Cell Reports, Volume 27

Supplemental Information

Metallothionein 3 Controls the Phenotype

and Metabolic Programming

of Alternatively Activated Macrophages

Debabrata Chowdhury, Hani Alrefai, Julio A. Landero Figueroa, Kathleen Candor, Aleksey Porollo, Roger Fecher, Senad Divanovic, George S. Deepe Jr., and Kavitha Subramanian Vignesh

Supplementary Figures and Figure Legend:

Figure S1:

Figure S1: Effect of chloroquine on extracellular acidification and impact of MT3 on lactate transporter gene expression. Related to Figure 2.

(a) Scramble siRNA or Mt3 siRNA treated M ϕ exposed to chloroquine and stimulated with IL-4 for 24 h, 2 independent experiments; and (b) Gene expression of monocarboxylic acid transporters *Slc16a1* (MCT1) and *Slc16a3* (MCT4) in *Mt3^{-/-}* M ϕ 24 h post IL-4 stimulation, 5 independent experiments, One-way ANOVA (Holm-Sidak method). Data represent mean ± SEM, One-Way ANOVA, *p < 0.05, **p < 0.01 and NS, not significant. (See also Figure 2).

Figure S2:

Figure S2: *Hif1a* silencing and analysis of the effect of MT3 in *Lyz2CreHif1a*^{*i*/*f*/} M ϕ . Related to Figure 3.

(a) *Hif1a* expression in M(IL-4) M ϕ treated with either Hif1a siRNA or scramble siRNA control. Percent value represents *Hif1a* silencing in (Mt3 + Hif1a) siRNA treated M ϕ compared to Mt3 siRNA alone; 4 independent experiments, ANOVA on Ranks (Dunn's method), data represent mean ± SEM, *p < 0.05 and NS, not significant; (b) Western blot of HIF1 α from WT and *Lyz2CreHIF1a*^{fl/fl} M ϕ left untreated or treated with LPS (100ng/ml)

for 4h, β actin used as loading control, one representative of 4 independent experiments, the bands are from a single western blot, but the lanes were separated to only present data from relevant samples; **(c)** *Nos2* gene expression in WT and *Lyz2CreHif1a^{fl/fl}* M ϕ treated with scramble or Mt3 siRNA and stimulated with IL-4 for 24h, data from each *Lyz2CreHIF1a^{fl/fl}* mouse is shown separately (See also Figure 3).

Figure S3:

Figure S3: LDH activity in M ϕ and PKM2 activation does not rescue extracellular acidosis in MT3 deficient M ϕ . Related to Figure 4.

(a) Analysis of LDH activity in cell lysates of scramble siRNA or Mt3 siRNA treated M ϕ , 6 h and 24 h post IL-4 stimulation; 2 independent experiments; and (b) Extracellular pH in culture supernatants of M ϕ treated with DMSO control or DASA-10 throughout the culture period and stimulated with IL-4 for 24 h; 4 independent experiments, Data represent mean \pm SEM. (See also Figure 4).

Figure S4: Phenotyping of WT and $Mt3^{-/-}$ mice, Zn changes and AkT, mTOR activation in WT and $Mt3^{-/-}$ M ϕ . Related to Figure 5.

(a) Cell numbers in the thymus, spleen and bone marrow of *Mt3^{-/-}* mice and age-matched wild type (WT) control mice; (b and c) Proportion and number of thymic T cells, splenic T and B cells, dendritic cells (DCs), M ϕ , and neutrophils of WT and *Mt*3^{-/-} mice; (d) Number of WT and Mt3^{-/-} bone marrow derived M₀ obtained by GM-CSF differentiation, data represent mean ± SEM; (e) Size exclusion chromatography-inductively coupled plasmamass spectrometry (SEC-ICP-MS-MS) analysis of WT and Mt3^{-/-} bone marrow derived Mo stimulated with IL-4 for 24 h in regular RPMI media, bar graphs show total Zn (left) and labile Zn (right), 3 independent experiments, One-way ANOVA (Bonferroni method); IL-4 for 24 h in ⁶⁸Zn enriched RPMI media prepared as described (Subramanian Vignesh et al., 2016). Chromatogram on left shows ratio of ⁶⁸Zn / ⁶⁴Zn in M₀ lysates, labile Zn signal (circled region) seen at >25 min in the chromatogram, Y axis, offset for clarity, an increase in ⁶⁸Zn / ⁶⁴Zn ratio indicates an elevation in newly imported ⁶⁸Zn in the M₀; bar graph on right shows labile ⁶⁸Zn / ⁶⁴Zn ratio in untreated and IL-4 treated WT and Mt3^{-/-} Mo. The data show that IL-4 fails to elevate labile ⁶⁸Zn / ⁶⁴Zn ratio when MT3 is absent, data represent mean ± SD, 2 independent experiments; and (g) Western Blot of pAkt, Akt, pmTOR, mTOR, p70S6K and β -actin in total cell lysates of WT and Mt3^{-/-} M ϕ 24 h post IL-4 stimulation, pAkt, pmTOR and p70S6K were normalized to Akt, mTOR and βactin respectively, 3 independent experiments (See also Figure 5).

Figure S5:

Figure S5: MT3 regulates $M\phi$ metabolism in M-CSF derived $M\phi$ and in alveolar $M\phi$. Related to Figure 5.

(a and b) ECAR and OCR plots of bone marrow derived WT and *Mt3*-/- M
\$\phi\$ differentiated using M-CSF, followed by no treatment or stimulation with IL-4 for 24 h, bar graphs (right)

show ATP production and glycolytic capacity, 3 independent experiments, One-way ANOVA (Tukey method); (c) Gene expression analysis of *Arg1, Chi3l3* and *Nos2* in WT and *Mt3*^{-/-} M-CSF derived M ϕ left untreated or treated with IL-4 for 24 h; and (d) ECAR and OCR plots of alveolar M ϕ from WT and *Mt3*^{-/-} M ϕ , bar graph (right) shows ATP production and glycolytic capacity, 3 independent experiments; two-way ANOVA (Holm Sidak method); data represent mean ± SEM (See also Figure 5).

Figure S6: IL-4R α expression in *Mt3^{-/-}* M ϕ and *E. coli* phagocytosis. Related to Figure 6.

(a) Dot plots showing IL-4Ra expression in WT and $Mt3^{-/-}$ M ϕ at baseline, 3 independent experiments; and (b) Phagocytosis of *E. coli* K12 by WT and $Mt3^{-/-}$ M ϕ 3.5 h post infection, data are presented as CFU, 4 independent experiments. Data represent mean ± SEM. (See also Figure 6).