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Supplementary Figures and Figure Legend: 

 

Figure S1: 

 

 

 

Figure S1: Effect of chloroquine on extracellular acidification and impact of MT3 on 

lactate transporter gene expression. Related to Figure 2. 

(a) Scramble siRNA or Mt3 siRNA treated M exposed to chloroquine and stimulated with 

IL-4 for 24 h, 2 independent experiments; and (b) Gene expression of monocarboxylic 

acid transporters Slc16a1 (MCT1) and Slc16a3 (MCT4) in Mt3-/- M 24 h post IL-4 

stimulation, 5 independent experiments, One-way ANOVA (Holm-Sidak method). Data 

represent mean ± SEM, One-Way ANOVA, *p < 0.05, **p < 0.01 and NS, not significant. 

(See also Figure 2). 

 

 



Figure S2: 

 

 

 

Figure S2: Hif1a silencing and analysis of the effect of MT3 in Lyz2CreHif1afl/fl M. 

Related to Figure 3. 

(a) Hif1a expression in M(IL-4) M treated with either Hif1a siRNA or scramble siRNA 

control. Percent value represents Hif1a silencing in (Mt3 + Hif1a) siRNA treated M 

compared to Mt3 siRNA alone; 4 independent experiments, ANOVA on Ranks (Dunn’s 

method), data represent mean ± SEM, *p < 0.05 and NS, not significant; (b)  Western blot 

of HIF1 from WT and Lyz2CreHIF1afl/fl M left untreated or treated with LPS (100ng/ml) 



for 4h,  actin used as loading control, one representative of 4 independent experiments, 

the bands are from a single western blot, but the lanes were separated to only present 

data from relevant samples; (c) Nos2 gene expression in WT and Lyz2CreHif1afl/fl M 

treated with scramble or Mt3 siRNA and stimulated with IL-4 for 24h, data from each 

Lyz2CreHIF1afl/fl mouse is shown separately (See also Figure 3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure S3: 

 

 

Figure S3: LDH activity in M and PKM2 activation does not rescue extracellular 

acidosis in MT3 deficient M Related to Figure 4.  

(a) Analysis of LDH activity in cell lysates of scramble siRNA or Mt3 siRNA treated M, 6 

h and 24 h post IL-4 stimulation; 2 independent experiments; and (b) Extracellular pH in 

culture supernatants of M treated with DMSO control or DASA-10 throughout the culture 

period and stimulated with IL-4 for 24 h; 4 independent experiments, Data represent mean 

± SEM. (See also Figure 4). 

 

 

 

 

 



Figure S4: 

 



Figure S4: Phenotyping of WT and Mt3-/- mice, Zn changes and AkT, mTOR 

activation in WT and Mt3-/- MRelated to Figure 5.  

(a) Cell numbers in the thymus, spleen and bone marrow of Mt3-/- mice and age-matched 

wild type (WT) control mice; (b and c) Proportion and number of thymic T cells, splenic T 

and B cells, dendritic cells (DCs), M, and neutrophils of WT and Mt3-/- mice; (d) Number 

of WT and Mt3-/- bone marrow derived M obtained by GM-CSF differentiation, data 

represent mean ± SEM; (e) Size exclusion chromatography-inductively coupled plasma-

mass spectrometry (SEC-ICP-MS-MS) analysis of WT and Mt3-/- bone marrow derived 

M stimulated with IL-4 for 24 h in regular RPMI media, bar graphs show total Zn (left) 

and labile Zn (right), 3 independent experiments, One-way ANOVA (Bonferroni method); 

(f) SEC-ICP-MS-MS analysis of WT and Mt3-/- bone marrow derived M stimulated with 

IL-4 for 24 h in 68Zn enriched RPMI media prepared as described (Subramanian Vignesh 

et al., 2016). Chromatogram on left shows ratio of 68Zn / 64Zn in M lysates, labile Zn 

signal (circled region) seen at >25 min in the chromatogram, Y axis, offset for clarity, an 

increase in 68Zn / 64Zn ratio indicates an elevation in newly imported 68Zn in the M; bar 

graph on right shows labile 68Zn / 64Zn ratio in untreated and IL-4 treated WT and Mt3-/- 

M. The data show that IL-4 fails to elevate labile 68Zn / 64Zn ratio when MT3 is absent, 

data represent mean ± SD, 2 independent experiments; and (g)  Western Blot of pAkt, 

Akt, pmTOR, mTOR, p70S6K and β-actin in total cell lysates of WT and Mt3-/- M 24 h 

post IL-4 stimulation, pAkt, pmTOR and p70S6K were normalized to Akt, mTOR and β-

actin respectively, 3 independent experiments (See also Figure 5). 

 

 



Figure S5: 

 

 

 

Figure S5: MT3 regulates M metabolism in M-CSF derived M and in alveolar M. 

Related to Figure 5. 

(a and b) ECAR and OCR plots of bone marrow derived WT and Mt3-/- M differentiated 

using M-CSF, followed by no treatment or stimulation with IL-4 for 24 h, bar graphs (right) 



show ATP production and glycolytic capacity, 3 independent experiments, One-way 

ANOVA (Tukey method); (c) Gene expression analysis of Arg1, Chi3l3 and Nos2 in WT 

and Mt3-/- M-CSF derived M left untreated or treated with IL-4 for 24 h; and (d) ECAR 

and OCR plots of alveolar M from WT and Mt3-/- M, bar graph (right) shows ATP 

production and glycolytic capacity, 3 independent experiments; two-way ANOVA (Holm 

Sidak method); data represent mean ± SEM (See also Figure 5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure S6: 

 

 

Figure S6: IL-4R expression in Mt3-/- M and E. coli phagocytosis. Related to 

Figure 6.  

(a) Dot plots showing IL-4Ra expression in WT and Mt3-/- M at baseline, 3 independent 

experiments; and (b) Phagocytosis of E. coli K12 by WT and Mt3-/- M 3.5 h post infection, 

data are presented as CFU, 4 independent experiments. Data represent mean ± SEM. 

(See also Figure 6). 

 

 

 

 


