Supplementary Online Content

Sarraj A, Hassan AE, Savitz S, et al. Outcomes of endovascular thrombectomy vs medical management alone in patients with large ischemic cores: a secondary analysis of the optimizing patient's selection for endovascular treatment in acute ischemic stroke (SELECT) study. *JAMA Neurol.* Published July 29, 2019. doi:10.1001/jamaneurol.2019.2109

eAppendix. Study personnel.

eTable 1. Univariable and multivariable logistic regression models comparing functional independence (90 day mRS 0-2) in patients treated with thrombectomy versus medical management only.

eTable 2. Univariable and multivariable ordinal logistic regression models comparing 90 day modified Rankin Scale score distribution (shift) in patients treated with thrombectomy versus medical management only.

eTable 3. Univariable and multivariable logistic and ordinal logistic regression models comparing functional independence (90 day mRS 0-2) in patients treated with thrombectomy versus medical management only in patients with large core on different imaging modalities.

eTable 4. Rates of functional independence in patients receiving thrombectomy and medical management only, stratified by ASPECTS score. ASPECTS: Alberta Stroke Program Early CT Score.

eTable 5. Multivariable logistic regression model identifying variables independently associated with functional independence (90 day mRS 0-2) in patients treated with endovascular thrombectomy.

eTable 6. Clinical and Radiographic Outcomes of the cohort divided based on the treatment received in patients with ASPECTS \leq 6.

eFigure 1. Depicts 90 day modified Rankin Scale score distribution in large core patients treated with endovascular thrombectomy as compared to those who were treated by medical management only by imaging modality a) Large core on CT, b) Large core on CTP, c) Large core on CT & CTP.

eFigure 2. Depicts 90 day modified Rankin Scale score distribution in patients who achieved successful reperfusion (mTICI \ge 2b) with endovascular thrombectomy as compared to those who did not (mTICI=0-2a).

eFigure 3. Illustrates 90 day modified Rankin Scale score distribution stratified by ischemic core volume on CT perfusion (50-100 cc) vs. > 100 cc.

eFigure 4. The probability of good outcomes at 90 day in patients who were treated with endovascular thrombectomy in relation to ASPECTS score.

This supplementary material has been provided by the authors to give readers additional information about their work.

eAppendix. Study personnel

Emory University: Diogo Haussen, Raul G Nogueira, Michael Frankel, Shannon Doppelheuer, Kiva Schindler, Meagan Schultz. **Florida University:** Evan Allen, Indrani Acosta, Frank Hellinger, Cherlynn Basignani, Brooke Hartwell, Jane Aly, Karin Donaldson. **Kansas University:** Michael Abraham, Alison Boydston, Shayla Murphy. **Riverside Methodist Hospital – Ohio Health:** Ronald F. Budzik, Jr., William Hicks, Nirav Vora, Jennifer Mejilla, Frances Laub, Laura Reebel, Jennifer Czerniak, Katy Groezinger, Meghan Lauf, Mindie Taylor. **Saint Louis University:** Randall Edgell, Andre Guthrie, Ahmed Sarhan, Ali Hamzehloo. **Stanford University:** Greg Albers, Maarten Lansberg, Stephanie Kemp, Madelleine Garcia, Emma Adair. **Valley Baptist Medical Center:** Ameer E. Hassan, Olive Sanchez, Ivette Torres, Laurie Preston, Velma Henn, Christina Sanchez. **WellStar Health System:** Rishi Gupta, Susan Zimmermann, Susan (Sue) Lawson, Joan Dorin, Laura Murphy, Tasha Futch, Portia Thomas. **The University of Texas Health Science Center at Houston:** Amrou Sarraj, Bita Imam, Amber Jacobs, Katelin Reishus, Christine Farrell, Rebekah Herty.

Logistic regression		OR	95	5% CI	P-
					value
Univariable	Endovascular Thrombectomy	3.27	1.11	9.62	0.03
Multivariable	Endovascular Thrombectomy	3.95	0.62	25.35	0.15
	Age (years)	1.02	0.97	1.08	0.43
	NIHSS at presentation	0.85	0.72	0.99	0.04
	Serum Glucose at presentation (mg/dL)	0.99	0.98	1.00	0.09
	IV tPA status	1.60	0.33	7.60	0.56
	Clot location				
	Internal Carotid Artery	Ref.			
	Middle cerebral Artery - M1 segment	1.87	0.40	8.76	0.43
	Middle Cerebral Artery - M2 segment	10.53	1.14	97.33	0.04
	Ischemic Core Volume (CTP rCBF<30%) (per	0.95	0.92	0.98	0.001
	10cc)				
	Time from last known well to procedure (Hours)	1.00	0.76	1.31	0.98

eTable 1. Univariable and multivariable logistic regression models comparing functional independence (90 day mRS 0-2) in patients treated with thrombectomy versus medical management only.

 Given high co-linearity observed between ASPECTS and rCBF volume, ASPECTS could not be assessed within the same models. A separate model after excluding rCBF (<30%) volume did not find ASPECTS score to be statistically significant on logistic regression model (aOR: 0.81(0.61-1.08), p=0.16).

	Ordinal logistic regression	OR	959	% CI	P-value
Univariable	Endovascular Thrombectomy	2.12	1.05	4.31	0.04
				-	
Multivariable	Endovascular Thrombectomy	1.61	0.71	3.63	0.25
	Age (years)	0.97	0.95	1.00	0.09
	NIHSS at presentation	0.88	0.79	0.97	0.008
	Serum Glucose at presentation (mg/dL)	0.99	0.98	1.00	0.001
	IV tPA status	1.11	0.49	2.51	0.793
	Clot location				
	Internal Carotid Artery	Ref.			
	Middle cerebral Artery - M1 segment	1.47	0.64	3.38	0.36
	Middle Cerebral Artery - M2 segment	2.36	0.70	7.99	0.17
	Ischemic Core Volume (CTP rCBF<30%) (per	0.84	0.76	0.93	0.001
	10cc)				
	Time from last known well to procedure	0.92	0.80	1.07	0.28
	(per hour)				

eTable 2. Univariable and multivariable ordinal logistic regression models comparing 90 day modified Rankin Scale score distribution (shift) in patients treated with thrombectomy versus medical management only.

 Given high co-linearity observed between ASPECTS and rCBF volume, ASPECTS could not be assessed within the same models. A separate model after excluding rCBF (<30%) volume did not find ASPECTS score to be statistically significant on ordinal logistic regression model (aOR: 0.95 (0.79-1.14), p=0.59).

Endovascular Thrombectomy vs Medical Management		OR	95	% CI	P-
					value
Large Core on CT (ASPECTS < 6)					
Logistic regression (mRS 0-2)	Univariable	2.53	0.83	7.67	0.10
	Multivariable	2.29	0.3	17.42	0.42
Ordinal logistic regression (Shift on 90 day	Univariable	2.28	0.98	5.29	0.06
mRS)	Multivariable	1.76	0.67	4.62	0.25
Large Core on CTP (rCBF (<30%) volume ≥ 50 cc)					
Logistic regression (mRS 0-2)	Univariable	8.77	1.04	74.21	0.046
	Multivariable *	N/A	N/A	N/A	N/A
Ordinal logistic regression (Shift on 90 day	Univariable	1.54	0.66	3.56	0.32
mRS)	Multivariable	1.53	0.54	4.3	0.42
Large Core on CT AND CTP					
Logistic regression (mRS 0-2)	Univariable	4.17	0.34	50.62	0.26
	Multivariable *	N/A	N/A	N/A	N/A
Ordinal logistic regression (Shift on 90 day	Univariable	1.38	0.43	4.44	0.59
mRS)	Multivariable	3.24	0.71	14.72	0.13

eTable 3. Univariable and multivariable logistic and ordinal logistic regression models comparing functional independence (90 day mRS 0-2) in patients treated with thrombectomy versus medical management only in patients with large core on *different imaging modalities (CT, CTP or Both)*.

Multivariable model demonstrates the thrombectomy effect after adjusting for Age, NIHSS at presentation, serum glucose at presentation, IV-tPA status, clot location, ischemic core volume and time from last seen well to procedure.

*Due to low rates of functional independence in medical management arm, the logistic regression models were unstable.

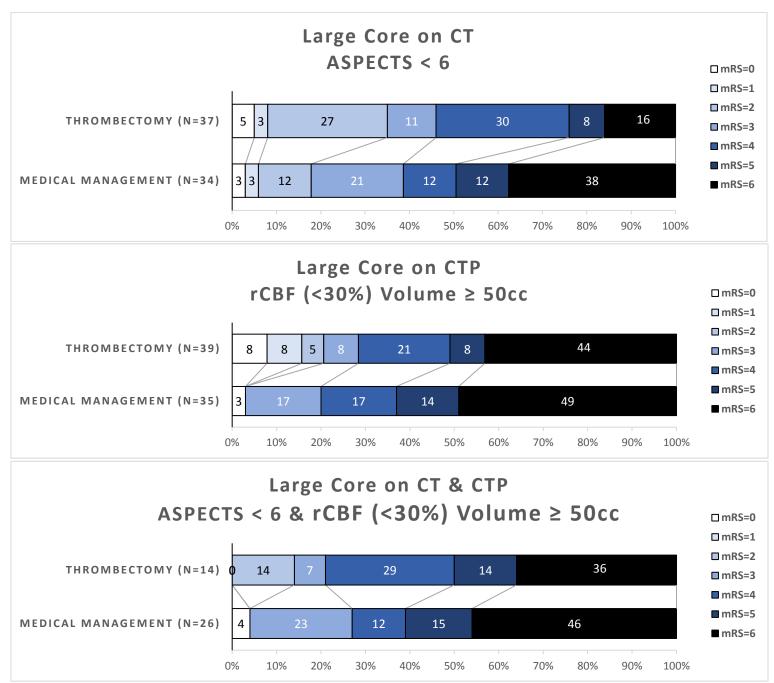
	Endovascular Thrombectomy (N=37)	Medical Management only (N=34)
ASPECTS = 5	40% (8/20)	18%(2/11)
ASPECTS = 4	40% (4/10)	50%(3/6)
ASPECTS = 3	14%(1/7)	10%(1/10)
ASPECTS = 2	0%(0/0)	0%(0/4)
ASPECTS = 1	0%(0/0)	0%(0/2)
ASPECTS = 0	0%(0/0)	0%(0/1)
Total	35%(13/37)	18%(6/34)

eTable 4. Rates of functional independence in patients receiving thrombectomy and medical management only , stratified by ASPECTS score. ASPECTS: Alberta Stroke Program Early CT Score.

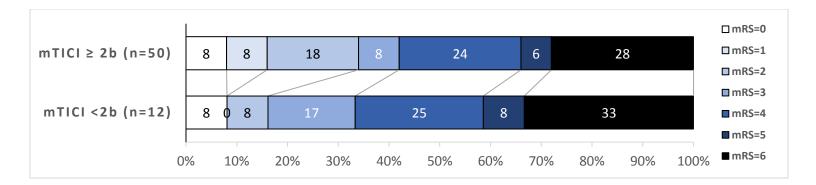
Clinical and Imaging Variables	OR	95% CI		p-value
Age (years)	1.13	1.00	1.28	0.049
Serum Glucose at presentation (mg/dL)	0.99	0.97	1.01	0.18
NIHSS at presentation	0.71	0.54	0.93	0.01
IV tPA status	4.04	0.51	32.14	0.19
Clot Location –				
Internal Carotid Artery	Ref.			
Middle cerebral Artery - M1 segment	0.76	0.12	4.64	0.76
Middle Cerebral Artery - M2 segment	37.90	0.62	2314.34	0.08
Ischemic Core Volume (CTP rCBF<30%) (per 10cc)	0.58	0.39	0.87	0.007
Time from last known well to procedure (Hours)	0.60	0.36	0.99	0.045

eTable 5. Multivariable logistic regression model identifying variables independently associated with functional independence (90 day mRS 0-2) in patients treated with endovascular thrombectomy.

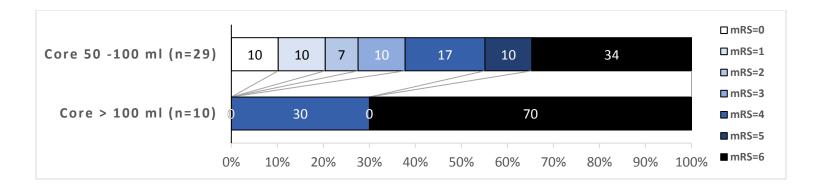
- Clinically relevant and statistically significant (those with univariate p <0.1) variables were included in the final logistic regression model. A stepwise method of variable selection was used.
- Given the high co-linearity observed between ASPECTS and rCBF volume, ASPECTS could not be assessed within the same model. A separate model, after excluding ischemic core volume (rCBF<30%) did not find ASPECTS score to be statistically significant. (aOR: 0.86 (0.54-1.37), p=0.52)

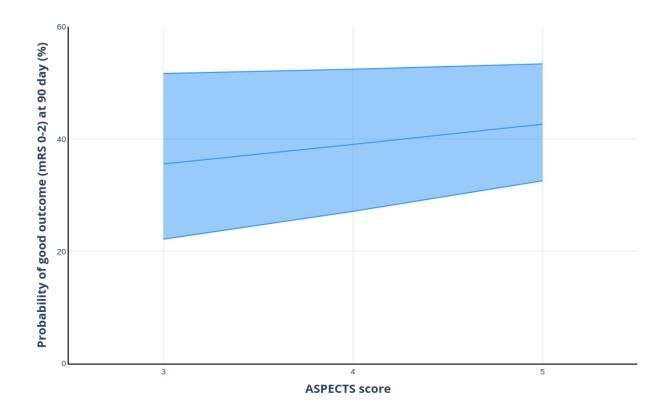

	Endovascular	Medical management	p-value
	Thrombectom	only	
	y (n=67)	(n=41)	
mTICI ≥ 2b, n(%)	53(79%)	N/A	N/A
90 day mRS, n(%)			0.002°
0	12 (18%)	1 (2%)	
1	4 (6%)	1 (2%)	
2	12 (18%)	4 (10%)	
3	7 (10%)	7 (17%)	
4	17 (25%)	8 (20%)	
5	3 (4%)	4 (10%)	
6	12 (18%)	16 (39%)	
Good outcomes, n(%)	28 (42%)	6 (15%)	0.003 ^c
Good to Moderate outcomes (mRS 0-	35 (52%)	13 (32%)	0.04 ^c
3), (n%)			
Neurological Worsening, n(%)	12 (18%)	5 (13%)	0.59 ^f
Symptomatic ICH, n(%)	8 (12%)	4 (10%)	1.000 ^f
Any ICH, n(%)	41 (61%)	12 (30%)	0.002 ^c
Death, n(%)	12 (18%)	16 (39%)	0.02 ^c
Final infarct volume (cc), median	69 (4-107)	158 (119-225)	<0.001 ^w
(IQR)			
Infarct growth (cc), median (IQR)	39(4-107)	99 (61-140)	0.003 ^w

eTable 6. Clinical and Radiographic Outcomes of the cohort divided based on the treatment received in patients with ASPECTS \leq 6:


mTICI: modified treatment in cerebral ischemia grade, mRS: modified Rankin Scale score, ICH – intracerebral hemorrhage.

^w P-value obtained using Wilcoxon Rank-sum test, ^f P-value obtained using Fisher's exact test, , ^c P-value obtained using Pearson's Chi-square test, ^oP-value obtained using univariate ordinal logistic regression


Functional Outcome Comparison between Thrombectomy vs Medical Management in Patients with Large Core on CT, CTP or Both.


eFigure 1. Depicts 90 day modified Rankin Scale score distribution in large core patients treated with endovascular thrombectomy as compared to those who were treated by medical management only by imaging modality a) Large core on CT, b) Large core on CTP, c) Large core on CT & CTP.

eFigure 2. Depicts 90 day modified Rankin Scale score distribution in patients who achieved successful reperfusion (mTICI \ge 2b) with endovascular thrombectomy as compared to those who did not (mTICI=0-2a).

eFigure 3. Illustrates 90 day modified Rankin Scale score distribution stratified by ischemic core volume on CT perfusion (50-100 cc) vs. > 100 cc.

eFigure 4. The probability of good outcomes at 90 day in patients who were treated with endovascular thrombectomy in relation to ASPECTS score.

 Each unit reduction in ASPECTS score resulted in 14% reduction in odds of good outcome (aOR: 0.86 (0.54-1.37), p=0.52) as mentioned in supplemental table 1.