6.2.41.

3-(2-Chlorobenzyl)-7-((1-(4-methoxyphenyl)-1H-tetrazol-5-yl)thio)-5-(prop-2-yn-1-ylt hio)-3H-[1,2,3]triazolo[4,5-d]pyrimidine (**15ad**). Yellow solid, m.p. 121–123 °C, yield 72%. ¹H NMR (400 MHz, CDCl₃) δ 7.47–7.49 (m, 2H), 7.40–7.42 (m, 1H), 7.22–7.32 (m, 3H), 6.93–6.95 (m, 2H), 5.86 (s, 2H), 3.81 (s, 3H), 3.73 (d, *J*=2.7 Hz, 2H), 2.10 (t, *J*=2.7 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 168.9, 161.2, 159.0, 149.1, 144.8, 133.8, 131.5, 131.1, 130.7, 130.3, 130.0, 127.3, 126.4, 126.2, 114.7, 78.6, 71.1, 55.6, 48.3, 20.0. HR-MS (ESI): Calcd. C₂₂H₁₆ClN₉OS₂, [M+Na]⁺: 544.0505, Found: 544.0507.

6.2.42.

3-(2-Chlorobenzyl)-5-(prop-2-yn-1-ylthio)-7-((1-(3,4,5-trimethoxyphenyl)-1H-tetrazol -5-yl)thio)-3H-[1,2,3]triazolo[4,5-d]pyrimidine (**15ae**). Yellow semi-solid, yield 75%. ¹H NMR (400 MHz, DMSO- d_6) δ 7.46–7.51 (m, 2H), 7.33–7.42 (m, 2H), 7.00 (m, 2H), 5.88 (s, 2H), 3.91 (d, *J*=2.6 Hz, 2H), 3.69 (s, 6H), 3.65 (s, 3H), 3.14–3.15 (t, *J*=2.6 Hz, 1H). ¹³C NMR (100 MHz, DMSO- d_6) δ 167.7, 159.1, 152.9, 148.8, 145.9, 138.9, 132.8, 131.7, 131.5, 130.7, 130.4, 129.6, 128.4, 127.6, 103.3, 79.3, 73.4, 60.1, 56.2, 54.8, 48.0, 19.3. HR-MS (ESI): Calcd. C₂₄H₂₀ClN₉O₃S₂, [M+Na]⁺: 604.0717, Found: 604.0715.

6.2.43.

3-(2-Chlorobenzyl)-7-((1-(4-chlorophenyl)-1H-tetrazol-5-yl)thio)-5-(prop-2-yn-1-ylth io)-3H-[1,2,3]triazolo[4,5-d]pyrimidine (**15af**). Light yellow semi-solid, yield 78%. ¹H NMR (400 MHz, DMSO- d_6) δ 7.74–7.77 (m, 2H), 7.64–7.68 (m, 2H), 7.45–7.52 (m, 2H), 7.33–7.42 (m, 2H), 5.88 (s, 2H), 3.86 (d, J=2.6 Hz, 2H), 3.13 (t, J=2.6 Hz, 1H). ¹³C NMR (100 MHz, DMSO- d_6) δ 167.7, 159.2, 148.9, 145.8, 135.6, 132.8, 131.9, 131.7, 131.5, 130.7, 130.4, 130.0, 129.8, 129.6, 127.6, 126.8, 126.5, 79.2, 73.5, 48.0, 19.4. HR-MS (ESI): Calcd. C₂₁H₁₃Cl₂N₉S₂, [M+Na]⁺: 548.0010, Found: 548.0012.

6.2.44.

7-((1-(4-Bromophenyl)-1H-tetrazol-5-yl)thio)-3-(2-chlorobenzyl)-5-(prop-2-yn-1-ylthi o)-3H- [1,2,3]triazolo[4,5-d]pyrimidine (**15ag**). White solid, m.p. 154–156 °C, yield 78%. ¹H NMR (400 MHz, DMSO- d_6) δ 7.78–7.81 (m, 2H), 7.68–7.71 (m, 2H), 7.45–7.52 (m, 2H), 7.33–7.42 (m, 2H), 5.88 (s, 2H), 3.86 (d, J=2.6 Hz, 2H), 3.13 (t, J=2.6 Hz, 1H). ¹³C NMR (100 MHz, DMSO- d_6) δ 167.7, 159.2, 148.9, 145.8, 132.8, 132.8, 132.3, 131.8, 131.4, 130.8, 130.4, 129.6, 127.6, 127.0, 124.3, 79.2, 73.5, 48.0, 19.4. HR-MS (ESI): Calcd. C₂₁H₁₃BrClN₉S₂, [M+Na]⁺: 591.9505, Found: 591.9506.

6.2.45.

3-(2-Chlorobenzyl)-7-((1-(naphthalen-1-yl)-1H-tetrazol-5-yl)thio)-5-(prop-2-yn-1-ylt hio)-3H-[1,2,3]triazolo[4,5-d]pyrimidine (**15ah**). White semi-solid, yield 77%. ¹H NMR (400 MHz, DMSO- d_6) δ 8.19 (m, 1H), 8.06 (m, 1H), 7.87 (m, 1H), 7.55–7.68 (m, 3H), 7.49 (m, 1H), 7.32–7.45 (m, 4H), 5.84 (s, 2H), 3.92 (d, *J*=2.5 Hz, 2H), 3.14 (t, *J*=2.4 Hz, 1H). ¹³C NMR (100 MHz, DMSO- d_6) δ 167.8, 158.9, 148.7, 147.3, 133.4, 132.8, 131.8, 131.7, 131.5, 130.6, 130.4, 129.6, 128.7, 128.2, 128.1, 127.9, 127.5, 127.3, 125.8, 125.2, 121.9, 79.3, 73.5, 47.9, 19.4. HR-MS (ESI): Calcd. C₂₅H₁₆ClN₉S₂, [M+Na]⁺: 564.0556, Found: 564.0558.

6.2.46.

3-(2-Chlorobenzyl)-5-(prop-2-yn-1-ylthio)-7-((1-(pyridin-3-yl)-1H-tetrazol-5-yl)thio)-

3*H*-[1,2,3]*triazolo*[4,5-*d*]*pyrimidine* (**15***ai*). Yellow solid, m.p. 142–144 °C, yield 81%. ¹H NMR (400 MHz, CDCl₃) δ 8.91 (m, 1H), 8.74 (m, 1H), 7.99–8.02 (m, 1H), 7.47–7.50 (m, 1H), 7.40–7.42 (m, 1H), 7.28–7.32 (m, 2H), 7.22–7.24 (m, 1H), 5.86 (s, 2H), 3.73 (d, *J*=2.7 Hz, 2H), 2.09 (t, *J*=2.7 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 169.0, 158.4, 151.8, 149.2, 145.4, 145.1, 133.8, 132.5, 131.3, 131.0, 130.8, 130.7, 130.3, 130.0, 127.3, 124.1, 78.4, 71.2, 48.4, 20.1. HR-MS (ESI): Calcd. C₂₀H₁₃ClN₁₀S₂, [M+Na]⁺: 515.0352, Found: 515.0355.

6.2.47.

2-(5-((3-(2-Chlorobenzyl)-5-(prop-2-yn-1-ylthio)-3H-[1,2,3]triazolo[4,5-d]pyrimidin-7-yl)thio)-1H-tetrazol-1-yl)-N,N-dimethylethan-1-amine (**15aj**). Yellow oil, yield 71%. ¹H NMR (400 MHz, CDCl₃) δ 7.41–7.43 (m, 1H), 7.27–7.32 (m, 2H), 7.22–7.26 (m, 1H), 5.89 (s, 2H), 4.49–4.52 (t, *J*=6.2 Hz, 2H), 3.70 (d, *J*=2.6 Hz, 2H), 2.81–2.84 (t, *J*=6.2 Hz, 2H), 2.22 (s, 6H), 2.12 (t, *J*=2.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 169.1, 159.6, 149.3, 145.4, 133.8, 131.5, 131.3, 130.6, 130.2, 130.0, 127.3, 78.7, 71.0, 58.1, 48.3, 46.7, 45.5, 20.0. HR-MS (ESI): Calcd. C₁₉H₁₉ClN₁₀S₂, [M+Na]⁺: 509.0822, Found: 509.0823.

6.2.48.

2-(5-(Benzylthio)-7-((1-phenyl-1H-tetrazol-5-yl)thio)-3H-[1,2,3]triazolo[4,5-d]-pyrim idin-3-yl)ethan-1-ol (**15ak**). Yellow solid, m.p. 116–117 °C, yield 76%. ¹H NMR (400 MHz, DMSO- d_6) δ 7.66–7.70 (m, 2H), 7.55–7.57 (m, 3H), 7.39–7.41 (m, 2H), 7.22–7.32 (m, 3H), 4.92–4.94 (t, J=5.9 Hz, 1H), 4.61–4.64 (t, J=5.3 Hz, 2H), 4.32 (s, 2H), 3.86–3.90 (q, J=5.5 Hz, 2H). ¹³C NMR (100 MHz, DMSO- d_6) δ 168.3, 158.6, 149.2, 145.8, 137.0, 133.1, 130.9, 130.7, 129.6, 128.9, 128.4, 127.2, 125.0, 58.8, 49.9, 34.7. HR-MS (ESI): Calcd. C₂₀H₁₇N₉OS₂, [M+Na]⁺: 486.0895, Found: 486.0896.

Reference

^{1.} Verma J, Khedkar VM, Coutinho EC. 3D-QSAR in drug design—a review. *Curr Top Med Chem* 2010;**10**:95-115.

¹H & ¹³C NMR spectra

3.122 3.104 3.085 2.874 $\int_{-1.075}^{1.776} \int_{-1.775}^{1.777} \int_{-1.759}^{-1.741} \int_{-1.704}^{-1.723} \int_{-1.076}^{1.076} \int_{-1.057}^{-1.057} \int_{-1.0$

4.230

4.788 4.776 4.764

Figure S3 ¹³C NMR spectrum of compound 8a.

Figure S4 ¹H NMR spectrum of compound 8b.

Figure S5 ¹³C NMR spectrum of compound 8b.

Figure S6 ¹H NMR spectrum of compound **8c**.

Figure S7 ¹³C NMR spectrum of compound 8c.

Figure S8 ¹H NMR spectrum of compound 8d.

Figure S9 ¹³C NMR spectrum of compound 8d.

Figure S10 ¹H NMR spectrum of compound 8e.

Figure S11 ¹³C NMR spectrum of compound 8e.

Figure S12 ¹H NMR spectrum of compound 8f.

Figure S13 ¹³C NMR spectrum of compound 8f.

Figure S14 ¹H NMR spectrum of compound **8g**.

Figure S15 ¹³C NMR spectrum of compound 8g.

Figure S16 ¹H NMR spectrum of compound 8h.

Figure S17 ¹³C NMR spectrum of compound 8h.

Figure S18 ¹H NMR spectrum of compound 8i.

Figure S19¹³C NMR spectrum of compound **8i**.

Figure S20 ¹H NMR spectrum of compound 8j.

Figure S21¹³C NMR spectrum of compound 8j.

Figure S22 ¹H NMR spectrum of compound **8k**.

Figure S23 ¹³C NMR spectrum of compound 8k.

Figure S24 ¹H NMR spectrum of compound 9a.

Figure S25 ¹³C NMR spectrum of compound 9a.

Figure S26 ¹H NMR spectrum of compound **9b**.

Figure S27 ¹³C NMR spectrum of compound 9b.

Figure S28 ¹H NMR spectrum of compound 8l.

Figure S29¹³C NMR spectrum of compound 8l.

Figure S30 ¹H NMR spectrum of compound **11**.

Pa1141 (2013) (2

Figure S31 ¹³C NMR spectrum of compound **11**.

Figure S32 ¹H NMR spectrum of compound 15a.

Figure S33 ¹³C NMR spectrum of compound 15a.

Figure S34 ¹H NMR spectrum of compound 15b.

Figure S36 ¹H NMR spectrum of compound 15c.

Figure S37 ¹³C NMR spectrum of compound 15c.

Figure S38 ¹H NMR spectrum of compound 15d.

Figure S39¹³C NMR spectrum of compound 15d.

Figure S40 ¹H NMR spectrum of compound 15e.

Figure S41¹³C NMR spectrum of compound 15e.

Figure S42 ¹H NMR spectrum of compound 15f.

Figure S43 ¹³C NMR spectrum of compound 15f.

Figure S45 ¹³C NMR spectrum of compound 15g.

Figure S46 ¹H NMR spectrum of compound 15h.

Figure S47 ¹³C NMR spectrum of compound 15h.

Figure S48 ¹H NMR spectrum of compound 15i.

Figure S49 ¹³C NMR spectrum of compound 15i.

Figure S50 ¹H NMR spectrum of compound 15j.

Figure S51 ¹³C NMR spectrum of compound 15j.

Figure S52 ¹H NMR spectrum of compound 15k.

Figure S53 ¹³C NMR spectrum of compound 15k.

Figure S54 ¹H NMR spectrum of compound 15l.

Figure S55 ¹³C NMR spectrum of compound 15l.

Figure S56 ¹H NMR spectrum of compound 15m.

Figure S57 ¹³C NMR spectrum of compound 15m.

Figure S58 ¹H NMR spectrum of compound 15n.

Figure S59¹³C NMR spectrum of compound 15n.

Figure S60 ¹H NMR spectrum of compound 150.

Figure S61 ¹³C NMR spectrum of compound 150.

Figure S62 ¹H NMR spectrum of compound 15p.

Figure S63 ¹³C NMR spectrum of compound 15p.

Figure S64 ¹H NMR spectrum of compound 15q.

Figure S65 ¹³C NMR spectrum of compound 15q.

Figure S66 ¹H NMR spectrum of compound 15r.

Figure S67 ¹³C NMR spectrum of compound 15r.

Figure S68 ¹H NMR spectrum of compound 15s.

Figure S69 ¹³C NMR spectrum of compound 15s.

Figure S70 ¹H NMR spectrum of compound 17.

Figure S71 ¹³C NMR spectrum of compound 17.

Figure S72 ¹H NMR spectrum of compound 19.

Figure S73 ¹³C NMR spectrum of compound 19.

Figure S74 ¹H NMR spectrum of compound 15t.

Figure S75 ¹³C NMR spectrum of compound 15t.

Figure S76 ¹H NMR spectrum of compound 15u.

Figure S77 ¹³C NMR spectrum of compound 15u.

Figure S78 ¹H NMR spectrum of compound 15v.

Figure S79¹³C NMR spectrum of compound 15v.

Figure S80 ¹H NMR spectrum of compound 15w.

Figure S81 ¹³C NMR spectrum of compound 15w.

Figure S83 ¹³C NMR spectrum of compound 15x.

Figure S84 ¹H NMR spectrum of compound 15y.

Figure S85 ¹³C NMR spectrum of compound 15y.

Figure S86 ¹H NMR spectrum of compound 15z.

Figure S87 ¹³C NMR spectrum of compound 15z.

Figure S88 ¹H NMR spectrum of compound 15aa.

Figure S89 ¹³C NMR spectrum of compound 15aa.

Figure S90 ¹H NMR spectrum of compound 15ab.

Figure S91 ¹³C NMR spectrum of compound 15ab.

Figure S92 ¹H NMR spectrum of compound 15ac.

Figure S93 ¹³C NMR spectrum of compound 15ac.

Figure S94 ¹H NMR spectrum of compound 15ad.

Figure S95 ¹³C NMR spectrum of compound 15ad.

Figure S96 ¹H NMR spectrum of compound 15ae.

Figure S97 ¹³C NMR spectrum of compound 15ae.

Figure S98 ¹H NMR spectrum of compound 15af.

Figure S99 ¹³C NMR spectrum of compound 15af.

Figure S100 ¹H NMR spectrum of compound 15ag.

Figure S101 ¹³C NMR spectrum of compound 15ag.

Figure S102 ¹H NMR spectrum of compound 15ah.

Figure S103 ¹³C NMR spectrum of compound 15ah.

Figure S104 ¹H NMR spectrum of compound 15ai.

(3.3)

Figure S105 ¹³C NMR spectrum of compound 15ai.

Figure S107 ¹³C NMR spectrum of compound 15aj.

Figure S108 ¹H NMR spectrum of compound 15ak.

Figure S109 ¹³C NMR spectrum of compound 15ak.

Figure S110 ¹H NMR spectrum of compound 22b.

Figure S111 ¹³C NMR spectrum of compound 22b.

Figure S112 ¹H NMR spectrum of compound 23.

Figure S113 ¹³C NMR spectrum of compound 23.

