
ISCI, Volume 18
Supplemental Information
MALVA: Genotyping by Mapping-free ALlele

Detection of Known VAriants

Luca Denti, Marco Previtali, Giulia Bernardini, Alexander Schönhuth, and Paola Bonizzoni

SNP INDEL0.00

0.25

0.50

0.75

1.00
MALV

A
VarG

en
o

dis
coS

np
++

BCFto
ols

GATK
MALV

A
VarG

en
o

dis
coS

np
++

BCFto
ols

GATK

Indel (precision)
Indel (recall)

SNP (precision)
SNP (recall)

(a) FullGenome dataset

SNP INDEL0.00

0.25

0.50

0.75

1.00
MALV

A
VarG

en
o

dis
coS

np
++

BCFto
ols

GATK
MALV

A
VarG

en
o

dis
coS

np
++

BCFto
ols

GATK

Indel (precision)
Indel (recall)

SNP (precision)
SNP (recall)

(b) HalfGenome dataset

Figure S1: Qualitative representation of the accuracy results, Related to Table 1. Each violin

plot represents the precision and the recall (computed with hap.py) achieved by the consid-

ered tools on both SNPs and indels. This is a qualitative representation of the information

summarized by the table in the main document.

1

S1. Transparent Methods

We will first introduce some preliminary definitions and then we will describe

the approach we propose (MALVA) for the mapping-free genotyping of known

variants.

S1.1. Preliminaries

Let Σ be an ordered and finite alphabet of size σ and let t = c1, . . . , ck, where

cj ∈ Σ for j = 1, . . . , k, be an ordered sequence of k characters drawn from Σ,

we say that t is a k-mer. When a k-mer originates from a double stranded

DNA, it is common to consider it and its reverse-complemented sequence as the

same k-mer, and to say that the one that is lexicographically smaller among the

two is the canonical one. In the following, we will abide by this definition and

whenever we refer to a k-mer we implicitly refer to its canonical form. Moreover,

to avoid k-mers being equal to their reverse-complement, we will only consider

odd values of k.

A Bloom filter (Bloom, 1970) is a probabilistic space-efficient data structure

that represents a set of elements and allows approximate membership queries.

The result of such queries may be a false positive but never a false negative.

Bloom filters are usually represented as the union of a bitvector of length m

and a set of h hash functions {H1, . . . , Hh}, each one mapping one element of the

universe to one integer in {1, . . . ,m}. Using these data structures, the addition

of an element e to the set is performed by setting to 1 the bitvector’s cells in

positions {H1(e), . . . , Hh(e)}, while testing if an element is in the set boils down

to checking whether the same positions are all set to 1. Due to collisions of

the hash functions, an element can be reported as present in the set even if it

is absent. Nevertheless, the false positive rate of a Bloom filter of a set of n

elements, with h hash functions and an array of m bits is (1− ehn
m)h; therefore,

to increase the size of the Bloom filter decreases the false positive rate. Due

to their simplicity and efficiency, Bloom filters have been applied to multiple

problems in bioinformatics, such as representing de Bruijn graphs (Chikhi and

Rizk, 2013) and counting k-mers in a sample (Melsted and Pritchard, 2011).

2

Let B be a bitvector, the rank1 function reports, for each position i ∈

{1, . . . , |B|+ 1}, the number of 1s from the beginning of B to i (excluded); we

refer to such value as rank1(i, B). Clearly, rank1(i, B) is not defined for i ≤ 0

and for i > |B|+1, rank1(1, B) is 0, and rank1(|B|+1, B) is the number of 1s in

B. By using succinct support data structures and by a linear time preprocessing

step, it is possible to answer rank1 queries in constant time for any position of

the bitvector (Vigna, 2008).

The difference between the genetic sequence of two unrelated individual of

the same species is estimated to be smaller than 0.1% (Venter et al., 2001);

therefore, it is common to represent the DNA sequence of an individual as a set

of differences from a reference genome. Indeed, thorough studies (Consortium

et al., 2015, 2003; consortium et al., 2015) of the variations across different indi-

viduals encode such information as a VCF (Variant Calling Format) file (Danecek

et al., 2011). In the following, we will call variant the information encoded by

a data line of a VCF file. Besides the genotype data, we are interested in the

information carried by the second, fourth, fifth, and eighth field of a VCF line,

namely: (i) field POS that is the position of the variant on the reference, (ii) field

REF that is the reference allele starting in position POS, (iii) field ALT that is a

list of alternate alleles that in some sample replace the reference allele, and (iv)

field INFO that is a list of additional information describing the variant. From

the latter list we will get the frequencies of reference and alternate alleles, which

are needed to call the genotype of a given individual. We denote with POS(v),

REF(v), ALT(v), FREQ(v), and GTD(v) the reference position, reference allele, list

of alternate alleles, list of allele frequencies, and genotype data of a variant v,

respectively. The variants we take into account are SNPs (i.e., both REF and all

the elements of ALT are single base nucleotides) and indels (REF and at least one

element of ALT are not of the same length). Moreover, given an allele a (either

reference or alternate) of some variant v, we refer to its sequence of nucleotides

as SEQ(a), i.e., SEQ(a) is the string that represents a.

Let R be a reference genome and let V be a VCF file that describes all the

known variants of R. Since the genotype data provides information on the

3

alleles expressed in each genome, another way of thinking of a VCF file is as an

encoding of a set of genomes G. Each haplotype of the genomes in G can be

reconstructed by modifying R according to the genotype information associated

to each variant. For ease of presentation, in the following we use the term

genome and haplotype interchangeably, although each genome of a polyploid

organism is composed of multiple haplotypes.

Let G be the set of genomes encoded by a VCF file and let a be an allele of

some variant v, we denote by Ga ⊆ G the subset of genomes that include a. We

say that a variant v is k-isolated if there is no other known variant within a

radius of bk/2c from the center of any of its alleles, as formally stated in the

following definition.

Definition 1 (k-isolated variant). A variant v is k-isolated if, for all a ∈

ALLELES(v) and g ∈ Ga, there is no variant v′ 6= v with an allele a′ ∈ ALLELES(v′)

such that g ∈ Ga′
and either |BEGINg(a′)−CENTERg(a)| ≤ bk/2c or |CENTERg(a)−

ENDg(a′)| ≤ bk/2c, where ALLELES(v) = REF(v) ∪ ALT(v), BEGINg(a) is the po-

sition of the first base of a in g, ENDg(a) the position of the last base, and

CENTERg(a) the position of the d |a|2 e-th base of a in g.

The procedure we will present in the next section is heavily based on the concept

of signature of an allele. Intuitively, a signature of the allele a of a variant v

is the k-mer centered in a in some genome g in Ga. Note that, depending on

the genomes encoded by the VCF file (specifically, if variants less than k bases

apart are known), an allele might have multiple signatures. Moreover, if SEQ(a)

is longer than k bases, the previous definition is not well formed, since there is

no k-mer that can be centered in a. In this case, we define the signature of a

as the set of its substrings of length k. The following definition formalizes the

notion of signature of an allele.

Definition 2 (Signature of an allele). Let G be the set of all the genomes

encoded by a VCF file V and let k be an odd positive value. Let v be a variant

in V, let a be one of the alleles of v, and let Ga ⊆ G be the set of the genomes

that include a. If SEQ(a) is longer than k bases, we say that the signature of a

4

Pos Ref Alts Donors
5 C AAA 0|1 0|0 1|1
7 T G 0|1 0|1 0|1
10 G A,C 0|0 1|2 2|0

v1
v2
v3

A G A T C C T G C G A A G

1 2 3 4 5 6 7 8 9 10 11 12 13

R

a0 = T

a1 = G

Allele Signatures

{ {TCCTGCG}, {TCCTGCA}, {AACTGCC} }
{ {AACGGCG}, {TCCGGCC} }

v2

Variant

Figure S2: Signatures of the alleles of variant v2. R is the reference sequence and the table

on the right is a VCF information associated to it, representing 3 variants: an indel (v1), a

bi-allelic SNP (v2), and a multi-allelic SNP (v3). The last columns of the VCF file carry the

genotype information of 3 individuals. The table at the bottom reports the signatures of each

allele of variant v2. Note that there are only 5 signatures although 6 haplotypes are encoded

by the VCF file since the second haplotype of the first and third individual are the same. We

highlighted in red the genotype information associated to the second haplotype of the second

genome and the corresponding signature.

is the set of all the substrings of length k of SEQ(a). If SEQ(a) is shorter than

k bases, we say that {xSEQ(a)y} is the signature of a in a genome g in Ga if:

(i) xSEQ(a)y is a k-mer, (ii) |x| = bk−|SEQ(a)|2 c, (iii) |y| = dk−|SEQ(a)|2 e, (iv) x is a

suffix of the sequence that precedes a in g, and (v) y is a prefix of the sequence

that follows a in g.

We will refer to the set of all the possible signatures of an allele a as SIGN(a)

and we say that k is the length of the signature. An example of signatures of

an allele is shown in Figure S2. Notice that the same k-mer may appear in the

signature of more than one allele.

In the following we will leverage on the definition of signature of an allele to

detect its presence in an individual without mapping the reads to the reference

genome. More precisely, we will analyze whether the k-mers of a given signature

are present in the reads and use such information as an hint of the presence of

the allele. Unlike other approaches (Pajuste et al., 2017), Definition 2 admits

the presence of the alleles of multiple variants in a single signature, allowing

MALVA to manage variants that are not k-isolated. Indeed, the set of signatures

of an allele represents all the genomic regions where the allele appears in the

genomes encoded by the VCF file.

5

S1.2. MALVA’s approach

In this section we will describe MALVA, the method we designed to genotype

a set of known variants directly from a read sample. The general idea of MALVA

is to use the frequencies of the signatures of a variant in the sample to call

its genotype. The method works under the assumption that given a sample of

reads from a genome with standard coverage depth, if an allele is included in the

genome then at least one of its signatures must exist as substrings in multiple

reads (depending on the coverage depth and the length of the signature). We

leverage on this concept to genotype known variants directly from the input

reads.

MALVA takes as input a reference genome, a VCF file representing all its known

variants, and a read sample; it outputs a VCF file containing the most probable

genotype for each variant. The main method is composed of four steps.

In the first step, MALVA computes the set of signatures of length ks of all the

alternate alleles of all the variants in VCF and stores them in the set ALTSIG. In

the same step, the signatures of the reference alleles are computed and stored in

a second set named REFSIG. For each ks-mer t of a signature s two weights, one

representing the number of occurrences of t in an alternate allele signature and

one representing the number of occurrences of t in a reference allele signature,

are stored. We will refer to these two values as wA
t and wR

t , respectively.

We note that for small values of ks the probability that the ks-mers that

constitute a signature appear in other regions of the genome is high. Since

in the following steps MALVA exploits the signatures’ sets of the alleles of each

variant to call the genotypes, the presence of conserved regions of the reference

genome identical to some signature could lead the tool to erroneously genotype

some variants. To get rid of a large amount of wrong calls, in the second step

MALVA makes use of the context around the allele to distinguish its signatures

from such regions. More precisely, if a ks-mer of a signature of an alternate

allele appears somewhere in the reference genome, MALVA extracts the context

of length kc (with kc > ks) covering the reference genome region and collects

such kc-mers in a third set (REPCTX).

6

In the third step, MALVA extracts all the kc-mers from the sample along with

the number of its occurrences. For each kc-mer tc that occurs w times in the

sample, the ks-mer ts that constitutes the center of tc is extracted. If ts is found

in REFSIG, wR
ts is increased by w. Moreover, if tc is not found in REPCTX and

if ts is in ALTSIG, wA
ts is increased by w. Otherwise, if tc is in REPCTX, wA

ts is

not updated since, although its central ks-mer is identical to some ks-mer of

a signature of an alternate allele of some variant, it is indistinguishable from

another region of the genome not covering the variant. We note that when wA
ts

is not updated, our method might miss a variant in the donor and report a false

negative, although for large values of kc this would rarely occur. The rationale

behind this choice is to avoid biases due to kc-mers in conserved regions of the

reference genome, preferring not to include an alternate allele in the output

whenever ambiguities arise.

Finally, in the fourth step, MALVA uses the weights computed in the previous

step to call the genotypes.

In the rest of this Section we will detail each one of the four steps of MALVA.

Signature computation. The first step consists of building the signatures of the

alleles of all the variants and adding them either to ALTSIG, if they are the

signatures of an alternate allele, or to REFSIG, if they are the signature of the

reference allele. If a variant v is ks-isolated, we build 1+ |ALT(v)| signatures, one

for each allele of v. Otherwise, there are some genomes in G in which there is at

least another allele of a variant that lays within a radius of bks/2c nucleotides

from the center of the allele of v. In practice, this means that we have to look

at the genotype data of the variants within such radius: for each allele a of v

we reconstruct the ks bases long portions of the genomes in Ga that constitute

the signatures of a.

As pointed out in Definition 2, if |SEQ(a)| ≥ ks, the signature of a is the set

of ks-mers that appear in SEQ(a). In this case we extract all such ks-mers and

add them either to REFSIG or ALTSIG. Otherwise, if |a| < ks, we build the ks

bases long substrings of each genome in Ga centered in a by scanning the VCF

7

file and reconstructing the sequences according to the genotype information it

includes. More precisely, let a be an allele of a variant v and let V = {v1, . . . , vn}

be the set of variants such that, for all 1 ≤ i ≤ n: (i) vi 6= v, (ii) there exists an

allele aj in ALLELES(vi) such that a and aj are both included in some genome

g, and (iii) either (END(aj) < BEGIN(a) and CENTER(a) − bks/2c ≤ END(aj)) or

(END(a) < BEGIN(aj) and CENTER(a) + bks/2c ≥ BEGIN(aj)) in g.

Given a, we use the genotype information stored in the VCF file to retrieve

the haplotypes in which it is included, i.e., a subset of the haplotypes in Ga, and

build the set V . Using V we gather all the alleles that precede and succeed a in

the selected haplotypes and we use them, together with the reference sequence,

to reconstruct on the fly the ks-mer that covers a, by interposing reference

substrings and allele sequences. Doing so, we don’t need to reconstruct the

whole haplotypes but we only analyze and reconstruct the required ks-mers

when needed.

Once all the ks-mers have been constructed, they are added to REFSIG if a

is the reference allele, to ALTSIG if it is an alternate allele.

Detection of repeated signatures. This step is aimed to detect and store in set

REPCTX all the kc-mers of the reference sequence whose central ks-mer is included

in some signature of some alternate allele, kc > ks. REPCTX will be used in a

further step to discard alternate alleles that might be erroneously reported as

expressed by MALVA only because they cannot be told apart from other identical

regions of the reference sequence. To compute REPCTX, we extract all the kc-mers

of the reference sequence and test whether their central ks-mer is in ALTSIG. If

so, we add the kc-mer to REPCTX to report that the ks-mer is indistinguishable

from some ks-mer that is included in the signature of an alternate allele. The

set REPCTX is then used in the next step as illustrated below. An example

comprising the first two steps is shown in Section S1.3.

Alleles’ signatures weights computation. In the third step, MALVA computes how

many times the ks-mers of each signature appear in the dataset. First, MALVA

extracts all the kc-mers of the read sample and tests their existence in REPCTX to

8

check whether their central ks-mer cannot be told apart from some repetition in

the reference genome. Then, given a kc-mer tc that occurs w times in the read

sample, the ks-mer ts that constitutes its center is extracted. If ts is found in

REFSIG, i.e., ts is the signature of the reference allele of some variant, the weight

wR
ts is increased by w. Moreover, if tc is not found in REPCTX and ts is in ALTSIG,

i.e., ks-mer ts is uniquely associated to an alternate allele of some variant, the

weight wA
ts is increased by w. Conversely, if tc is in REPCTX, wA

ts is not updated.

The last scenario happens when ts is identical to the signature of an alternate

allele of some variant (indeed, ts is in ALTSIG), but even the enlarged context

tc (and consequently ts) appears somewhere else in the reference genome.

Genotype calling. In the last step, MALVA uses the allele frequencies stored in

the INFO field of the VCF file and the weights of the signatures computed in

the previous step to call the genotype of each variant. To this aim, we extend

the approaches proposed in the literature for bi-allelic variants (specifically, the

one introduced in LAVA (Shajii et al., 2016)) to multi-allelic variants. While the

approaches designed for genotyping bi-allelic variants only need to compute the

likelihood of three genotypes, our technique must consider a larger number of

possible genotypes.

Let v be a variant with n−1 alternate alleles. The number of possible distinct

genotypes is
(
n
2

)
+ n = n(n+1)

2 , that is one homozygous reference genotype,
(
n
2

)
heterozygous genotypes, and n−1 homozygous alternate genotypes. We will refer

to the homozygous reference genotype as G0,0, to the heterozygous genotypes as

Gi,j with 0 ≤ i < j ≤ n− 1, and to the homozygous alternate genotypes as Gi,i

with 1 ≤ i ≤ n − 1. Following well-established techniques (Shajii et al., 2016;

McKenna et al., 2010; Li, 2011), we compute the likelihood of each genotype Gi,j

by means of the Bayes’ theorem. Given the observed coverage C, we compute

the posterior probability of each genotype as:

P (Gi,j |C) =
P (Gi,j)P (C|Gi,j)

P (C)

9

that, by the law of total probability, can be expressed as:

P (Gi,j |C) =
P (Gi,j)P (C|Gi,j)∑n−1

p=0

∑n−1
q=p P (Gp,q)P (C|Gp,q)

To calculate this probability, we compute the a priori probabilities of each

genotype Gi,j (P (Gi,j)) and the conditional probability of the observed coverage

given the considered genotype (P (C|Gi,j)). The Hardy-Weinberg equilibrium

equation ensures that for each variant v, (
∑n−1

i=0 fi)
2 = 1, where fi = FREQ(v)[i],

i.e., the frequency of the i-th allele of v. We recall that FREQ(v) is stored in

the INFO field of the VCF file. The a priori probability of each genotype Gi,j is

therefore computed as follows:

P (Gi,j) =

f
2
i if i = j

2fifj otherwise

To compute the conditional probability P (C|Gi,j), it is first necessary to

compute the coverages of the alleles of the variant. Without loss of generality,

let a0 be the first allele of the variant, i.e., a0 is the reference allele with index

0. We recall that SIGN(a0) is the set of signatures of allele a0 and that each

signature is a set of one or more k-mers. We also recall that, in the previous

step, for each k-mer t that belongs to some signature we computed two weights,

namely wR
t and wA

t . Given a signature s ∈ SIGN(a0), we define its weight as the

mean of the weights associated to the k-mers it contains, i.e.,
∑

t∈s wR
t

|s| where |s|

denotes the number of k-mers contained in signature s. Since the same allele may

exhibit more signatures, we define the coverage c0 of allele a0 as the maximum

value among the weights of its signatures, i.e., max{
∑

t∈s wR
t

|s| : s ∈ SIGN(a0)}.

This formula can be easily modified to compute the coverage of an alternate

allele (ci for i ≥ 1) by switching wR
t with wA

t . The coverage ci of an allele ai of

a variant is thus computed as follows:

ci =

max{
∑

t∈s wR
t

|s| : s ∈ SIGN(a0)} if i = 0

max{
∑

t∈s wA
t

|s| : s ∈ SIGN(ai)} otherwise

By extending the approach adopted in (Shajii et al., 2016), we consider each

P (C|Gi,j) to be multinomially distributed. Given a homozygous genotype Gi,i,

10

we assume to observe the i-th allele, which is the correct one, with probability

1 − ε (where ε is the expected error rate) whereas the other n − 1 alleles (the

erroneous ones) with probability ε
n−1 each. Hence, we compute the conditional

probability of an homozygous genotype as:

P (C|Gi,i) =

(
ci + CE

ci

)
(1− ε)ci

(
ε

n− 1

)CE

where CE is the total sum of the coverages of the erroneous alleles, i.e., CE =∑
j∈{0,...,n−1}\{i} cj . For what concerns heterozygous genotypes, we assume to

observe the correct alleles, i.e., the i-th and the j-th allele, with equal probability

1−ε
2 whereas the other n − 2 erroneous alleles with probability ε

n−2 each. We

compute the conditional probability of an heterozygous genotype as follows:

P (C|Gi,j) =

(
ci + cj + CE

ci + cj

)(
ci + cj
ci

)(
1− ε

2

)ci (1− ε
2

)cj (ε

n− 2

)CE

where, again, CE is the sum of the coverages of the erroneous alleles, i.e.,

CE =
∑

p∈{0,...,n−1}\{i,j} cp.

Finally, after computing the posterior probability of each genotype, MALVA

outputs the genotype with the highest likelihood.

S1.3. Example of k-mers weight computation

In this section we present an example of computation of the weights asso-

ciated with the signatures’ ks-mers. Figure S3 shows an example composed of

three variants and two reads. In this example the values of ks and kc are set

to 7 and 11, respectively. Subfigure (a) shows the 26-bases long reference se-

quence. Subfigure (b) reports on the left two bi-allelic variants (v1 and v2) and

one multi-allelic variant (v3), and on the right the signatures of each allele of

v2. Subfigure (c) shows the elements of ALTSIG and REFSIG related to v2. We

note that the second signature in ALTSIG is composed of a single ks-mer (ts,

equal to TCCGGCG) that appears in the reference genome, starting from position

17. Thus, the kc-mer starting in position 15 and ending in position 25 (tc, equal

to GATCCGGCGAA) is added to REPCTX. Subfigure (d) shows two 11-bases long

reads including ts, extracted from position 3 and 15 of the donor. Clearly, only

11

Pos Ref Alts Donors
5 C AAA 0|1 0|0 1|1
7 T G 0|1 0|1 0|1
10 G A,C 0|0 1|0 2|0

v1
v2
v3

A T A T C C T G C G T A G

1 2 3 4 5 6 7 8 9 10 11 12 13

R

a0 = T

a1 = G

Allele Signatures

{ {TCCTGCG}, {TCCTGCA} , {AACTGCC} }
{ {AACGGCG}, {TCCGGCG}}

v2

Variant

14 15 16 17 18 19 20 21 22 23 24 25 26

ALTSIG
{AACGGCG}

{TCCGGCG}

REFSIG
{TCCTGCG}
{TCCTGCA}
{AACTGCC}

A G A T C C G G C G A A G

REPCTX
GATCCGGCGAA

r1 T A T C C G G C G T A

1 2 3 4 5 6 7 8 9 10 11

G A T C C G G C G A Ar2

(a)

(b)

(c)

(d)

Figure S3: Example with 3 variants and two reads. Subfigure (a) shows a reference genome

of 26 bases, Subfigure (b) reports 3 variants and the signatures of each allele of variant v2,

Subfigure (c) reports the subsets of ALTSIG, REFSIG, and REPCTX including the elements related

to v2, and Subfigure (d) presents two reads of length 11.

r1 should contribute to the detection of the alternate allele of v2 in the donor,

since r2 was sequenced from another position of the genome (i.e., wA
ts should

be equal to 1 in this case). To this aim, REPCTX comes to an aid; indeed, when

analyzing r1 the kc-mer covering ts is extracted (i.e., the whole read) and its

inclusion in REPCTX is tested. Since TATCCGGCGTA is not in REPCTX and ts is

in ALTSIG, wA
ts is increased by one. On the other hand, since GATCCGGCGAA is

in REPCTX, the occurrence of ts in r2 is not considered in wA
ts , thus avoiding to

erroneously overestimate the frequency of allele a1 of v2.

We note that on one hand this approach allows us to avoid overestimating

the frequencies of some alternate allele but, on the other hand, it produces two

major side effects. The first one is that some allele might be underestimated

by MALVA; indeed, if the kc-mer covering an alternate allele in a donor is equal

to a kc-mer in the genome it will not be detected. The second side effect is

that MALVA might overestimate the frequency of some allele due to identical

signature. Indeed, suppose that the signature of some alternate allele ai of

another variant vj 6= v2 is equal to the signature of alternate allele a1 of variant

12

v2. It is obvious that the weights of the ks-mers of the two signatures will be

identical and that the occurrences of both the alleles will concur towards their

final value, overestimating it.

Although the two side effects pose some limit to the method proposed in

this paper, they arise rarely and we think they are a fair price to pay to avoid

biases introduced by the reference genome.

S1.4. Implementation details.

MALVA is implemented in C++ and it is freely available at https://github.

com/AlgoLab/malva. Bloom filters were implemented as the union of a bitvec-

tor and a single hash function H. Although it is not conventional, in most cases

to use a single hash function has similar results as using multiple ones, as noticed

by other authors (Sun et al., 2017; Sun and Medvedev, 2018). To check this

claim, while developing the tool we tested whether using multiple hash func-

tions would improve the results by extending the Bloom filters to count-min

sketches (Cormode and Muthukrishnan, 2005). As expected, the deterioration

of the performance far outweighted the gain in precision and recall (that was

less than 0.1%). Moreover, to use a single hash function allows us to store wR
t

and wA
t efficiently for each k-mer t. Indeed, note that once all the signatures

of all the alternate alleles have been added to ALTSIG, the latter is only used

to check whether some ks-mer is part of a signature, i.e., it becomes static. By

representing ALTSIG as a Bloom filter BALTSIG we can create an integer array

CNTS of size rank1(|BALTSIG|+1, BALTSIG) to store the weights of each k-mer com-

pactly and, if a k-mer t of a signature s is in ALTSIG (i.e., if BALTSIG[H(s)] = 1)

we can access its weight by accessing CNTS[rank1(H(s), BALTSIG)]. In a nutshell,

after adding all the alternate alleles to BALTSIG, we freeze it, build a rank data

structure over it, compute the number of ones, and create the CNTS array of

the correct size. Similarly, we implemented REPCTX as a Bloom filter BREPCTX

using a single hash function. Conversely, REFSIG was implemented as a simple

hash table, because the number of elements it stores is usually smaller than the

number of elements stored in ALTSIG. The bitvectors, the rank data structure,

13

https://github.com/AlgoLab/malva
https://github.com/AlgoLab/malva

and the CNTS array were implemented using the sdsl-lite library (Gog et al.,

2014). We pose an upper limit of 255 to the value of each cell of the CNTS array,

so as to store each counter using only 8 bits.

Finally, instead of scanning all the kc-mers in the read sample, we used

KMC3 (Dugosz et al., 2017) to efficiently extract them and counting their occur-

rences. Therefore, in step 3 MALVA parses the output of KMC3 and updates the

counts for each ks-mer accordingly.

S1.5. Data and Software Availability

MALVA is freely available at https://github.com/AlgoLab/malva. Informa-

tion and instruction on how to replicate the performed experiments are available

at https://github.com/AlgoLab/malva_experiments.

Supplemental References

Bloom, B.H., 1970. Space/time trade-offs in hash coding with allowable errors.

Commun. ACM 13, 422–426.

Chikhi, R., Rizk, G., 2013. Space-efficient and exact de bruijn graph represen-

tation based on a bloom filter. Algorithms for Molecular Biology 8, 22.

Consortium, .G.P., et al., 2015. A global reference for human genetic variation.

Nature 526, 68.

Consortium, I.H., et al., 2003. The international hapmap project. Nature 426,

789.

consortium, U., et al., 2015. The uk10k project identifies rare variants in health

and disease. Nature 526, 82.

Cormode, G., Muthukrishnan, S., 2005. An improved data stream summary:

the count-min sketch and its applications. J. Algorithms 55, 58–75.

Danecek, P., Auton, A., Abecasis, G., Albers, C.A., Banks, E., DePristo, M.A.,

Handsaker, R.E., Lunter, G., Marth, G.T., Sherry, S.T., McVean, G., Durbin,

14

https://github.com/AlgoLab/malva
https://github.com/AlgoLab/malva_experiments

R., Group, .G.P.A., 2011. The variant call format and VCFtools. Bioinfor-

matics 27, 2156–2158.

Dugosz, M., Kokot, M., Deorowicz, S., 2017. KMC 3: counting and manipulat-

ing k-mer statistics. Bioinformatics 33, 2759–2761.

Gog, S., Beller, T., Moffat, A., Petri, M., 2014. From theory to practice: Plug

and play with succinct data structures, in: 13th International Symposium on

Experimental Algorithms, (SEA 2014), pp. 326–337.

Li, H., 2011. A statistical framework for SNP calling, mutation discovery, as-

sociation mapping and population genetical parameter estimation from se-

quencing data. Bioinformatics 27, 2987–2993.

McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernyt-

sky, A., Garimella, K., Altshuler, D., Gabriel, S., Daly, M., et al., 2010.

The genome analysis toolkit: a mapreduce framework for analyzing next-

generation dna sequencing data. Genome Research 20, 1297–1303.

Melsted, P., Pritchard, J.K., 2011. Efficient counting of k-mers in DNA se-

quences using a bloom filter. BMC Bioinformatics 12, 333.

Pajuste, F.D., Kaplinski, L., Möls, M., Puurand, T., Lepamets, M., Remm, M.,

2017. FastGT: an alignment-free method for calling common SNVs directly

from raw sequencing reads. Scientific Reports 7, 2537.

Shajii, A., Yorukoglu, D., William Yu, Y., Berger, B., 2016. Fast genotyping

of known SNPs through approximate k-mer matching. Bioinformatics 32,

i538–i544.

Sun, C., Harris, R.S., Chikhi, R., Medvedev, P., 2017. Allsome sequence bloom

trees, in: Research in Computational Molecular Biology - 21st Annual Inter-

national Conference, RECOMB 2017, pp. 272–286.

Sun, C., Medvedev, P., 2018. Toward fast and accurate SNP genotyping from

whole genome sequencing data for bedside diagnostics. Bioinformatics 35,

415–420.

15

Venter, J.C., Adams, M.D., Myers, E.W., Li, P.W., Mural, R.J., Sutton, G.G.,

Smith, H.O., Yandell, M., Evans, C.A., Holt, R.A., et al., 2001. The sequence

of the human genome. science 291, 1304–1351.

Vigna, S., 2008. Broadword implementation of rank/select queries, in: Experi-

mental Algorithms, 7th International Workshop, WEA 2008, pp. 154–168.

16

	isci_500_mmc1.pdf
	Transparent Methods
	Preliminaries
	MALVA's approach
	Example of k-mers weight computation
	Implementation details.
	Data and Software Availability

